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In a simple model of the diffusion of macromolecules in a biomembrane, a lipid bilayer can be
regarded as an infinitely thin sheet of viscous fluid. These macromolecules move laterally in the
fluid sheet as Brownian particles due to the forces exerted by the surrounding lipid molecules.
In a two-dimensional fluid, however, the hydrodynamics is not very simple. Once we neglect
the convective acceleration term in the Navier-Stokes equation, we face the Stokes paradox.
Even if the convective acceleration term is partly included in the Oseen approximation, we are
confronted with the breakdown of the linear relation between the velocity and the drag force
acting on a macromolecule.

Actually, the Stokes paradox does not exist in real biomembranes. This is because a lipid
bilayer is not an isolated fluid but surrounded by adjacent water. Hence the total momen-
tum of the two-dimensional fluid membrane is not a conserved quantity and can leak into
the surrounding water being a three-dimensional fluid. On the basis of these considerations,
Izuyama and coworkers proposed the following two-dimensional hydrodynamical model where
the momentum leak is simply represented by a phenomenological relaxation parameter I' [1, 2J;

ov(r,t)

r— nV2v(r,t) + grad p(»,t) + Tv(r,t) = F(r,1), (1)

supplemented by the incompressibility condition div v(»,t) = 0. In the above, v(r,t) and
p(7,t) are the velocity and pressure, p and 7 are the density and dynamic viscosity of the
lipid membrane, respectively. F'(r,t) represents any external force acting on the membrane,
including Brownian forces.

First we shall consider the case where the protein is modelled by a linear polymer chain.
The conformation of a single chain is represented by the set of (N +1) position vectors {R,} =
(Ro,...,Ry). Within the preaveraging approximation, the diffusion constant of a polymer
chain with an effective bond length b can be calculated as [3]

Dp _ 1 1
kT — 4mnz?

[(1 +2?)(2log z + 7) — 2* — exp(?)Ei(—3?))], (2)

where z = (b®N/4£*)Y/? = R,/¢ (R, being the Gaussian polymer size and ¢ = (7/I')'/2 the
screening length). Ei(—z) is the exponential integral function defined by Ei(—z) = — [° dte™*/t
and v is Euler’s constant v = 0.5772- - -. In the weak coupling limit (¢ < 1), Eq. (2) reduces to
Dy/kpT = (1/4mn)(log é/ R, + 3/4 — 7/2). In the strong coupling limit (z >> 1), on the other
hand, it gives D,/kgT = (1/4mn)(£/R,)?, neglecting a logarithmic correction.

Next we consider the case where the protein is represented by a cylinder of radius R.. By
using the “induced force method”, the translational diffusion constant is calculated as
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D1 (4 uk))” ,

ksT — 4mp \ 4 = Ko(y) ' (3)
where y = R./¢, Ko(z) and K,(z) are the modified Bessel functions of the second kind of
order zero and onme, respectively. In the weak coupling limit (y < 1), Eq. (3) becomes
D./kgT = (1/4mn)(log2¢/R. — v), while in the strong coupling limit (y > 1), we find
D./ksT = (1/77)(€/R.)?. The dimensionless diffusion constants 4mnD,/ksT (solid curve) and
4mnD./kpT (dashed curve) are plotted in the following figure versus ¢ = R, /€ and y = R./¢,

respectively.
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One of the advantages of the “induced force method” is that we can treat many bodies
motion taking the hydrodynamic interaction to some extent. Let us denote the position of
i-th cylinder as R; and the force exerted by the fluid on the j-th cylinder as K ;. Then the
mobility tensor u,; is defined by dR;/dt = — ;- p,; - K;. According to the lowest order
multipole expansion and taking the weak coupling limit, we obtained for ¢+ = j as p; =
(1/47n)Ko(y)Io(y)1, where 1 is the unit tensor and Io(z) is the modified Bessel function of the
first kind of order zero. For 4 # j, on the other hand, we have

Bi; = # I{Ko(R.-,'/ﬁ) - iKl(R.,/ﬁ)} 1+ Ry R;Ka(Ry;/€)| I3(y), (4)

where R;; = R; — R;, Ii,'j is the unit vector parallel to R;; and K(2) is the modified Bessel
function of the second kind of order two. Details of the calculation will be published elsewhere.
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