CRITICAL EXPONENTS OF SAW AT THE Θ POINT IN TWO DIMENSIONS

Takao Ishinabe
Faculty of Engineering，Yamagata University，Yonezawa 992，Japan

Duplantier and Saleur ${ }^{1}$ have proposed the＂exact＂values of tricri－ tical exponents：γ_{t}（entropy exponent）$=8 / 7, \nu_{t}($ shape exponent $)=4 / 7$ and ϕ（crossover exponent）$=3 / 7$ for the self－avoiding walk（SAW）at the θ point in two dimensions．These values are derived，however，for a special model of SAW on the hexagonal lattice with randomly forbidden hexagons at the percolation threshold using Coulomb－gas techniques and conformal invariance．Here we examine these results from exact enumer－ ation of SAW on the square lattice on the basis of the Orr model of a polymer chain in dilute solutions．

The partition function of the chain with nearest－neighbor interaction energy ε is written as

$$
\begin{equation*}
c_{n}(\omega)=\sum_{m=0} c_{n, m} e^{m \omega} \tag{1}
\end{equation*}
$$

where $\omega=-\varepsilon / k T$ and $C_{n, m}$ is the number of n－step SAW with m non－bonded nearest－neighbors．The reduced free energy is given by

$$
\begin{equation*}
F^{*}(\omega)=\lim _{n \rightarrow \infty} n^{-1} \log C_{n}(\omega) \tag{2}
\end{equation*}
$$

The reduced internal energy and the specific heat are obtained from $E^{*}(\omega)=\partial F^{*}(\omega) / \partial \omega$ and $C^{*}(\omega)=\partial^{2} F^{*}(\omega) / \partial \omega^{2}$ ，respectively．The mean－ square distance is also written as

$$
\begin{equation*}
R_{n}^{2}(\omega)=\left(\sum_{m=0} r_{n, m}^{2} e^{m \omega}\right) / C_{n}(\omega) \tag{3}
\end{equation*}
$$

where $r_{n, m}^{2}$ is the unnormalized square end－to－end distance．
Exact values of $C_{n, m}$ and $r_{n, m}^{2}$ were enumerated for $n \leqq 24$ ．The loca－ tions $\omega_{n}^{(0)}$ of maximum points on $C_{n}^{*}(\omega)$ curves（see Fig．1）for different n are determined by exploiting the series $\left\{C_{n, m}\right\}$ obtained．The Neville tables for linear and quadratic extrapolants

$$
\begin{equation*}
\omega_{n}^{(r)}=\left(n \omega_{n}^{(r-1)}-(n-2 r) \omega_{n-2}^{(r-1)}\right) / 2 r \tag{4}
\end{equation*}
$$

are formed for $r=1$ and 2．The tricritical point $\omega_{t}\left(=\lim _{n \rightarrow \infty} \omega(0)\right.$ is

第1回東和大学国際研究会「統計物理学：理論，実験，計算機シミュレーション」
determined by plotting these extrapolants against n^{-1}（Fig．2）after tak－ ing the average $\left(\omega_{n}^{(r)}+\omega_{n+1}^{(r)}\right) / 2$ in order to lessen the odd－even effect． Following scaling assumptions are introduced：

$$
\begin{equation*}
c_{n}\left(\omega_{t}\right) \sim \mu_{t}^{n} n^{\gamma} t^{-1} ; R_{n}^{2}\left(\omega_{t}\right) \sim n^{2 \nu_{t}} \tag{5}
\end{equation*}
$$

The growth parameter μ_{t} and the exponents γ_{t} and ν_{t} are determined from a conventional technique using Neville tables combined with the ratio method．The crossover exponent ϕ is also estimated from three kinds of approaches based on

$$
\begin{gather*}
\left|\Delta \omega_{n}\right|=\left|\omega_{n}^{(0)}-\omega_{t}\right| \sim n^{-\phi} ; R_{n}^{2}(\omega) \sim n^{2 \nu_{t}} f\left(\left|\Delta \omega_{n}\right| n^{\phi}\right) \tag{6a}\\
C_{n}(\omega) \sim \mu_{t}^{n} n_{t} \gamma^{-1} F\left(\left|\Delta \omega_{n}\right| n^{\phi}\right) \tag{6b}
\end{gather*}
$$

The results thus estimated are listed in Table I together with those of Chang and Meirovich ${ }^{2}$ from the scanning Monte Carlo method．

Fig． $1 C_{n}^{*}(\omega)$ curves for different n ．

Fig． 2 Determination of ω_{t} ．

Table I．Exponents for SAW at ω_{t} in two dimensions．

Method	ω_{t}	μ_{t}	ν_{t}	γ_{t}	ϕ
Series analysis	0.655	3.209	0.575	$1.095 \cdots$	1.09
Monte Carlo［1］	0.658	3.213	0.574	1.11	0.594
Exact values［2］			$0.571 \ldots$	$1.142 \ldots$	$0.428 \ldots$

1．D．Duplantier and H．Saleur，Phys．Rev．Lett．59，539（1987）．
2．I．Chang and H．Meirovich，Phys．Rev．E 48， 3656 （1993）．

