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Abstract.
In this note, I will show that the differential operator appearing in the submanifold

quantum mechanics reflects the geometrical properties of the system and it is regarded
as a natural or algebraic object; the Dirac operator defined over a thin elastic rod agrees
with the Lax operator of the MKdV equation and the new index theorem related to the
submanifold geometry is found.

§1. Introduction.
It' is known that the physical state of an electron in the hydrogen atom is regarded as a

vector in the representation space of the so(3). The Lie algebra so(3) and the algebra of
the differential operators in the hydrogen atom are homomorphic.

The differential equation is, in general, an analytic object. However the differential
operator appearing in the quantum mechanics should also be regarded as an algebraic
object due to Heisenberg theory. Heisenberg showed that an operator in the quantum
mechanics is written by a matrix, even though its row and column may be infinite, while
Schrodiger expressed it in terms of the differential operator. The matrix in the Heisenberg
theory should be regarded as an element of a representation of an algebra.

After unification of the fields in the mathematics, the algebraic structures for an (phys­
ical) object sometimes give the same invariant. For example, the algebraic structures of
the fermionic (analytic) differential operator with a gauge field and of the gauge transfor­
mation give the same invariant due to the Atiyah-Singer index theorem and the theory"of
an anomaly. Furthermore physicists deal with the local properties in the system rather
than the global one; although the U(l)-gauge field sometimes gives a trivial index, there
appears a V(l) chiral anomaly locally.

Thus when a differential operator appears in physics, one has a question whether it is a
natural object or not; does the differential operator reflect the algebraic structure of the
system, e.g. the geometrical properties?

On the other hand in this decade, the submanifold quantum mechanics is developed [1].
After we quantize a particle in Din, we confine it in a submanifold embedded in lin. Then
there appears the effective potential related to the affine curvature of the submanifold.

Our purpose in this note is to show that the differential operator appearing in the sub­
manifold quantum mechanics reflects the property of the base submanifold. Furthermore
I will investigate the local properties of the relation between them.

Along the submanifold quantum mechanics scheme, we will consider the Dirac operator
defined over a thin elastic rod [2-5]. Then we find that the algebraic relation of the
fermionic operators restores the equation of the motion of the elasitca, i.e. the MKdV
equation; the Dirac operator, given through the submanifoldquantum mechanics scheme,
and the operator, preserving the adiabatic condition, are regarded as the Lax pair of the
MKdVsolitoh. Through the investigation of the Dirac operator, we rediscover the various
properties of the soliton theory of the MKdV equation. H one quantizes the classical Dirac
field, he naturally finds the Jimbo-Miwa-Sato theory or the Hirota bilinear equation [2-7].
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Furthermore, as the global property of the system, we obtain the Atiyah-Singer-type
index theorem related to the topology of the submanifold; by dealing with the Dirac
operator, we find the sum of the signed crossing points.

§2. Classical Submanifold Field Theory.
The submanifold quantum mechanics is constructed as follows [1];
1) We construct the quantum equation in Din with the ordinary metric.
2) We embed (exactly speaking, immerse) a differential submanifold in th~ Din.
3) We define the coordinate system along the submanifold in its tubular neighborhood.
4) We express the quantum equation in terms of the curved coordinate so that the

normal component in the equation is expressed by the momentum operator of the normal
direction.

5) We restrict the quantum equation along the submanifold.
Physically speaking, these processes are naturally performed when we introduce the

confinement potential along the submanifold with the same thin thickness.
Along the scheme [2-51, we obtain the Dirac operator on a thin rod in 1Ii2 as

1)0 := 80, (2-1)

where v := kj2 and k is the curvature of the rod. qO is the time coordinate and q1 == s is
the arclength of the rod. Here we neglect the effective mass term. The Dirac equation for
the classical field is

1J7/J = o. (2-2)
This equation is valid even if the base space, the rod, is slowly mo~ing. If the rod is an
elastica, its curvature k(q1) = 2v(q1) obeys the:rvrKdV equation [2-5],

(2-3)

where t is the time of the elastica and an adiabatic parameter in the fermionic system.
Then the equation (2-2) agrees with the Lax's eigen equation of the MKdV equation;

E</> = L</>, L := 1°11D1 if 1/; = eiE9
0 </>. The adiabatic condition for the sufficiently long

elastica is identified with

B.,E = 0, 8,L = [L, B] and 8.,</> = B¢.

Here B is the partne~ of L in the Lax pair of the lMKdV equation;

(2-4)

(2-5)

(2-4) restores the equation of the motion of the base space (2-3). Here due to (2-4) B
operator can be regarded as the generator of the geometric phase [2-4].

Thus we can find the physical meaning of the Lax pairs and physically reconstruct the
inverse scattering method for the :MKdV equation [2-5].

§3. Quantum Submanifold Field Theory.
In this section, we will quantize the fermionic field [3,5]; we will consider the infinite

product of the eigenvalue of the operator. The partition function is defined as

Z[v] =det1>.
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For the infinitesimal gauge transformation,

v(s, t) ~ v'(s, t) = v(s, t) + a,o:,
the partition function becomes

(3-2)

Z[v'] = det(1 + i,28,a)

= det1>e.i~[a]. (3-3)

The phase ~ is determined through the transformation in the infinite dimensional fermionic
functional space. From the first expression in (3-3), we define the current,

a, < j2 >:= 0: Z[v']Ia=O. (3-4)

In terms of proper reguralization, from the second expression in (3-3) we obtain the geo­
metrical term. The phase factor is obtained as the jacobian of the infinite grassmannian
space related to the gauge transformation (3-2). This jacobian is intrisically the same as
that in the Jimbo-Miwa-Sato theory (6,71.

Due to the equal of the both expressions, we obtain an identity [3];

< i2 >= :1rv. (3-5)

This is a kind of the anomalous terms i.e. an anomaly. This form is the same as the
well-known bosonaization. The rhs is the MKdV soliton and the lhs is expressed by the
linear differential system in the infinite fermionic space. In terms of this scheme, we can
reconstruct the Jimbo-Miwa-Sato theory on the :MKdV equation [5-7]. ( (3-5) is valid for
more general v but the restriction of the function space, say, is sometimes more interest
than its generalization,)

Then we obtain the index theorem for the submanifold,

J< i2 > ds = ~(cp(l) - <p(G». (3-6)21r
where I.{J is the tangential angle along the closed elastica and I is its length. The rhs of
(3-6) gives the sum of the signed crossing points and is an integer.

§4. Discussion.
We have shown that the differential operator in the submanifold quantum system re­

flects the global and the local geometrical properties. Hence although one may think that
the construction of the operator appearing in the submanifold quantum mechanics is so .
artificial, it should be regarded as a natural and algebraic object [2-5].
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