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We live in a universe where cause precedes effect. This is in spite of the fact that the
equations of motion, whethe~ classical or quantum mechanical, are time reversible and it is therefore
dynamically possible for effect to precede cause. In our attempts to model the macroscopic behaviour
of the world arpund us, we describe apparently irreversible behaviour such as heat or momentum
flows, by using causal constitutive relations.

In the 1950's and 60's 'exact' fluctuation relations - the so-called Green-Kubo relations - were
derived for the causal transport coefficients that are defined by causal linear constitutive relations such
as Fourier's Law of heat flow or Newton's Law of viscosity [1-4]. The Mori-Zwanzig projection
operator formalism shows that the Green-Kubo relations for causal linear transport coefficients are an
exact consequence of the equations of motion~ Some years ago an objection to the derivation of
Green-Kubo relations by linear response theory was raised by van Kampen [5]. However, this
objection has more recently been dismissed by Morriss et al. [6]

It would thus seem that the derivation of Green-Kubo relations, which give a unique sign for
each of the Navier-Stokes transport coefficients, constitutes a proof of the irreversibility of
macroscopic behaviour. Although Green-Kubo relations do not indicate the sign of the transport
coefficient, they do indicate that the transport coefficient has adefinite sign.

Recently we have provided a simple argument that if a deterministically and reversibly
thermostatted system which is initially at equilibrium is subjected to a perturbing external field, then it
becomes overwhelmingly probable to observe initial equilibrium microstates that subsequently
generate Second Law satisfying nonequilibrium steady states [7]. This argument is base.d on the
Boltzmann ansatz (that in the equilibrium microcanonical ensembl~ the probability of observing
microstates within a specified phase space volume is proportional to the magnitude of that volume),
and on the assumption of causality. .

In this paper we show that if we derive Green-Kubo relations for the corresponding transport
<;oefficients defined by anticausal constitutive relations: firstly, these anti-transport coefficients have
the opposite sign to their causal counterparts and secondly, it becomes overwhelmingly likely to
observe Second Law violating anticausal nonequilibrium steady states. This argument, again based
on the Boltzmann ansatz, shows that in an anticausal world it becomes overwhelmingly probable to
observe final equilibrium microstates that evolved from Second Law violating nonequilibrium steady
states. Although this behaviour is not seen in the macroscopic world, anticausal behaviour is
permitted by the solution of the time reversible laws of dynamics and we demonstrate, using computer
simulation, how to find phase space trajectories which exhibit anticausal behaviour.

To make this discussion more concrete we will discuss Green-Kubo relations for shear
viscosity [1]. Analogous results can be derived for each of the Navier-Stokes transport coefficients.
We assume that the regression of fluctuations in a system at equilibrium, whose constitpent particles
obey Newton's equations of motion, are governed by the Navier-Stokes equations.

The causal response of the yx-component of the pressure tensor in the zero wavevector limit is
given by,

Pyxc(t) = - f~Tl(t - s)y(s)ds t > O. (1)
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and the anticausal response is,

PyxA (t) = ft~(t - s)y(s)ds t < 0 (2)

The Green-Kubo expression for the causal shear viscosity coefficient can be evaluated using
standard techniques [1]. We have recently derived the anticausal shear viscosity coefficient in a
similar manner [10]. At zero wavevector, we find that the causal and anticausal memory functions are
both given by the equilibrium autocorrelation function of the pressure tensor,

Tj(t) = k:T (Pyx(t)Pyx (0)), . '1ft (3)

where t > 0 for the causal response and t < 0 for the anticausal response.
In the linear regime close to equilibrium the entropy production per unit time, dS/dt, is given

by,
dSdt = -Pyx (t)y(t)V (4)

where yet) is the time dependent strain rate. From equations (1) and (2), it is easy to see that if we
conduct two shearing experiments, one on a causal system with a strain rate history yc (t) and one on
an anticausal system with y A (t) = ±yc (-t), then

dS(t)1 = -dS(-t)1 (5)
dt A dt c

This proves that if the causal system satisfies the Second Law of Thennodynamics then the anticausal
system must violate that Law and vice versa [10].

We can examine the causal and anticausal response at the microscopic level by considering a
thermostatted system of N particle under shear. In this system the field is the shear rate, dU/dy = y (t)
(the y-gradient of the x-streaming velocity), and the dissipative flux is the shear stress, -Pxy' times
the system volume, V [1]. The equations of motion for the particles are given by the the so-called
thermostatted SLLOD equations [1],

qi =Pi 1m + i'YYi' Pi =Fi - i'YPyi - exPi' (6)
At arbitrary strain rates these equations give an exact description ofadiabatic Couette flow. At low
Reynolds number, the momenta, Pi' are peculiar momenta and ex is determined using Gauss's
Principle of Least Constraint to keep the internal energy fixed [1]. Thus

N N N ) N

ex =-y(LPXiPyJm-1I2LxijFyij]ILP? Im= -PxyyV ILP? 1m (7)
i=l i,j i=l i=l

where Fyii is the y-component of the intennolecular force exerted on particle i by j and xij == xj-xi.
Note that the thermostatted SLLOD equations of motion (6 and 7) are time reversible [1].

'tWe have shown that for every i-segment with 't-averaged shear stress <PxY>'t (i)
== ~ LpXy(r(i)(s»ds, there exists a conjugate segment which we will call thei(K) segment for which
< Pxy >'t,(i(K» = - <PxY>'t,(i) [7]. The K-mapping of a ~hase, . r, is defined by MKr =

.MK(x,y,z,px'Py'Pz'y) = (x,-y,z,-px'P '-Pz'y) == r(K) [1]. It IS straightforward to show that the
Liouville operator for the system (6 and 7), iL(r(f) == L[qi • dIdqi + Pi • dIdPi], has the property
that under a K-map, MK iL(r,y) =iL(r(K),y) =-iL(r,y) [1], from which it follows that if a K-map
is carried out at t =0, and if, YK(-t) =yet) 'v't, then.

Pxy (-t, r,y(-t» =exp[-iL(r, y(-t»t]pxy(r) =-PXy(t,r(K),YK(t) (8)

If we select an initial, t =0, phase, ~1)' and we advance time from 0 to 't using the equations
of motion ~6 and 7), we obtain r(2) =r('t;r(ll) =exp[iL(r(l)~y)'t~r(l)' Con~nuing on to 2't gives
r (3) =exp[iL(r(2)'y)'t]r(2) =exp[iL(r(l)'y )2'tJr(l)' At the mzdpomt of the trajectory segmen~ r (l,3)

(i.e. at t = 't) we apply the K-map to r (2) generating M<K)r(2) == r (5)' If we now reverse time with the
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~~e shear rate Cbut with a.reversed evolution), we obtain r(4) =e~p[-iLCr(5)'y)~]r~)" r(4) is the
Imtial t =0 phase from which a segment r(4,6) can be generated wIth r(6) =exp[iLCr(4),y)2t]r(4)"
We thus have an algorithm for generating conjugate segment pairs [7]. .

Using the symmetry of the equations of motion it is trivial to show thatpxf(t; r(l)' 0 < t <
2t) =-Px/2t-t; r(6l.'- 0 < t <2t). We also,see immediately that if the segment (1,3) is a causal
segment then segmentr(4,6) is anticausal, and vice versa. Further, if segment r(I 3) is a Second Law
satisfying segment then segment r(4,6) is a Second Law violating segment, and vice versa. Figure 1
below shows computer simulation generated results showing causal and anticausal conjugate
segments.

1.5 r"'I""I''I'''T'1r'T'T''I''T'1r'''1"''1'''.......,"''I'''I"''I''T'1r''TT'.......,"''I'''I"'I"T'1r'T'TT''I'''I~'I''''I''1 •. 2.5
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Figure la,b, PJ!.}' (so'lid line) from nonequilibrium moleculardynamics simulations of56 WCAparticlesaLT =1.0
and n =0.8 undergoing shearflow. The dashed line gives the time dependence of the strain rate. In a), P was
determined using 100 trajectories whose.initial phases were selectedfrom an equilibrium distribution and to whic~Ya two
step strain rate was applied. b) shows Pxy for their conjugate trajectories. The con].'ugate trajectories were obtained by
applying a K-map to the phase of the trajectory at t =2, simulating forward and backward in time from this point and
translating in time so that the conjugate trajectory ends at t =O. Note that the strain rate history of the conjugate
trajectory is reversed. '

In a causal world, which is described by causal macroscopic constitutive relations, observed
segments are overwhelmingly likely to be Second Law satisfying. We can show this by discussing
the ratio of probabilities of finding the initial phases r(l), r(4) which generate these conjugate
segments. In a causal world, the probabilities of observing the segments r O,3) and r(4,6)
CP(l,3),P(4,6» are of course proportional to the probabilities of observing the initial phases which
generate those segments. It is convenient to consider a small phase space volume, vcr(i)CO» about an
initial phase, r(i)CO). Because the initial phases are distributed microcanonically, the probability of
observing ensemble members inside vcr(i)CO», is proportional to Vcr(i)(O». From the Liouville
equation dfcr,t)/dt = 3Na(r)f(r,t) + 0(1) and the fact that for sufficiently small volumes, V(rCt» 
1/f(r(t),t), we can make ths.following observations: V2 =VI (t) =VI (O)exp[-f3Na(s;r(l)ds] and
V3=Vl(2t) = Vt(O)exp[-r 3Na(s;r(l)ds]; and since the Jacobian of the K-ma~ping is unity, V2 =
V5 ' V3= V4 and VI (0) = "'~. Therefore the ratio of probabilities is just the volume ratio,

r2t -
P(4,6yP(l,3) = V4N 1(0) = VI (2t)N1(0) = exp[Jo -3Na(s;r(l)')ds], \ft. (9)

Thus if the world is causal and we assume segment 1(=rO,3» is Second Law satisfying then
<CX>t,(1,3) > 0 and Ill/Ill *~oo (i.e. we overwhelmingly observe segment I rather than the Second
Law VIOlating antisegment 1*). Conversely, if segment 1 is Second Law violating then«x.>t,(l,3) < 0
and Ill/Ill *~O (i.e. we overwhelmingly see segment 1* rather than the Second Law violating
antisegment 1).
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Figure 2. Shows results[7Jofa computer simulation test ofthe validity of(9) .

In an anticausal world where effects precede their causes, the probabilities of observing the
segments r(l,3),r(4,6) are proportional to the probabilities of observing the final phases generated by
those segments. The system will be at equilibrium at the end point (rather than the beginning) of the
trajectory segments and antisegments. It is trivial to see that in an anticausal world it would be
overwhelmingly more probable to observe Second Law violating segments rather than Second Law
satisfying segments. .

These relationships between causality, response theory and the second law of
thermodynamics have been :,demonstrated using nonequilibrium molecular clynamics simulations of
Couette flow in [10]. '
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