CRITICAL EXPONENTS OF SAW AT THE Θ point in two dimensions

Takao Ishinabe

Faculty of Engineering, Yamagata University, Yonezawa 992, Japan

Duplantier and Saleur¹ have proposed the "exact" values of tricritical exponents: γ_{+} (entropy exponent) = 8/7, ν_{\pm} (shape exponent) = 4/7 and ϕ (crossover exponent) = 3/7 for the self-avoiding walk(SAW) at the θ point in two dimensions. These values are derived, however, for a special model of SAW on the hexagonal lattice with randomly forbidden hexagons at the percolation threshold using Coulomb-gas techniques and conformal invariance. Here we examine these results from exact enumeration of SAW on the square lattice on the basis of the Orr model of a polymer chain in dilute solutions.

The partition function of the chain with nearest-neighbor interaction energy ε is written as

$$C_{n}(\omega) = \sum_{m=0}^{\infty} C_{n,m} e^{m\omega}$$
(1)

where $\omega = -\epsilon/kT$ and $C_{n,m}$ is the number of n-step SAW with m non-bonded nearest-neighbors. The reduced free energy is given by

$$F^{\star}(\omega) = \lim_{n \to \infty} n^{-1} \log C_{n}(\omega)$$
 (2)

The reduced internal energy and the specific heat are obtained from $E^{*}(\omega) = \partial F^{*}(\omega) / \partial \omega$ and $C^{*}(\omega) = \partial^{2} F^{*}(\omega) / \partial \omega^{2}$, respectively. The meansquare distance is also written as

$$R_{n}^{2}(\omega) = \left(\sum_{m=0}^{n} r_{n,m}^{2} e^{m\omega}\right) / C_{n}(\omega)$$
 (3)

where $r_{n,m}^2$ is the unnormalized square end-to-end distance. Exact values of $C_{n,m}$ and $r_{n,m}^2$ were enumerated for $n \leq 24$. The locations $\omega_n^{(0)}$ of maximum points on $C_n^*(\omega)$ curves (see Fig.1) for different n are determined by exploiting the series $\{C_{n,m}\}$ obtained. The Neville tables for linear and quadratic extrapolants

$$\omega_{n}^{(r)} = \left(n\omega_{n}^{(r-1)} - (n-2r)\omega_{n-2}^{(r-1)} \right) / 2r$$
 (4)

are formed for r = 1 and 2. The tricritical point $\omega_t (= \lim_{n \to \infty} \omega_n^{(0)})$ is

determined by plotting these extrapolants against n^{-1} (Fig.2) after taking the average $(\omega_n^{(r)} + \omega_{n+1}^{(r)})/2$ in order to lessen the odd-even effect. Following scaling assumptions are introduced:

$$C_{n}(\omega_{t}) \sim \mu_{t}^{n} n^{\gamma} t^{-1}; R_{n}^{2}(\omega_{t}) \sim n^{2\nu} t$$
(5)

The growth parameter μ_{t} and the exponents γ_{t} and ν_{t} are determined from a conventional technique using Neville tables combined with the ratio method. The crossover exponent ϕ is also estimated from three kinds of approaches based on

$$|\Delta \omega_{n}| = |\omega_{n}^{(0)} - \omega_{t}| \sim n^{-\phi}; R_{n}^{2}(\omega) \sim n^{2\nu}t f(|\Delta \omega_{n}|n^{\phi})$$
(6a)
$$C_{n}(\omega) \sim \mu_{t}^{n} n^{\gamma}t^{-1} F(|\Delta \omega_{n}|n^{\phi})$$
(6b)

The results thus estimated are listed in Table I together with those of Chang and Meirovich² from the scanning Monte Carlo method.

Fig.1 $C_n^*(\omega)$ curves for different n. Fig.2 Determination of ω_+ .

Table I. Exponents for SAW at ω_{+} in two dimensions.

Method	^{.w} t	^µ t	vt	Ϋ́t	φ
Series analysis Monte Carlo [1] Exact values[2]	0.655 0.658	3.209 3.213	0.575 0.574 0.571	1.095- 1.11 1.142	1.09 0.594 0.428

1. D.Duplantier and H.Saleur, Phys.Rev.Lett. 59, 539(1987).

2. I.Chang and H.Meirovich, Phys.Rev.E 48, 3656(1993).