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The formulation on a particle motion in n-demensional curved manifold M, embed-
ded in p-dim_ensional Euclidean space Ry is summarized, and the geometry-induced gauge
structure is eXplained. Next we examine the scalar field theory with a soliton solution, and
point out that in spite of the infinite degrees of freedom such a field theory has the same
‘mathematical structure as a particle motion in M, C R,, and our formalism affords a clearer

view of understanding physical contents of such a field theory.

1.Introduction Quantum theory on a curved manifold has been investigated from
various points of view [1,2,3]. Quantum treatment of soliton such as Skyrmion provides a
typical example of quantum theory on a curved manifold [4]. We consider the motion of a
particle on an n-dimensional curved manifold M,, embedded in a p-dimensional Euclidean
space Ry, and the particle motion is thought to be confined by some confining potential.
Then a correction term with the order A% in the effective Hamiltonian on M, appears as a
quantum effect due to a particle motion in the directions perpendicular to My, [2]. Such an

effect is dropped from the beginning when we apply simply Dirac method for constrainted

dynamical systems.

Two years ago, Takagi and Tanzawa [5] have pointed out that , for a particle motion
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in a thin tube (in R3 ) forming a closed loop, in the effective Hamiltonian on M;j there
appears an effective vector potential , which depends on the geometry of M, and that there
exists a complete analogy with Aharonov-Bohm effect, called a geometry-induced AB effect.
One of the present authors (K.F.) and N.Ogawa [6] genaralized this result to the case of
a particle motion in a thin neighborhood of M, embedded in R,. The aim of the present
report is to apply this formalism to a scalar field theory which allows a classical solution,

and to examine the correspondence to the field theory of the extended object given by Sakita
and others [7].

In the following, we first summarize the formalism in case of a particle motion on
M, C R, (in Sec.2), and extend it to the case of a scalar field theory with a classical
solution(in Sec.3). The last section is devoted to discussions and summary of remaining

tasks.
2. Particle motion in a thin layer along M,, embedded in R,

2-1. Basic relations As in [6], a set of coordinates {X4;A4 =1,...,p} of a point in

a thin-layer neighbourhood of M, is expressed as

P o
X4P) =24+ D M), s=1,---,p (2.1)
: U=n+1

{¢#,8=1,---,n,n+1,-+-,p} consists of two parts; the first part {¢®,b=1,---,n} is a set

of curvilinear coordinates on M, and the remaining part is {¢V,U =n+1,---,p}.

NUA'(qb) is a unit normal vector to M,, at a point 24(¢®). For simplicity we omit P +1

for a dummy index U and write e.g. z4(q%) as £4(g). The metric tensor in Ry, written as -

Gap(g,q7) is given by

~ - - ) L XA U
Gop = BaAnADBﬁA with BﬂA(Q1 qU) = ?_%1 (2.2a)
and the metric tensor on M, as
. ' p) A | .
9ab(9) = Ba*napB® with By*(g) = —zaq#' (2.20)

Since By is tangent to M,, we have ByAnapNy? = 0. Note that we have BﬂA =
(BbA,BVA) = (B],A + 3 Nw? - qW,NVA).
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The fundamental equations for B4 and Ny4 are

8u By =T, By + HwaanUNUA, (2.3a)

9aNv* = —Hy,"B* — Tywan" * Nyt (2.35)
where I'?,; is Christoffel symbol constructed in terms of gpg and Hywaep = Hwie = Hws Jea)
TVW,a = —TWV,a-

Concrete forms of éaﬂ and its inverse G are given as follows:

~ ~

x Gab GaU
Gail = | gt ot | (2.40)
vy Gvu
with  Gap = Aap + Gaxn Y Goy,  Aab = gap — 2Hwasd" + ¢ ¢¥ Hxo*Hyes,
Gov = Gua = Tux,09%, Gvu = nvu;
. éab éaU
afy
(G = [@w GVU] (2.4b)

with Gab — /\ab, )‘ab/\bd = 6%, Gl = GUe — —/\adTXW,dqWWXUa

GVU — ,’7VU + UVXTXW,qu/\deYZ,qunYU-
From the condition aa_BbA = abBaA, one obtains the curvature tensor on M,, given as
Rab,cd = 77AB(-HAacI{Bbd - HAadHBbc) (2'50')

with H4, = Hyan” W Nw? (Euler-Schouten tensor);

hence, the tensor Ry, = g“dRab,cd = nAB(HAdeBdc - H“?aaHBbc), and scalar curvature
d b b .
R =g¢"Ry. = nap(H4 HEB; — HAS“HEY). - (2.50)
From 8,8, Ny — 8,8, Ny2 = 0, one obtains

Raaywn”V = 0" W (= Hyi" Hwio + Hv." Hwsa), (2.5¢)

where  Rygvw = —04Tvw,a + 0:Tyw,a + Txvan™* Tywe — TxvanY Tywa.  (2.5d)

' : 3.1/2
Using the extrinsic mean curvature H defined by H = [ H Abe B dd] . [n, one obtains
d b
R=H" napHB; —n*H" (2.6)
2-2. Canonical quantization and form of kinetic energy We examine the form of
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kinetic energy

. 1 .- . . dx4
_lyA B A—
K = 2X naBX y X e

2.7)

expressed in terms of qP-variables. In order to perform the quantum-mechanical calculations
from the outset, we adopt the procedure which is consistent for the tra.nsforrnatlon from

Euclidean coordmates to curvilinear ones as in the present case. We assume
", 1= rfP(q"),  [.df1=0, (2.80)

where fP4 is a function of only (¢”)- When we require the cannonical commutation relations

(4% gl = ih6%,  [parpp] =0 (2.8b)
_ 0K R P Y '
for Pg = aq/’ = E{Gﬂ&q } =< Gﬂa,q >, (286)

we obtain f"’ﬂéﬂg = §%, i.e. f®P is the inverse of Gﬁ,s.

Now we rewrite K (2.7) in the covariant form
- 1x ~ ~ x ~ X '
K= 5G—l/‘*p,,,crll/2Gvff’p,,c:—lﬁi, G = |det Gopl. (2.9q)

We obtain by noting G = | det Ay - det nyw| = | det Agp| = A,

~

1 1
= 5/\_1/4Ha/\1/2/\'abﬂb/\_1/4 + ‘5’\—1/4PV’\1/2"IVWPW/\—1/4- (2.9b)
Here, II, is defined by

1
II; = p, + ETVW,aLVW - (2.9¢)
LV = "XV oy — X" Voy = 0% oy —n"VpyX. (2.94)

LY X satisfies the commutation relation

[LVX,LWY] — 'l,h(ﬂVWLXY + 77)(YLVW _ ﬂVY.LXW _ UXWLVY). (296)
In the thin layer approximation |Hy.qY| < land|Tyv Y| < 1 [5,6], one obtains

~ 1 ayer 1
koM K= Kt ooy pw + AV, (2.10a)
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- 2
where K = %g”l/4ﬂa91/2g“bﬂbg—l/4, AV* = %[-g - %nsz]. (2.100)
AV* comes from the last term in (2.9b). It may be worthy of noting that we have
* 1o
AV* = _E[Y(qa qV) - Y(q)]lthin layer’ (2'11‘1)

1, 1,  xs5= 1558 = . . B A
where — §Y(q,qv) = hzlzas(Gw I'g+ gGsﬁ TsTp), Ta = 18, = G7P8,Gop/2.

Y(q) is the quantity constructed in terms of g3 corresponding to Y;

—%Y/hz = iab(gbdrd) + %gbdrbl‘d = %[R + g% ). (2.110)
Using (2.11b), we can rewrite (2.10b) as
K(2.10b) = -;—Hag“bﬂb - -12-Y(q). (2.11¢)
2-3. Commutator [I1,,11p] - Utilizing some relations given in 2—1; we obtain
115, 1a] = %Rbd,VWL’VW- - (2120)

This is analogous to a charged particle moving in magnetic field H, in which we have
L € e . 1
[0, 0] = zﬁszk; II; = p; -—»—C-AJ'; Hhk=1,2,3; Fj= -éejlel. (2.120)

We see that the field Tyw,q = Ny, NwBnap playé a role of gauge potential. The gauge
property including the non-Abelian one is seen as follows: When the total Hamiltonian
H = K(2.9b) + V has the part of potential which confines the particle motion to My, and

is invariant under rotation of the set of {Ny®, U =n+1,---,p} such as |
N'v*(q) = Nt (9)A" v(9), nxy A wAYy = nwy, (2.13q)
we obtain
Twvy — T'wve = (A Dw” TxvsA¥v + (A Dwx&BAXy.  (2.13b)
Twv, cannot be eliminated globally. In case of a tube émbedded in R3[5], I} reduces to
AH1 =p +Tal® =p—wl. (2.14a)

It is pointed out in Ref.[5] due to multivaluedness of triangular function

{ l
/w(q)dq:/'r(q)dq (mod 27) _ : (2.140)
0 0

is obtained, where [ is the length of center line of the tube; 7 is the torsion appearing in

Frenet-Seret equation in Rj.
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3. Application to field theory of extended object

3-1. Purpose In this section we extend the formalism given in Secion 2 to field
theory. For simplicity, we examine the scalar filed theory which allows a soliton solution.

We consider the Lagrangian expressed as

L= 20,92 (@)napd*$%(z) ~ V($(a)) (31)

where (z*) is a space-time coordinate; its metric is ,, with diag(n,,) = (—+ +---); the

upper index A of ¢# denotes the internal degrees of freedom.

The field operator ¢4(&,z°) is assumed to be expanded as [7]
$8(2,2°%) = ¢f(z,8") + D _svP(Z,¢")d", (3-2a)
. U B

where {¢®, b= 1,---,n} denotes a set of collective coordinates representing the center of
mass coordinates of the classical soliton, the orientation on the internal space and so on; ¢§

is the soliton solution satisfying

09 B, b Y
735 &)+ g =0 (3.20)
0pP(Z,q)/0¢" satisfies
- 2y
ST AB19y49(%,9) = 0 (320

= "
045 (%,4)044 (%, 9)
évP(%,q)’s are non-zero-mode solutions corresponding to (3.2b), and are normalized to

/d5¢VB(f,q)nBD¢WD(5, q) =nvw, /dfab%B(f, Onppdw”(Z,¢) =0.  (3.2d)

(Hereafter we write a function of ¢*’s, f(¢®), as f(q) for simplicity.)

The expression (3.2a) with the properties (3.2d) is completely analogous with (2.1).
With the aim of making clear the analogy, we write (3.2a) and (3.2d) as

55 () = ¢85 (q) + NuPo(g) - ¥, . (330)

Ny B ()82, 0y NuP¥ (@) = nvw,  ByP*(q)nBs.py NuP%(g) =0, (3.30)

where 1Bz, py = 1806(Z — §); BP*(q) = 4687 (q). The following subsections is devoted to
investigate the role of this analogy in constructing the field theory of extended object.
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3-2. Fundamental relations and the metric Various relations given in the previous
section remain to hold if the index A(representing the vector property in R,) is changed to
Az; from (2.3a) and (2.3b) one obtains

8aBy**(q) = I Bs*® + Hwapn U Ny*, (3.4a)
8aNv4%(q) = =By Hy,® — Tyw.an"" ¥ Np4®. ‘ (3.4b)
As to Eﬁ” = 9¢4% /9qP, we have
Bf=(q) = ByA=(q) + Oy Nv A= - ¢V,  B#*(q) = Nv(qg); (3.5a)
and the small interval

ds® = d¢P s, pyddPY = Gaple,q”)dg*de?  with Gop = BinapBjg. (3.5b)

3-3. Canonical quantization and Hamiltonian form From Lagrangian (3.1), one ob-

tains the momentum operator p4., conjugate to ¢4%, defined by

0L  9¢Pv
pAJ? = 63(}5‘“/3&:0 ;0 nDy,A:c - ¢ y’)Dy Az- (360')

Utilizing
=(B§*- ¢ +df - Bf")/2 =< B§*, ¢’ >, (3.60)
and following the quantization procedure described in 2-2, one obtains
_ 0L 5 . .
P = —a-(—]E =< Gﬂa, q >, (360)
PAz =< ﬂAz,Byl;’fy, éﬂ >=< TIAz,ByBgyéﬁs,Ps > (3.6d)

From the commutation relations (2.8b), we obtain the equal-time ones as

(472,67 =0, [(6°%,ppy] = ihé6®"py, [pBs,pDy] = 0. (3.6e)
Hamiltonian H([¢,p] is defined by
1 ; -
HI6,5) = 5 {pan 7} — a1, (3.70)

thch is expressed as

H[g,p] = 5pacn™*PIps, + (Vqﬁ)’“mz B,,(V¢)By+ / V(¢)dx. (3.70)

This is expressed in terms of (¢, pg) variables as

H($,p] = K(2.9b) + / V(4)dZ, | (3.7¢)
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K(2.9b) = ina,\“nb +1/2pyn¥"Y pw — 5Y(q,q" ). (3.7d)

Here, the last term —%f’ is given by (2.11a) and can be rewritten as

S X
Y =—<(R+ e, GPT%; (3.7¢)

1
2
in the present case, R = 0. We will examine the correspondence of the above expressions to

those derived by Gervais and others [7] in the next subsection.

3-4. Momentum operators From (3.6¢) and (3.6d), one obtains
P =< B§%,pas >, ie. py=<Nu*,pas>, pp=<DBf% pp;>. (3.8)
We define
Mz = 1820y Nv"'n" W pw. (3.9a)
By employing the second relation of (3.8), one obtains
Bz =< 78z, 0y Nv ¥V Nw®% pp, > . (3.98)

When we define pg gz = pps — 1Bz, we obtain

Po.Bz =< 652 — 182, Dy NvP¥nVW NwP* pp, >=< 182,0yBy Y ¢** By, pE, >;  (3.9¢)

NyB® .U, =py, BB% -Tp, =0 | (3.94)

< NyB% pops > =0, < BB pyp. > =< ByB%,pp. > . (3.9¢)
Therefore, we write $8% and pp, as
$%% = ¢5% + x%*,  pBs = po,Bz + s, (3.10a)
with xB% = NyB%¢V, Tip, = (3.94), from which we have
< Tips, By¢B" >= -—%TWV,I,LWV. - (3100)
Thus we see II; in (3.7d) is expressed as
I, = pa— < By, 8adB® >, (3.10¢)

which is the same as given by Gervais and others [7].
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Next we examine the form of

< pBs,¢B% >= /de — H{¢,p)(3.7¢) (3.11a)

~ in the c-number theory. We obtain

pB:$"" = ppd® = po Bz #"" + M. x"", - (3.11d)
Po,B=$°% = pad® — pyTxw,ad" "V ¢* = Hd‘id_- (3.11¢)
4. Discussions and conclusion In sec.3, we examine the scalar ﬁeld theory which

allows a soliton solution with the aim of establishing the correspondence between such a
field theory and the formalism of one-particle motion on a curved manifold My embedded in
R;. Our formulation seems helpful to see general mathematical structure of the field theory
with soliton and fluctuation around it. A noteworthy point in the present formalism is that
there appears a geometry-induced gauge structure which corresponds to that giving rise to

the geometry-induced Aharonov-Bohm effect for a particle moving in a thin-tube in Rj.

One of the future tasks is to investigate about what physical effects such a geometry-
induced structure brings. It may be interesting to examine the possiblity of inducing the
gauge field as an independent dynamical degree of freedom after compactifying q¥-space.
From such a point of view, the recent works presented by Kikkawa and others [8] seems

interesting, on which we shall discuss elsewhere.
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