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A dynamical theory treating the strongly correlated system such as those described by

the Hubbard model is introduced. Our analytic results describe the Mott-Hubbard transition

and some experiments even quantitatively.

I. Introduction

The Hubbard model may be applicable to describing the Inetal-insulator transition in

the materials like "'203 [1,2] and Cal-xSTxV03 [3]. Mott-Hubbard transitions showing

band collapsing and mass enhancement due to strong correlation and magnetic ordering are

common phenomena of the Mott-Hubbard systems. These bring renewed interest in the

Mott-Hubbard system recently. Working in large dimensions [4] Inakes it possible to treat

the Hubbard model analytically, since spatial correlations do not play an important role in

the limit of large dimensions. [5-7]

We introduce an extremely simple approa.ch to studying the dynamics of Mott- Hub­

bard system by calculating the single-particle density of states through a continued fraction

formalism for the one-particle Green's function. For the infinite dimensions, it is possible

to obtain the optical conductivity from the single-particle density of states, because the

self-energy can be expressed in terms of the on-site Green's function in infinite dimensions.

[8] The optical conductivity has been measured recently [1], therefore, we can compare our

theory with experiment..

Our result shows the Hubbard feature of band collapsing and the Brinkman-Rice feature

of mass enhancement for the metal-insulator transition in one theoretical scheme. We have

a sharp delta-function peak at chemical potential as an indication of the Fermi-liquid quasi­

particle. We also obtain optical conductivity. Our result can describe recent experiment on

V20 3 quantitatively.

II. Formalism
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The single-particle DOS Per (w) is given by

(1)

where the one-particle retarded on-site Green's function G~j)(w + iT/) is written as

where 3 jj (z) is the Laplace transform of the dynamics ({Cju (t), c;u} ).

Let us consider the dynamics of Cju(t) in a Liouville space (operator Hilbert space) with

inner product (A, B) = ({A, Bt}). Then, the Green's function (2) is the projection of Cju(t)

onto Cju' The projection is most easily obtained in the orthogonalized Liouville space which

can be constructed by choosing the first vector as 10 = Cjer and using the recurrence relation

(3)

h (iLf",'!",) A (f",,!,,,)
were Q v = (f f) , L..l. v = (f f ) .

"" '" ",-1, ",-1

The projection in the Laplace transformed space, is written as

(4)

and the retarded Green's function and the single-particle DOS are given by G~j)(w + iT/) =
-2i1!"3jj (z)lz=-iw+71 and Pu(w) = J1!" li~-+o+ L:j Re3 jj (z)lz=-iw+71' respectively.

III. Dynamics of the Hubbard Model at Half-Filling

Now we obtain the dynamics of cju(t) for the Hubbard model

(5)

where < jl > means nearest neighbor sites. We consider the paramagnetic state of the half­

filled Hubbard model on a Bethe lattice. The model shows interesting physics such as band

collapsing [9] (Hubbard feature) and quasipartic1e mass enhancement· [10] (Brinkman-Rice

feature) in the process of metal-insulator transition at a finite U.

Taking the first vector as 10 = Cjer, and using the method of section II, one gets the

orthogonal basis Iv such as 10 = Cier, It = -iU8ni,-erCier - iE~tilCl,u, 12 = -UEI(8nl,-er +
8ni,-u)tilctu - E~E~tiltlkCku,h = iU2E~(8ni,_u8nl,_u + ~)tilClu,/4 = U2E~E~(8ni,_u8nl,_u +
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8ni,-u8nk,-u + 8nl,-u8nk,-u + ~)tiltlkcku, is = -iU3~~~~{8ni,_u8nl,_u8nk,_u + ~(8ni,-u +

8nl,-u.+ 8nk,-u)}ti/tlkCku' We used large-U expansion. A further approximation (q - 1) ~ q

valid at higher dimensions has been made.

One can see that only the leading terms in ill above preserve the orthogonality. Con­

structing orthogonal space with these vectors, we obtain all = -iU/2, ~211+1 = U2/4 =a,

and ~211+2 = 2qt2 = b, for v ~ O. Then the infinite continued fraction (4) can be calculated

as follows:

(6)

where z= z + i ~. We take (-) sign for w > 0 and (+) for w < 0 to satisfy the boundary

condition 3 jj (t = 0) = 1.

If we set the chemical potential at 11 = ¥, Eq. (6) gives the single-particle DOS for the

insulating phase (a > b) as

(7)

(8)

and

( a) 1 "7
Pu(w) = 1- b 7l"W2 + 772

V{w2 - (va - Vb)2} {(va+Vb)2 - w2}

+ 2b7l"IWI

for the metallic phase (a < b). The key approximation used in this work is the Hartree-Fock

type decoupling approximation.

We now obtain the optical conductivity a(w) using a formula valid in infinite dimensions,

[8]

J J () , , i (w') - f(w' +w)
a(w) = ao dw' dfP 0 (f)p(f,W )p(f,W +w) ~ . (9)

The momentum-independence of the self-energy in infinite dimensions make it possible

to express the self-energy in terms of the on-site Green's 'function. For the Bethe lattice

in the paramagnetic state, there is a self-consistent relation for the self-energy such as [5,7]

~(w) = w - iG(w) - atw) and the on-site Green's function is G(w) = -i3jj (z)lz=-iw+7)' We

show the results of the optical conductivity compared with experiment [1] in Fig.1.
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Fig. 1 : Comparison of optical conductivities for U/ D =2.1 and 4 with experimental data

(solid points for U/ D ~ 2.1 and open circles for U/ D ~ 4) shown in Ref. 1. The

solid lines are theoretical values and the dashed and the dotted Hnes denote w* rising

in theory and experiment, respectively. The horizontal scale for theoretical curves is

reexpressed by the ~nergy scale used in experiment. Arbitrary units are used for the

vertical scale for theoretical values.
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