Title
Generalization of geometry-induced effect noted by Takagi and Tanzawa

Author(s)
Fujii, Kanji; Miyazaki, Hitoshi; Chepilko, N. M.

Citation
物性研究 (1996), 67(3): 345-354

Issue Date
1996-12-20

URL
http://hdl.handle.net/2433/95957

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Generalization of geometry-induced effect
noted by Takagi and Tanzawa

Kanji Fujii†, Hitoshi Miyazaki†
and
N.M.Chepilko††

†Department of Physics, Faculty of Sciences,
Hokkaido University, Sapporo 060, Japan

††Institute of Physics, Ukrainian Academy of Science,
Kiev 252650, Ukraina

The formulation on a particle motion in n-dimensional curved manifold \(M_n \) embedded in p-dimensional Euclidean space \(\mathbb{R}^p \) is summarized, and the geometry-induced gauge structure is explained. Next we examine the scalar field theory with a soliton solution, and point out that in spite of the infinite degrees of freedom such a field theory has the same mathematical structure as a particle motion in \(M_n \subset \mathbb{R}^p \), and our formalism affords a clearer view of understanding physical contents of such a field theory.

1. Introduction

Quantum theory on a curved manifold has been investigated from various points of view [1,2,3]. Quantum treatment of soliton such as Skyrmion provides a typical example of quantum theory on a curved manifold [4]. We consider the motion of a particle on an n-dimensional curved manifold \(M_n \) embedded in a p-dimensional Euclidean space \(\mathbb{R}^p \), and the particle motion is thought to be confined by some confining potential. Then a correction term with the order \(\hbar^2 \) in the effective Hamiltonian on \(M_n \) appears as a quantum effect due to a particle motion in the directions perpendicular to \(M_n \) [2]. Such an effect is dropped from the beginning when we apply simply Dirac method for constrained dynamical systems.

Two years ago, Takagi and Tanzawa [5] have pointed out that, for a particle motion
in a thin tube (in \mathbb{R}^3) forming a closed loop, in the effective Hamiltonian on M_1 there appears an effective vector potential, which depends on the geometry of M_1, and that there exists a complete analogy with Aharonov-Bohm effect, called a geometry-induced AB effect. One of the present authors (K.F.) and N.Ogawa [6] genaralized this result to the case of a particle motion in a thin neighborhood of M_n embedded in \mathbb{R}_p. The aim of the present report is to apply this formalism to a scalar field theory which allows a classical solution, and to examine the correspondence to the field theory of the extended object given by Sakita and others [7].

In the following, we first summarize the formalism in case of a particle motion on $M_n \subset \mathbb{R}_p$ (in Sec.2), and extend it to the case of a scalar field theory with a classical solution(in Sec.3). The last section is devoted to discussions and summary of remaining tasks.

2. Particle motion in a thin layer along M_n embedded in \mathbb{R}_n

2-1. Basic relations

As in [6], a set of coordinates $\{X^A; A = 1, \ldots, p\}$ of a point in a thin-layer neighbourhood of M_n is expressed as

$$X^A(q^\beta) = x^A(q^b) + \sum_{U=n+1}^p q^U N_U^A(q^b), \quad s = 1, \ldots, p; \quad (2.1)$$

$\{q^\beta, \beta = 1, \ldots, n, n+1, \ldots, p\}$ consists of two parts; the first part $\{q^b, b = 1, \ldots, n\}$ is a set of curvilinear coordinates on M_n and the remaining part is $\{q^U, U = n+1, \ldots, p\}$.

$N_U^A(q^b)$ is a unit normal vector to M_n at a point $x^A(q^b)$. For simplicity we omit $\sum_{U=n+1}^p$ for a dummy index U and write e.g. $x^A(q^b)$ as $x^A(q)$. The metric tensor in \mathbb{R}_n, written as $\bar{G}_{\alpha\beta}(q, q^U)$ is given by

$$\bar{G}_{\alpha\beta} = \bar{B}_\alpha^A \eta_{AD} \bar{B}_\beta^A \quad \text{with} \quad \bar{B}_\beta^A(q, q^U) = \frac{\partial x^A(q, q^U)}{\partial q^\beta}, \quad (2.2a)$$

and the metric tensor on M_n as

$$g_{ab}(q) = B_a^A \eta_{AD} B_b^D \quad \text{with} \quad B_b^A(q) = \frac{\partial x^A(q)}{\partial q^b}. \quad (2.2b)$$

Since B_b^A is tangent to M_n, we have $B_b^A \eta_{AD} N_V^D = 0$. Note that we have $\bar{B}_\beta^A = (\bar{B}_\beta^A, \bar{B}_V^A) = (B_b^A + \partial_b N_V^A \cdot q^W, N_V^A)$.

- 346 -
The fundamental equations for B_b^A and N_v^A are

\begin{align}
\partial_a B_b^A &= \Gamma^d_{ab} B_d^A + H_{Wab}\eta^{WU} N_u^A, \\
\partial_a N_v^A &= -H_{va}^d B_d^A - T_{VW,a}\eta^{WU} N_u^A,
\end{align}

(2.3a) (2.3b)

where Γ^d_{ab} is Christoffel symbol constructed in terms of g_{bd} and $H_{Wab} = H_{Wba} = H_{WB}^e g_{ea}$, $T_{VW,a} = -T_{WV,a}$.

Concrete forms of $\tilde{G}_{\alpha\beta}$ and its inverse $\tilde{G}^{\alpha\beta}$ are given as follows:

\[
[\tilde{G}_{\alpha\beta}] = \begin{bmatrix}
\tilde{G}_{ab} & \tilde{G}_{aU} \\
\tilde{G}_{Vb} & \tilde{G}_{VV}
\end{bmatrix}
\]

(2.4a)

with

\[
\tilde{G}_{ab} = \lambda_{ab} + \tilde{G}_{aX}\eta^{XY} \tilde{G}_{bY}, \quad \lambda_{ab} = g_{ab} - 2H_{Wab}q^W + q^X q^Y H_{xe}^a H_{ye}^b,
\]

\[
\tilde{G}_{aU} = \tilde{G}_{ua} = T_{UX,a} q^X, \quad \tilde{G}_{VV} = \eta_{UU};
\]

\[
[\tilde{G}^{\alpha\beta}] = \begin{bmatrix}
\tilde{G}^{ab} & \tilde{G}^{aU} \\
\tilde{G}^{Vb} & \tilde{G}^{VV}
\end{bmatrix}
\]

(2.4b)

with

\[
\tilde{G}^{ab} = \lambda^{ab}, \quad \lambda^{ab} = \delta^{ad}, \quad \tilde{G}^{aU} = \tilde{G}^{ua} = -\lambda^{ad} T_{XW,d} q^W \eta^{XU},
\]

\[
\tilde{G}^{UU} = \eta^{UU} + \eta^{VX} T_{XW,b} q^W \lambda^{bd} T_{YZ,d} q^Z \eta^{YU}.
\]

From the condition $\partial_a B_b^A = \partial_b B_a^A$, one obtains the curvature tensor on M_n given as

\[
R_{a,b,c,d} = \eta_{AB}(H^{A}_{ac} H^{B}_{bd} - H^{A}_{ad} H^{B}_{bc})
\]

(2.5a)

with $H^{A}_{ab} = H_{Vab}\eta^{VW} N_w^A$ (Euler-Schouten tensor);

hence, the tensor R_{bc} = $g^{ad} R_{ab,cd} = \eta_{AB}(H^A_{b} H^{B}_{dc} - H^A_{a} H^{B}_{bc})$, and scalar curvature

\[
R = g^{bc} R_{bc} = \eta_{AB}(H^A_{a} H^{B}_{d} - H^A_{a} H^{B}_{b}).
\]

(2.5b)

From $\partial_a \partial_b N_v^A - \partial_b \partial_a N_v^A = 0$, one obtains

\[
R_{da,VW}\eta^{VW} = \eta^{VW}(-H_{Va}^d H_{Wba} + H_{Va}^b H_{Wbd}),
\]

(2.5c)

where

\[
R_{da,VW} \equiv -\partial_d T_{VW,a} + \partial_a T_{VW,d} + T_{XV,d}\eta^{XY} T_{YW,a} - T_{XV,a}\eta^{XY} T_{YW,d}.
\]

(2.5d)

Using the extrinsic mean curvature H defined by $H \equiv [\eta_{ab} H_{A}^b H_{B}^d]^1/2 / n$, one obtains

\[
R = H_{A}^d \eta_{AB} H_{B}^b - n^2 H^2.
\]

(2.6)

2-2. Canonical quantization and form of kinetic energy

We examine the form of
kinetic energy

$$\tilde{K} = \frac{1}{2} \dot{X}^A \eta_{AB} X^B, \quad \dot{X}^A = \frac{dX^A}{dr},$$ \hspace{1cm} (2.7)

expressed in terms of \(q^\beta\)-variables. In order to perform the quantum-mechanical calculations from the outset, we adopt the procedure which is consistent for the transformation from Euclidean coordinates to curvilinear ones as in the present case. We assume

$$[q^\beta, \dot{q}^\delta] = i\hbar f^{\beta\delta}(q^\gamma), \quad [q^\beta, q^\delta] = 0,$$ \hspace{1cm} (2.8a)

where \(f^{\beta\delta}\) is a function of only \((q^\gamma)\). When we require the cannonical commutation relations

$$[q^\alpha, p_\beta] = i\hbar \delta^\alpha_\beta, \quad [p_\alpha, p_\beta] = 0$$ \hspace{1cm} (2.8b)

for \(p_\beta \equiv \frac{\partial \tilde{K}}{\partial q^\beta} = \frac{1}{2} \{\tilde{G}_{\beta\delta}, q^\delta\} \equiv <\tilde{G}_{\beta\delta}, q^\delta>,$$

we obtain \(f^{\alpha\beta} \tilde{G}_{\beta\delta} = \delta^\alpha_\delta\), i.e. \(f^{\alpha\beta}\) is the inverse of \(\tilde{G}_{\beta\delta}\).

Now we rewrite \(\tilde{K}\) (2.7) in the covariant form

$$\tilde{K} = \frac{1}{2} \tilde{G}^{-1/4} p_\alpha \tilde{G}^{-1/2} \tilde{G}^{\alpha\beta} p_\beta \tilde{G}^{-1/4}, \quad \tilde{G} = |\det \tilde{G}_{a\beta}|.$$

We obtain by noting \(\tilde{G} = |\det \lambda_{a\beta} \cdot \det \eta_{VW}| = |\det \lambda_{a\beta}| \equiv \lambda,$$

$$\tilde{K} = \frac{1}{2} \lambda^{-1/4} \Pi_a \lambda^{1/2} \lambda^{ab} \Pi_b \lambda^{-1/4} + \frac{1}{2} \lambda^{-1/4} p_V \lambda^{1/2} \eta^{VW} p_W \lambda^{-1/4}.$$ \hspace{1cm} (2.9b)

Here, \(\Pi_a\) is defined by

$$\Pi_a \equiv p_a + \frac{1}{2} T_{VW,a} L^{VW},$$ \hspace{1cm} (2.9c)

$$L^{WX} \equiv q^W \eta^{XV} p_V - q^X \eta^{WV} p_V = \eta^{XV} p_V q^W - \eta^{WV} p_V q^X.$$ \hspace{1cm} (2.9d)

\(L^{WX}\) satisfies the commutation relation

$$[L^{VX}, L^{WY}] = i\hbar (\eta^{VW} L^{XY} + \eta^{XY} L^{VW} - \eta^{YY} L^{XW} - \eta^{XW} L^{YY}).$$ \hspace{1cm} (2.9e)

In the thin layer approximation \(|H_{Ua} q^U| \ll 1\) and \(|T_{UV,a} q^U| \ll 1\) [5,6], one obtains

$$\tilde{K} \xrightarrow{\text{thin layer}} K^* = K + \frac{1}{2} p_V \eta^{VW} p_W + \Delta V^*.$$ \hspace{1cm} (2.10a)
where \(K = \frac{1}{2} g^{-1/4} \Pi_a g^{1/2} g^{ab} \Pi_b g^{-1/4} \), \(\Delta V^* = \frac{\hbar^2}{2} [-\frac{R}{2} - \frac{1}{4} n^2 H^2] \). (2.10b)

\(\Delta V^* \) comes from the last term in (2.9b). It may be worthy of noting that we have

\[
\Delta V^* = -\frac{1}{2} [\tilde{Y}(q, q^* V) - Y(q)] \text{thin layer};
\]

where \(-\frac{1}{2} \tilde{Y}(q, q^* V) = \hbar^2 [\frac{1}{4} \partial_b (\mathcal{G}^{\delta \beta} \bar{r}_b + \frac{1}{8} \mathcal{G}^{\delta \beta} \bar{r}_a \bar{r}_b \bar{r}_c \bar{r}_d)] \], \(\bar{r}_a \equiv \bar{r}_{a \beta} = \bar{G}_{\gamma \beta} \partial_{a \gamma} \mathcal{G}_{\gamma \beta} / 2 \).

\(Y(q) \) is the quantity constructed in terms of \(g_{ab} \) corresponding to \(\tilde{V} \);

\[
-\frac{1}{2} Y/\hbar^2 = \frac{1}{4} \partial_b (g^{bd} \Gamma_d) + \frac{1}{8} g^{bd} \Gamma_b \Gamma_d = \frac{1}{8} [R + g^{ab} \Gamma_a e_d \Gamma_{bd}].
\]

Using (2.11b), we can rewrite (2.10b) as

\[
K(2.10b) = \frac{1}{2} \Pi_a g^{ab} \Pi_b - \frac{1}{2} Y(q).
\]

2-3. Commutator \([\Pi_a, \Pi_b] \)

Utilizing some relations given in 2-1, we obtain

\[
[\Pi_b, \Pi_d] = \frac{i \hbar}{2} R_{bd,v} L_{v}.
\]

This is analogous to a charged particle moving in magnetic field \(\vec{H} \), in which we have

\[
[\Pi_j, \Pi_k] = i \hbar \frac{e}{c} F_{jk}; \quad \Pi_j = p_j - \frac{e}{c} \vec{A}_j; \quad j, k = 1, 2, 3; \quad F_{jk} = \frac{1}{2} \epsilon_{jkl} \vec{H}_l.
\]

We see that the field \(T_{Vv,a} = N V^A \partial_a N W^B \eta_{AB} \) plays a role of gauge potential. The gauge property including the non-Abelian one is seen as follows: When the total Hamiltonian \(\tilde{H} = \tilde{K}(2.9b) + V \) has the part of potential which confines the particle motion to \(M_n \), and is invariant under rotation of the set of \(\{ N_U^A, U = n + 1, \cdots, p \} \) such as

\[
N' V^A(q) = N W^A(q) \Lambda^W V(q), \quad \eta_{XY} \Lambda^X \Lambda^Y V = \eta_{WV},
\]

we obtain

\[
T_{Vv,b} \rightarrow T'_{Vv,b} = (\Lambda^{-1})_W^X T_{XY,b} \Lambda^Y V + (\Lambda^{-1})_W X \partial_b \Lambda^X V.
\]

\(T_{Vv,b} \) cannot be eliminated globally. In case of a tube embedded in \(\mathbb{R}_3[5] \), \(\Pi_b \) reduces to

\[
\Pi_1 = p_1 + T_{23} L_{23} \equiv p - \omega L.
\]

It is pointed out in Ref.[5] due to multivaluedness of triangular function

\[
\int_0^l \omega(q) dq = \int_0^l \tau(q) dq \quad (\text{mod } 2\pi)
\]

is obtained, where \(l \) is the length of center line of the tube; \(\tau \) is the torsion appearing in Frenet-Seret equation in \(\mathbb{R}_3 \).
3. Application to field theory of extended object

3-1. Purpose

In this section we extend the formalism given in Section 2 to field theory. For simplicity, we examine the scalar field theory which allows a soliton solution. We consider the Lagrangian expressed as

\begin{equation}
L = -\frac{1}{2} \partial_\mu \phi^A(x) \eta_{AB} \partial^\mu \phi^B(x) - V(\phi(x)),
\end{equation}

where \((x^\mu)\) is a space-time coordinate; its metric is \(\eta_{\mu\nu}\) with \(\text{diag}(\eta_{\mu\nu}) = (- + + \cdots)\); the upper index \(A\) of \(\phi^A\) denotes the internal degrees of freedom.

The field operator \(\phi^A(\vec{x}, x^0)\) is assumed to be expanded as [7]

\begin{equation}
\phi^B(\vec{x}, x^0) = \phi^B_0(\vec{x}, q^b) + \sum_U \phi^B_U(\vec{x}, q^b)q^U,
\end{equation}

where \(\{q^b, b = 1, \ldots, n\}\) denotes a set of collective coordinates representing the center of mass coordinates of the classical soliton, the orientation on the internal space and so on; \(\phi^B_0\) is the soliton solution satisfying

\begin{equation}
-\frac{\partial}{\partial \vec{x}} \frac{\partial}{\partial \vec{x}} \phi^B_0(\vec{x}, q^b) + \frac{\partial V}{\partial \phi^A_0(\vec{x}, q^b)} \eta^{AB} = 0.
\end{equation}

\(\partial \phi^B_0(\vec{x}, q)/\partial q^b\) satisfies

\begin{equation}
[-\nabla^2 - \partial^2 \delta^B_D + \nabla^2 \frac{\partial^2 V}{\partial \phi^B_0(\vec{x}, q) \partial \phi^A_0(\vec{x}, q)} \eta^{AB}] \partial_b \phi^D_0(\vec{x}, q) = 0;
\end{equation}

\(\phi^D_U(\vec{x}, q)\)'s are non-zero-mode solutions corresponding to (3.2b), and are normalized to

\begin{equation}
\int d\vec{x} \phi^B_0(\vec{x}, q) \eta_{BD} \phi^D(\vec{x}, q) = \eta_{NV}, \quad \int d\vec{x} \partial_b \phi^B_0(\vec{x}, q) \eta_{BD} \phi^D(\vec{x}, q) = 0.
\end{equation}

(Hereafter we write a function of \(q^b\)'s, \(f(q^b)\), as \(f(q)\) for simplicity.)

The expression (3.2a) with the properties (3.2d) is completely analogous with (2.1). With the aim of making clear the analogy, we write (3.2a) and (3.2d) as

\begin{equation}
\phi^B_0(\vec{x}) = \phi^B_0(\vec{x}) + N_U B^D(x) q^U,
\end{equation}

\(N_V B^D q^B_0(\vec{x}) \eta_{BD} D^V(\eta_{NV}, \quad B^D B^D(\eta_{BD} \delta(\vec{x} - \vec{y}); B^D_B(\eta_0 B^D(q)) = 0,
\end{equation}

where \(\eta_{BD} = \eta_{BD} \delta(\vec{x} - \vec{y}); B^D_B(\eta_0 B^D(q)\). The following subsections is devoted to investigate the role of this analogy in constructing the field theory of extended object.
3-2. Fundamental relations and the metric

Various relations given in the previous section remain to hold if the index A (representing the vector property in \mathbb{R}^p) is changed to Ax; from (2.3a) and (2.3b) one obtains

$$
\partial_a B^A_{\beta x}(q) = \Gamma^d_{ab} B^A_d(q) + H_{Wa} \eta^{WU} N_U^{Ax},
$$

$$
\partial_a N^{Ax}_{\beta x}(q) = -B^A_{\beta x} H_{Va} b - T_{VW,a} \eta^{WU} N_U^{Ax}.
$$

As to $\dot{\phi}^Ax_i = \delta^A_{\alpha} x^i$, we have

$$
\dot{B}^A_{\beta x}(q) = B^A_{\beta x}(q) + \partial_b N^{Ax}_{\beta x} \cdot q^V,
$$

$$
\ddot{B}^A_{\beta x}(q) = N^{Ax}_{\beta x}(q);
$$

and the small interval

$$
ds^2 = d\phi^{Bz} \eta_{Bz, Dy} d\phi^{Dy} = \tilde{C}_{\alpha \beta}(q, q^V) dq^\alpha dq^\beta
$$

with $\tilde{C}_{\alpha \beta} = B^A_{\alpha A} \eta_{AB} B^B_{\beta}$. (3.5b)

3-3. Canonical quantization and Hamiltonian form

From Lagrangian (3.1), one obtains the momentum operator p_{Ax}, conjugate to ϕ^{Ax}, defined by

$$
p_{Ax} = \frac{\partial L}{\partial \dot{\phi}^{Ax} / \partial x^0} = \frac{\partial \phi^{By}}{\partial x^0} \eta_{Dy, Ax} = \phi^{Dy} \eta_{Dy, Ax}.
$$

Utilizing

$$
\dot{\phi}^{Bz} = (\dot{B}_{Bz}^{Bz} \cdot q^\beta + \dot{q}^\beta \cdot \dot{B}_{Bz}^{Bz}) / 2 \equiv < \dot{B}_{Bz}^{Bz}, q^\beta >,
$$

and following the quantization procedure described in 2-2, one obtains

$$
p_{Bz} = \frac{\partial L}{\partial q^\beta} = < \tilde{C}_{\beta \alpha}, \dot{q}^\alpha >,
$$

$$
p_{Ax} = \eta_{Ax, Bz} \dot{B}_{Bz}^{By}, q^\beta >= < \eta_{Ax, Bz} \dot{B}_{Bz}^{By} \tilde{C}^{\beta \delta}, p_{\delta} >.
$$

From the commutation relations (2.8b), we obtain the equal-time ones as

$$
[\phi^{Bz}, \phi^{By}] = 0, \quad [\phi^{Bz}, p_{Dy}] = i \hbar \delta^{Bz, Dy}, \quad [p_{Bz}, p_{Dy}] = 0.
$$

Hamiltonian $H[\phi, p]$ is defined by

$$
H[\phi, p] \equiv \frac{1}{2} \{ p_{Ax}, \phi^{Ax} \} - \int d\bar{z} L,
$$

which is expressed as

$$
H[\phi, p] = \frac{1}{2} p_{Ax} \eta^{Ax, By} p_{By} + \frac{1}{2} (\nabla \phi)^{Ax} \eta_{Ax, By} (\nabla \phi)^{By} + \int V(\phi) d\bar{z}.
$$

This is expressed in terms of (q^α, p_{β}) variables as

$$
H[\phi, p] = \tilde{K}(2.9b) + \int V(\phi) d\bar{z},
$$
Here, the last term $-\frac{1}{2}\tilde{Y}$ is given by (2.11a) and can be rewritten as
\[-\frac{1}{2}\tilde{Y} = \frac{\hbar^2}{8}[\tilde{R} + \Gamma^\alpha_{\alpha\gamma}G^\alpha_{\beta\gamma}] ; \] (3.7e)
in the present case, $\tilde{R} = 0$. We will examine the correspondence of the above expressions to those derived by Gervais and others [7] in the next subsection.

3.4. Momentum operators

From (3.6c) and (3.6d), one obtains
\[p_\beta = \langle \hat{B}_\beta^A, p_{Ax} \rangle, \quad \text{i.e.} \quad p_U = \langle N_U^A, p_{Ax} \rangle, \quad p_b = \langle \hat{B}_b^B, p_{Bx} \rangle . \] (3.8)

We define
\[\Pi_{Bx} \equiv \eta_{Bx,Dy}N_V^Dy_{W}^V p_{W} . \] (3.9a)

By employing the second relation of (3.8), one obtains
\[\Pi_{Bx} = \langle \eta_{Bx,Dy}N_V^Dy_{W}^V N_W^Ez, p_{Ez} \rangle . \] (3.9b)

When we define $p_{0,Bx} \equiv p_{Bx} - \Pi_{Bx}$, we obtain
\[p_{0,Bx} = \langle \delta_{Bz}^Ez - \eta_{Bx,Dy}N_V^Dy_{W}^V N_W^Ez, p_{Ez} \rangle = \langle \eta_{Bx,Dy}B_b^B, p_{Bx} \rangle . \] (3.9c)

\[N_V^Bz \cdot \Pi_{Bx} = p_V, \quad B_b^B \cdot \Pi_{Bx} = 0 \] (3.9d)
\[< N_V^Bz, p_{0,Bx} > = 0, \quad < B_b^B, p_{0,Bx} > = < B_b^B, p_{Bx} > . \] (3.9e)

Therefore, we write ϕ^{Bz} and p_{Bx} as
\[\phi^{Bz} = \phi_0^{Bz} + \chi^{Bz}, \quad p_{Bx} = p_{0,Bx} + \Pi_{Bx} , \] (3.10a)
with $\chi^{Bz} = N_V^{Bz}q^V$, $\Pi_{Bz} = (3.9a)$, from which we have
\[< \Pi_{Bz}, \partial_b \phi^{Bz} > = -\frac{1}{2}T_{WV,b}L^{WV} . \] (3.10b)

Thus we see Π_a in (3.7d) is expressed as
\[\Pi_a = p_a - < \Pi_{Bz}, \partial_a \phi^{Bz} > , \] (3.10c)
which is the same as given by Gervais and others [7].
Next we examine the form of

\[
\langle p_{Bx}, \dot{Bx} \rangle = \int d\vec{x} L - H[\phi, p](3.7c)
\]

in the c-number theory. We obtain

\[
\begin{align*}
\dot{Bx} = \dot{p} = p_{Bx} Bx^p + \Pi_{Bx} Bz, \\
p_{Bx} = p_{Bx} = \partial\phi_{Bx} + \Pi_{Bx} Bz,
\end{align*}
\]

4. Discussions and conclusion

In sec.3, we examine the scalar field theory which allows a soliton solution with the aim of establishing the correspondence between such a field theory and the formalism of one-particle motion on a curved manifold \(M_n \) embedded in \(\mathbb{R}^p \). Our formulation seems helpful to see general mathematical structure of the field theory with soliton and fluctuation around it. A noteworthy point in the present formalism is that there appears a geometry-induced gauge structure which corresponds to that giving rise to the geometry-induced Aharonov-Bohm effect for a particle moving in a thin-tube in \(\mathbb{R}^3 \).

One of the future tasks is to investigate about what physical effects such a geometry-induced structure brings. It may be interesting to examine the possibility of inducing the gauge field as an independent dynamical degree of freedom after compactifying \(q^U \)-space. From such a point of view, the recent works presented by Kikkawa and others [8] seems interesting, on which we shall discuss elsewhere.

