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ABSTRACT

In this paper, we briefly review our recent results in the calculation of universal scaling
functions for site and bond percolation on finite square, plane triangular, and honeycomb
lattices. We find that, by choosing an aspect ratio for each lattice and a very small number of
nonuniversal metric factors, all scaled data of the existance probability Ep and the percolation
probability P fallon the same universal scaling functions. We also find that free and periodic
boundary conditions share the same nonuniversal metric factors. When the aspect ratio of each
lattice is reduced by the same factor, the nonouniversal metric factors remain the same. The
probabilities for the "appearance of n, n = 1, 2, 3, ..., percolating clusters for bond and site
percolations on various planar lattices also have universal scaling functions. The implications
of such results on numerical and experimental studies of critical phenomena are discussed.

1. INTRODUCTION

Universality and scaling are two important concepts in the theory of critical phenomena.
According to the idea of universality [1, 2], different systems in the same spatial dimensionality
and having the same Hamiltonian symmetry share the same set of critical exponents. However,
such systems usually have different scaling functions. In 1984, in a paper on finite-size scaling,
Privman and Fisher [3] proposed the concept of universal scaling functions and nonuniversal
metric factors. Specifically, they proposed that, near the critical point t = 0, where t =
(T - Tc ) /Tc with Tc being the critical temperature, the singular part of the free energy for a
system of linear dimension L can be written as

(1)
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where d is the spatial dimensionality or-the lattice, Y is a universal scaling function, v is the
correlation length exponent and D is an nonuniversal metric factor [3]. However, it seems
that there have been no published results which show that many different systems in the same
universality class [1, 2] share the same set of scaling functions.

In recent papers, we use a histogram Monte Carlo simulation method (HMCSM) [4,5,6, 7,
8,9] to evaluate the existence probability Ep(G,p) and the percolation probability P(G,p) of
bond and site percolations on the square (sq) , the planar triangular (pt), and the honeycomb
(he) lattices. Here Ep ( G, p) is the probability that the system percolates. In the limit of L -+ 00,

Ep(G,p) approaches the step function ()(p-Pc) [10], where Pc is the critical probability. P(G,p)
is the fraction of lattice sites in the largest cluster in G, which is percolating; it is the order
parameter of the system. Ep(G,p) and P(G,p) may be used in a percolation renormalization
group method to calculate the critical point, critical exponents, and the thermodynamic order
parameter for the percolation problem [4, 8]. We find that, by choosing an aspect ratio for each
lattice and a very small number of nonuniversal metric factors, all scaled data of the existance
probability Ep and the percolation probability P fall on the same scaling functions [11]. We also
find that free and periodic boundary conditions share the same nonuniversal metric factors [11].
When the aspect ratio of each lattice is reduced by the same factor, the nonouniversal metric
factors remain the same [12]. Hu and Lin find that the probabilities for the appearance of n,
n = 1, 2, 3, ..., percolating clusters for bond and site percolations on various planar lattices
have good scaling behavior and such scaling functions are universal [13, 14]., In section 2, we
briefly our results. The implications of such results on numerical and experimental studies of
critical phenomena are discussed in section 3.

2. UNIVERSAL SCALING FUNCTIONS

It has been found that for site and bond percolation on the sq lattice Ep (G, Pc) = 0.5 [15, 16]
and it has been proposed [17] that for bond and site percolation on the pt lattice' with aspect
ratio v'3/2 and on the he lattice with aspect ratio v'3,. Ep (G, Pc) is equal to that for the square
lattice, Le. 0.5. Therefore, we first use the HMCSM to calculate the Ep(G,p) and P(G,p) for
site and bond percolations on a 512 x 512 sq lattice, a 433 x 500 pt lattice whose aspect ratio
433/500 is very close to v'3/2, and a 433 x 250 he lattice whose aspect ratio 433/250 i,s very
close to .;3. We consider both free and periodic boundary conditions.

We find that by choosing such aspect ratios [17] and appropriate values of nonuniversal
metric factors Db D2 , and D3 listed in [11], Ep as a function of x = D1(p - Pc)L1/v and
D3P/L{3/v as a function of x = D2(p-Pc)L1/v .for various models have universal scaling functions
[11], where (3 is the critical exponent of the order parameter. We also find that within numerical
uncertainty D1 = D2 and free and periodic boundary conditions share the same nonuniversal
metric factors [11]. Thus, our results support, and generalize, P~ivman and Fisher's idea of
universal scaling functions.

We have also studied site and bond percolations on a 256 x 512 sq lattice, a 216 x 250 he
lattice, and a 216 x 500 pt lattice; the aspect ratios of such lattices are about half of the lattices
used in [11]. The calculated Ep(G,p), P(G,p), scaling function for Ep(G,p) : F(G,z), scaling
function for P(G,p): S(G, z), universal scaling function for Ep(G,p): F(x), and universal
scaling function for P(G,p): Sex) are shown in Figs. 1-3 of [12], where z = (p - Pc)L1/v,
x = D1z with D1 being a nom.iniversal metric factor. We have found that nonuniversal metric
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factors for each of these new lattices are consistent with those of the corresponding lattices
considered in [11]. If other factor is used to reduce the aspect ratios, similar results could be
expected.

In the low temperature experiment of quantum Hall effects, when the external magnetic
field is increased from small values to large values, the conductivity (Jzy changes from one
plateau with (J:z;y = (Jl to another plateau with the value (J:z;y = (J2and the conductivity (J:z;:z;

has a maximum (J:a:z; in the transition region. It has been predicted that for an infinite sample
[18] (J:'a:z: = !(0'2 - 0'1)' However, such prediction is not cOJ.lfirmed by experiments and it has
been found that 0'':::11 is sample dependent. In a recent theory of quantum Hall effect, Ruzin,
Cooper, and Halperin [18] proposed that O',:::z; = ~(0'2-O'd, where k is the number of percolating
clusters in the sample. Therefore, it is valuable to calculate the number of percolating clusters
in percolation problems.

Hu has used the HMCSM [4, 5, 6, 7] to evaluate the probability Wn(L1,L2 ,p) for the
appearance of n top-to-bottom percolating clusters of bond percolation on finite L 1 x L 2 square
lattices with a periodic boundary condition in horizontal L1 direction and a free boundary
condition in vertical L2 direction. He has found that, for a given aspect ratio L1/ L 2 all scaled
data of W n (Lll L2 ,p) fall on the same scaling function, i.e. Wn (L 1,L2,p) has good scaling
behavior [13]. Therefore, the results obtained from small simulation systems could be applied
to much larger experimental systems. Using the nonuniversal metric factor D1 of [11], Hu and
Lin have found that six bond and site percolation models considered in [11] have universal
scaling functions for Wn (L ll L2 , p) [14].

3. FINAL COMMENTS

We expect that the features of universal scaling functions and nonu~iversal metric factors
found in this paper may be applied to a variety of critical systems, e.g. Ising-type spin models
and hard-core particle models whose phase transitions are percolation transitions of the corre
sponding correlated percolation models [19, 20, 21]. We may extend the method of this paper
to calculate universal scaling functions for Ep(G, p) and P(G,p) of such models.

It is also of interest to find universal scaling functions for dynamic critical phenomena and
to calculate nonuniversal metric factors by conformal theory or renormalization group theory.

With the rapid progress of computing and experimental facilities, more and more results of
critical systems may be obtained and analyzed by finite-size scalings. The results reviewed in
this paper will greatly reduced the amount of jobs to obtain experimental or numerical data.
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