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1. Introduction
Recent progress in fabrication of nanoscale or mesoscopic structures has been
making a nice bridge between high technology and fundamental researches of
nonlinear dynamics. Both concave and convex billiards, around which studies of
chaos are being accumulated, can be fabricated at the interface layer of
semiconductor heterojunctions, e.g., GaAs/AlGaAs.

Concave and convex billiards are prototypes of conservative chaotic systems.
In the concave case,· a point particle repeats alternately a free motion inside the
cavity and an elasic collision (via specular reflection) at the hard wall, resulting
in a complicated trajectory extremely sensitive to initial conditions. In the convex
case, on the other hand, a particle moves between plural number of convex
billiards, e.g., as in case of Sinai billiard. Quantum-mechanical study of these
billiards is one of the important subjects of quantum chaos. l We shall present
quantum and semiclassical theories on both concave and convex billiards with
open channels. Argument will also be made on level dynamics for parameter­
dependent energy spectra ofbounded systems.
2. Magneto-conductance in open concave billiards
Among concave billiards, Bunimovich's stadium (Sd) billiard has received a wide
attention as a paradigm of nonlinear dynamics. It belongs to the K system,
showing fully-chaotic orbits in marked contrast to regular orbits in a simple
circle (Cl) or rectangle. Its quantum-mechanical study showed the GOE level
statistics and periodic-orbit scars in wavefunctions, thereby heralding a new era
of quantum. chaos. In the presence of perpendicular magnetic field B, the stadium
billiard becomes a generic system. Meplan et aI's· treatment elucidated its
characteristic classical features: The erratic and ergodic phase space in a low
field region is replaced by KAM tori via a transitional unstable region around
B=Bc with increasing the field strength, in contrast to the circle billiard where
the phase space is always occupied by periodic (quasi-periodic) and nonergodic
orbits. As for the experiment, using the advanced electron transport devices,
Marcus et al2 made a striking experiment on the magneto-conductance of the
nanoscale stadium billiard.

Our study on the magneto-conductance g(B) in open CI and Sd billiards
shows fluctuations dependent largely on the- stability of phase space in the
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underlying classical dynamics of closed billiards. While in the CI billiard the
regular modulation of periodic orbits in the phase-space structure gives rise to
regular oscillations ofg(B), the global chaos and genesis of successive tori in the
Sd billiard are responsible to slow and rapid variations of the quantum
conductance, respectively. The gradient of the cusp-like central peaks in the
autocorrelation function quantifies rich fluctuations ofg(B). The present result
is qualitatively consistent with the Marcus et aIls experiment on a different wire
geometry. Further, using the bouncing Larmor-orbit picture, we have derived
the classical conductance, which turns out to reproduce most of the locations of
peaks in the coarse-grained version ofg(B).

Real nanoscale structures are accompanied by extrinsic randomness, e.g.,
corrugation ofwalls, impurities and thermal noises. The rapid progress of advanced
technology will smear out these extrinsic obstacles preventing us from a simple
comparison between theory and experiment. The quantum theory of chaos is
thus facing with an era to see its experimental test in the stage of quantum
transport in mesoscopic devices. Currently, theoretical interests concentrate on:
(1)showing a universality of conductance fluctuations on the basis of random
matrix theory; (2) deriving the S-matrices directly by extending the Gutzwiller's
semiclassical trace formula to open systems.

Nevertheless, the observed magneto-conductance would demand much deeper
insight: Quantitative discrepancy, e.g., of the transition point Be between the
theory and experiment is serious and one should make a challenge into solving
a puzzle of spectral structures which cannot be explained by either one of the
semiclassical or quantum theory.
3. Chaotic scattering on convex billiards: SUG~ess of semiclassical theory
On the other hand, measurements of quantum transport properties have
accumulated on the so-called crossroad in the GaAs/AlGaAs interfaces. The
four corners of the crossroad consist ofelectron depletion regions, whith correspond
to C411 four hard convex disks in the limit where the potential at the border of the
circuit is very steep. While some theoretical studies aim at applying Gutzwiller's
semiclassical trace formula to the crossroad problem, their issue (e.g., on
conductance) is not in good agreement with experimental results. ,This
discrepancy would be due to the serious diffraction effect at leaky regions connected
with straight lead wires.

To capture the fluctuation properties truly attributable. to chaotic scattering,
we shall develop both semiclassical and exact quantum theories for a point
particle scattered by a model system consisting of four identical hard disks with
C411 symmetry with all its attachments discarded so as to suppress the effect of
diffraction. In this simplified system, the semiclassical theory-"---Gutzwiller's
trace formula-----is extremely powerfull. The reason is: (1) The system is fully
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chaotic without bearing any bifurcation and therefore symbolic dynamics predicts
all the periodic orbits systematically; (2) due to the open-system nature, only
short-periodic orbits contribute substantially to the trace formula, suppressing
a serious problem of exponential proliferation.

The issue of classical treatment is as follows: 3 Suppose a system of convex
hard disks (with radii a and inter-disk distance R) lying within the area B with
size 9{ x 9l.: The escape rate yof a point particle moving outside ofB is expressed
in terms of KS entropy hKS and the sum ,of positive Lyapunov exponents I\, as

y =It - hl{S (1)
(Eckmann and Ruelle, 1985). Since l\,>hKS, ~O is guaranteed. This means the
existence of an upper limit for the confining time. On the other hand, let's
consider a gas ofparticles confined initially betw~endisks inside B and eventually
escaping outside B. The particl~ density function f satisfies inside B a diffusion

.equation (with diffusion coefficient D), atf= DV2f, with the boundary condition
f=O outside B. By assuming the long-time behavior of the solution, f--exp( -yt) ,
one obtains the relationship

y --D/1C. (2)
Combining (1) and (2), one reaches3

D-- 9{2 (l\,-hKS) • (3)

D proves to be nonvanishing owing to the presence of the lower limi~ for 'Yo

The Lyapunov exponent strongly depends on the degree of opening of the
system, a =RIa. We find I\, deceases with increase of a. In case a »1, I\, »hKS

and hence y(--1\,) decreases with increase of a.
In our study on the semiclassical and quantum-mechanical counterparts of

these properties, we shall evaluate wavenumbers k res associated with scattering
resonances. The scattering resonance means a state in which an incident electron
is transiently trapped within the quasi-closed region surrounded by disks. The
imaginary. part of kres is related to the inverse life time of the electron. We have
elucidated the presence of a ~ap in the distribution of k res I correspondin~ to the
classical issue, e.g., the presence of the lower limit of y and its a dependence. 4,5

Resonances can provide information on the dynamical behavior of a
semiconductor mesoscopic d~vice like the crossroad. The reaction time of the
device maybe estimated from the size ofthe aforementioned gap in the distribution
ofthe resonances. Indeed, according to Schro dinger's equation applied to scattering
systems, the time evolution of ari electronic wavepacket is given by a linear
superposition of damped exponentials, exp(ImEnt /h), controlled by the imaginary
parts of the complex energies of the resonances. In the present system, we
showed that the imaginary parts of the wavenumbers are bounded by the value
of the gap according to Imkn<--xgap' According to the relation between energy and .
wavenumber, we infer that the probability for the electron to remain in the
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scatterer decays like exp(-t/'t'gap).'The upper bound on the lifetime is given by
't'gap =1 /(2vp Xgap) in terms of the semiclassical gap and the Fermi velocity Vp of
'the electron gas. Since the gap is related to the Lyapunov exponents of the
periodic orbits, our analysis shows how the reaction time of the device depends
on the geometry of the system:

R
~ - (4)gap V

F
In(R / a) ,

which is valid in the regime kR, ka »1 where diffraction effects can be neglected.
In the case of crossroad we see that the shortest reaction times are obtained for
the smallest values of the .comer radius a, assuming a fixed value for the width
R of the lead wires. For GaAs/AlGaAs heterojunctions, the effective mass of the
electrons is m=0.067me and an electron densityofn,,=3x 1011 cm-2 can be obtained
so that the Fermi velocity would then take the value Vp=(21C1i 2

n,,)1/J. /m=2Ax 105

mise For a nanometric circuit of size R=100nm, the time unit is therefore of
R/vp=OA x 10-12 s so that the lifetimes of the resonances are in the subpicosecond
domain. We suggest that the dynamical behavior of such devices could be probed
by femto-second laser experiments.

4. Level dynamics and random matrix theory
Finally, some argument will be devoted to the parameter-dependent energy
spectra for bounded systems. Statistical aspects of classically-chaotic quantum
systems are described by random matrix theory and its constrained variants.
These apparent irregularity can be explained more profoundly by statistical
mechanics of the completely-integrable Calogero-Moser and Calogero-Sutherland
systems derived from quantum-mechanical eigenvalue.problems by regarding
a nonintegrability parameter as a pseudo- time.4

,5 The idea is traced back
to Dyson's level dynamics, but the modern framework described in this talk is
based on conservative Newtonian dynamics rather than an overdamped limit of
Langevin equation.
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