単純なアルゴリズムで都市数の多いTSPを解く 認知と情報処理システム 理研長期研究会「複雑系」

立川 光; 石崎 豪洋; 中原 祐喜太

物性研究

論文タイトル

1996-08-20

URL

Kyoto University
単純なアルゴリズムで都市数の多いTSPを解く
立川光、石崎豪洋、中原寿喜太
香川医科大学 医学部 物理学教室
e-mail: tachkawa@kms.ac.jp

要約
TSP（巡回セールスマン問題）を解く場合にランダムに経路を設定した後に、単純に2都市を交換、取り出して挿入、一つのsubツアーの順を逆にする、の3つのルールを順次適用する。これにより、遺伝的アルゴリズムで解く場合の遺伝子の複雑なコードの操作を無くし、更に距離計算を省略することで高速に最適値、精度の高い準最適値を得る。

アルゴリズムが単純なので他の用途にも応用可能である。

Ⅰ．はじめに
遺伝的アルゴリズムを用いてTSPを解く方法としては、Goldbergの部分写像交叉があり致死遺伝子抑制法として用いられるが、交差路の排除はうまくできない。その他にも形質遺伝子を用いたものがあるが、交差路まで形質として遺伝してしまうことがあるので、交差路を排除しにくい。これらのTSPのプログラムで、交差路の状況を見た場合に、交差路を排除可能な操作を探した結果以下のようなものになった。

(1) 単純に2都市を交換。
(2) 取り出して挿入。
(3) 一つのsubツアーの順を逆にする。
以上の3つの規則をランダムに設定した経路に対して順次適用する。

更に順次適応することで経路の距離計算を省略したものに、遺伝的アルゴリズムよりも計算量を大幅に減らすことができた。遺伝子の操作は一点交叉、2点交叉、複数の個体の共通部分を破壊しないような交叉、突然変異などにある。これらの操作はパラメーター探索一般としての操作であるので、問題固有の操作として上の様な操作を行うことで、効率の良い探索が可能である。

Ⅱ．このアルゴリズムの特徴
このプログラムでTSPを解く場合の特徴は、大きい数の場合では確率は低いものの、常に真の最適値を得る可能性を持っていることである。また、3次元以上のTSPでも、同様に解くことができる。

遺伝的アルゴリズムでは、交配の際の遺伝子の操作の計算量も省略可能である。また、遺伝的アルゴリズムでは、個体数も多く必要であるので、その計算量が増えが、このアルゴリズムでは必要ない。

ランダムサーチや遺伝的アルゴリズムのように、探索中に乱数を必要とせず3つのルールの適用だけでよい。

このアルゴリズムは、都市数を数万程度に増やして行った場合には、評価関数の距離計算の誤差が全体に影響するので、精度の高い変数が必要になる。
III．実際の解き方
最初に、ランダムに巡回経路を設定する。
次に、2つの点を決める。これを2重ループで組合せを作る。
交換規則に
(1). 単純に2都市を交換
 abcdefg → afcdebg
 ↑ ↑ ↑
(2). 取り出して挿入
 abcdefg → acdebgf
 ↑ \ / ↑
(3). 一つのsubツアーの順を逆にする。
 a (bcdef)g → a (fedcb)g
以上の3つの規則で交換する。
交換して、値が小さいものを最小値とする。
ループが終了したら、経路リストを都市数の1/nだけシフトする。これを(n−1)回行
なお。ここで、nは4以上の整数である。
以上の操作で、交差路の無い値が得られる。

距離の計算は
 0 o o a a o o b o o o o
 dd1 dd2 dd3
として、全体の和を直接全部計算せずに省略することで、全体の和はd d 1 + d d 2 + d d 3
となり、全体の計算量を決定するループは
 a = 1 から a = 都市数
 b = a + 1 から b = 都市数 − 1
までの2重ループであるので、1回の探索の計算量は都市数の2乗に比例する。
このアルゴリズムで、30都市がTurbo Cで12MHzのCyrix 486+387を
用いて3秒である。(n = 4の場合)

IV．ベンチマークの結果
このアルゴリズムの性能評価を、表1に示す。
TSPLIBのデータから、ATT48, GR666, RD100, PCB442, LIN105, ST70を解いた。
実行結果は、それぞれ100回実行したうちで
ATT48 登録されているものより小さい値を得る。
GR666 登録されているものより小さい値を得る。
RD100 登録されているものはともに交差路がある。
ST70 登録されている値を得る。
LIN105 登録されている値をえる。
PCB442 100回の計算で得られた最小値と登録されているもののとの比は、
1.0204となった。
PCB 44 のような操作しがある形態には弱く、GR666のように中心で細かく、外側では都市の配置がまばらなものは、比較的良い結果である。
都市をランダムに配置したもので、1 回の探索が終了するまでの時間は、High-C で 486DX-2 66MHz を用いた場合、1万都市では 5 時間、2万5千都市では 25 時間の結果を得ている。1万都市を解いた結果の一例を図1に示す。

V. おわりに
TSP のような非決定的問題では、解空間は計算上膨大であるが、実際にには評価関数が存在する限り、それほど大きいものではない。これは、単純に近い都市を結んで行った場合の解は、本当の最適値より、およそ 1 割程度の隔たりしかないことよりも分ることである。
実際にアプリケーションソフトで用いる場合は、ある程度の妥当が必要であると思われる。
スケジューリング問題はもとより、オセロや将棋などのゲームに応用することを考えている。探索中に乱数を必要とせず、単純なアルゴリズムであるので、ハードウェア化してより高速な探索として用いることも考えられる。

図1 1万都市のTSPを解いた例（都市配置はランダム）

参考文献
1) 小林重信：「遺伝的アルゴリズムの現状と課題」 計測と制御 Vol.32, No.1, pp.2-9, (1993)
2) 佐佐美義之, 加納義樹：人工知能学会論文集 Vol.8, p.377 (1994)
4) 新妻清三郎, 村田安永, 山田和年：「機能的アルゴリズムに基づく巡回セールスマン問題の解法」 人工知能学会誌 Vol.11, No.1, pp.130-136 (1996)
5) L. デービス編, 斎我他訳：「遺伝的アルゴリズムハンドブック」 森北出版 (1994)
6) G.Reinelt:TSPLIB URL は<ftp://softlib.rice.edu/pub/tsplib>
<table>
<thead>
<tr>
<th>都市数</th>
<th>1回の時間</th>
<th>経路長の最大値</th>
<th>経路長の平均 ± 標準偏差</th>
<th>標準偏差平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.7秒</td>
<td>31636 37205</td>
<td>33990 ± 998</td>
<td>2.94%</td>
</tr>
<tr>
<td>200</td>
<td>3.3秒</td>
<td>45351 49568</td>
<td>47251 ± 885</td>
<td>1.87%</td>
</tr>
<tr>
<td>500</td>
<td>19.2秒</td>
<td>70678 75262</td>
<td>73061 ± 990</td>
<td>1.35%</td>
</tr>
<tr>
<td>1000</td>
<td>76.5秒</td>
<td>100102 105053</td>
<td>102917 ± 1062</td>
<td>1.03%</td>
</tr>
<tr>
<td>2000</td>
<td>307.0秒</td>
<td>142833 149132</td>
<td>146516 ± 1240</td>
<td>0.85%</td>
</tr>
<tr>
<td>5000</td>
<td>1936.8秒</td>
<td>228006 235230</td>
<td>230636 ± 1191</td>
<td>0.52%</td>
</tr>
</tbody>
</table>

n = 6の場合

<table>
<thead>
<tr>
<th>都市数</th>
<th>1回の時間</th>
<th>経路長の最大値</th>
<th>経路長の平均 ± 標準偏差</th>
<th>標準偏差平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.5秒</td>
<td>31175 36420</td>
<td>33005 ± 842</td>
<td>2.55%</td>
</tr>
<tr>
<td>200</td>
<td>5.2秒</td>
<td>44084 47287</td>
<td>45669 ± 731</td>
<td>1.60%</td>
</tr>
<tr>
<td>500</td>
<td>31.8秒</td>
<td>68660 72417</td>
<td>70420 ± 804</td>
<td>1.14%</td>
</tr>
<tr>
<td>1000</td>
<td>126.9秒</td>
<td>95963 100548</td>
<td>98508 ± 834</td>
<td>0.85%</td>
</tr>
<tr>
<td>2000</td>
<td>509.3秒</td>
<td>137712 141364</td>
<td>139779 ± 741</td>
<td>0.53%</td>
</tr>
<tr>
<td>5000</td>
<td>3211.1秒</td>
<td>216447 221431</td>
<td>219001 ± 1040</td>
<td>0.47%</td>
</tr>
</tbody>
</table>