電子・重イオン衝撃による C60 分解・電離断面積

土田秀次* 中井陽一† 伊藤秋男*

Abstract

高エネルギー電子・重イオン衝突によって誘起 された C₆₀クラスターの電離・分解片イオンの入 射粒子依存(Z₁dependence) およびエネルギー依 存の測定を行った。入射粒子は、電子(\leq 5keV)、 重 イ オ ン(H⁺(0.2-2.5MeV)、C⁵⁺(15.6MeV)、 O^{6+,7+}(20.4MeV)、Si²⁺(0.8-4.0MeV))を 用 い た。H⁺入射ではC^{1+,2+}の電離断面積を測定し、 一次摂動による plasmon 励起断面積の理論計算と 比較した。重イオン衝撃ではC¹⁺($n \leq 12$)分解片 イオンの強度分布を調べた。また、C⁵⁺、O^{6+,7+} 入射では荷電変換衝突による C₆₀分解過程におけ る分解片イオンの質量相関を同時測定法により調 べた。

1 序論

近年、原子・分子と固体の中間的原子数を有す るクラスターは、凝集系の物性解明のため盛んに 研究がされている。クラスターは抵抗加熱法、コ ンタクト・アーク法、超音速ジェット法およびス パッタリング等で得られる。クラスターに関する 物性研究は物理化学分野における半導体・超伝導 の研究から宇宙物理における星間物質の研究等に 亙る幅広い分野で成されている。

衝突研究の分野においては、クラスターは標的 及び入射粒子として用いられ、レーザや荷電粒子 との衝突反応の研究が行われている。C₆₀フラー レンに関する研究では、レーザ、電子衝撃による イオン化ポテンシャルの測定、電子や低速高電離 イオンによる高電離C⁷⁺₆₀、C⁹⁺₆₀の観測等がされて いる[1,2]。Walch *et al* は低速 Ar⁸⁺、Xe¹⁴⁺によ る電子捕獲過程で、捕獲電子数が増加するにつれ

*京都大学大学院工学研究科原子核工学教室

低質量分解片イオン ($C_n^+(n = 1 - 3)$) 生成が支配 的になる結果を観測している [3]。この時、電子捕 獲断面積は4.4±1.8×10⁻¹⁴ cm²と C₆₀の幾何学的 断面積 (3.85×10⁻¹⁵ cm²) より大きく、電子捕獲の 衝突径数は C₆₀の半径 3.5Å よりはるかに大きい衝 突径数 (12Å) で起こっている。

低エネルギー衝突における電離・分解過程で は、 C_{60} の電子状態が基底状態のままイオン化す るソフトな衝突であるため、高電離 C_{60} イオンが 比較的安定に存在できる。しかし、高い電離状態 の C_{60} イオンは、クーロン爆発により安定な低質 量分解片イオンとなる。一方、高エネルギー荷電 粒子との衝突では内殻電離など衝突径数の小さい 非弾性衝突 (deep-inelastic collision)が起こる。高 エネルギー衝突により C_{60} は非常に不安定な高励 起状態になり、低いイオン化状態 ($C_{60}^{q+}(q \ge 3)$ で も muitifragmentation が起こる。高速イオンの荷 電変換過程において、入射粒子の内殻に電子捕獲 もしくは入射粒子の内殻電子が損失するときの衝 突ではmuitifragmentation のみが起こると考えら れる。

本研究では高エネルギー非弾性衝突によるC₆₀の電離・分解過程における次の研究を行った。

- C₆₀分解の入射イオン種(電子、イオン)依存 性
- H⁺によるC₆₀電離断面積測定
- C_n^{1+} ($n \le 12$) 分解片イオン強度の Z_1 依存性
- 荷電変換衝突における衝突径数依存および分 解片イオンの質量相関

入射イオン種(電子、イオン)による衝突相互作 用の違いは、電子衝撃では励起・電離のみが起こ り、一方、イオン衝撃では励起・電離に加えて荷 電変換過程も寄与するため断面積は入射電荷にも

[†]理化学研究所原子物理研究室

図 1: H⁺による C₆₀電離断面積. \Box 、〇はsingle、 double plasmon 励起断面積の理論値、 Δ 、 ∇ 、 \diamond d C¹⁺₆₀、C²⁺₆₀、C³⁺₆₀の実験値を示す

依存すると考えられる。実験で得られた電離断面 積はplasmon励起断面積の理論計算と比較した。

2 実験

加速されたビームは幅50ns、周期100µsのパル ス電圧により chopping され、450-500°Cに加熱し たC60蒸気と90°で交差衝突させる。イオンビーム は京都大学工学部原子核工学教室1.7MV タンデト ロン加速器(H+、Si²⁺)及び理化学研究所線形加速 器(重イオンリニアック)(C5+、O6+,7+)を用いた。 また、電子ビームは最大5keVまで加速できる電 子銃を用いた。生成されたイオンは90°方向に2段 階加速飛行時間法により質量・電荷分析され MCP で検出しTACで計測する。荷電変換衝突では入 射粒子の終電荷と生成イオンの同時測定を行い multi-hit modeで計測した。q価イオンの全加速 エネルギーは4.6q-4.9qkeVで、4.9keVでのMCP 検出効率はC¹⁺、C²⁺イオンに対し36%、81%で ある[3]。標的密度はAbrefah et alの蒸気圧デー タを用い、450°Cにおける衝突領域での密度は約 7.33 ×10⁹ (個/cm³)である[4]。チェンバー真空 度は 3.0×10^{-7} Torr、ビームは2D-slit で $2 \times 2mm^2$ にコリメートし衝突領域でのビーム量は50nAで あった。

3 結果と考察

3.1 C₆₀電離断面積

図1は、H⁺0.2-2.0MeVによる $C_{60}^{(1-3+)}$ の電離 断面積を示す。絶対値測定は現状難しいため、図 では実験値と理論値をフィッティングした。また、 図2に示すように、1価に対する2価の断面積比は 理論値と定量的一致が得られている。C⁺₆₀、C²⁺、 C³⁺の電離断面積の最大値を与えるエネルギーは それぞれ0.6、0.4、0.3MeVとイオンの価数が増 えるにつれ低エネルギー側にシフトしている。こ の傾向は原子衝突における直接電離過程の断面積 と全く逆の傾向である。Dünser et alの0.1-1keV 電子照射によるCooの電離断面積は断面積の最大 値は高エネルギー側にシフトする結果が得られお り、これは直接電離過程によるものと考えられ、 重イオン衝撃とは異なっている[5]。LeBrun et al は400-625MeVのXe¹⁸⁺におけるC⁺の電離断面 積の測定を行い、single plasmon 励起による理論 計算と比較しよい一致を得ている[6]。

我々は C_{60}^{2+} の生成機構として double plasmon 励起を仮定して理論計算を行い、1価と2価の電 離断面積のピークシフトを調べた。一次摂動によ る plasmon 励起断面積は

$$\sigma_{1pl} = 2\pi \int_0^\infty db b N(b) \exp\left[-N(b)\right] \quad (1)$$

$$\sigma_{2pl} = 2\pi \int_0^\infty db b \frac{(N(b))^2}{2} \exp\left[-N(b)\right] \quad (2)$$

と表される。式(1)、(2)はそれぞれ、single、 double plasmon 励起断面積で、励起確率とし てN(b)のPoisson分布を仮定している。N(b)は plasmonの励起数で次式で表される[6]。

$$N(b) = \int_0^\infty dE \frac{f(E)}{E} \frac{2\pi Z_p^2 e^4}{mv^2} \frac{1}{b^2} \\ \times \left(\frac{Eb}{v}\right)^2 \left[K_0^2 \left(\frac{Eb}{v}\right) + K_1^2 \left(\frac{Eb}{v}\right)\right]$$
(3)

ここで、 Z_p 、b、vはそれぞれ、入射粒子の価数、衝突径数、衝突相対速度で、 K_0 、 K_1 はBessel 関数である。f(E)は C_{60} のoscillator strength distribution で次式で与えられる [7]。

図 2: C²⁺₆₀/C¹⁺の電離断面積比. □は理論値、 は実験値を示す

$$f(E) = \frac{.71}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(E-20)^2}{2\sigma^2}\right] \qquad (4)$$

ここで、σ=10eV である。

図2のロ、〇はH⁺のsingle、double plasmon 励起断面積の計算値である。それぞれの励起 断面積のピーク値は0.4、0.2MeVで低エネルギ ー側にシフトしているのが分かる。このピー クシフトをMassey's criterion から考察すると、 同速度でのsingle plasmonの励起確率 $P_1(b) = N(b) \exp[-N(b)]$ の最大値を与える衝突径数bは、 double plasmon の $P_2(b) = \frac{(N(b))^2}{2} \exp[-N(b)]$ の 最大値を与える衝突径数bに比べて大きいことか ら、断面積の最大値を与えるエネルギーが低エネ ルギー側にずれることが定性的に理解できる。

3.2 Multifragmentation の入射粒子・ エネルギー依存性

高速荷電粒子による C_{60} のmultifragmentation は電子、陽子のような $Z_1 = 1$ の入射粒子では起 こらない。これは、 Z_1 が小さい入射粒子では多重 励起・電離断面積が非常に小さいことから理解で きる。また、分解片イオンの質量分布においては Z_1 が増加するにつれ、より低質量分解片イオン生 成が顕著になることが得られている [8]。高速荷電 粒子衝突における multifragmentation は、 C_{60} を 高電離状態にするよりむしろ高励起状態する過程 が重要な役割を演じる。

図3は0.8-4.0MeV Si²⁺入射での分解片イオン の大きい分解片イオンである。この様な分解片イ のC⁺に対する強度比を示す。入射エネルギーが オンの質量相関の研究はevaporationによるC₂、

図 3: Si²⁺によるC⁺の強度比. □(0.8MeV)、 ○(2.0MeV)、△(4.0MeV)

増加するにつれ多重分解が顕著になっていること が分かる。振動構造は中性クラスターに対する1 原子当たりの結合エネルギーと対応しており、ク ラスターの安定性を示している。

3.3 荷電変換衝突

 C^{5+} 、 $O^{6+,7+}$ 入射による荷電変換衝突では衝突 径数が非常に小さいK 殻電子に関する衝突過程が 起こる。multi-fit TACを用いた C^{5+} の1電子捕 獲・損失過程ではmultifragmentationのみが起こ り、 C_{60} の電離イオンは観測されなかった。また、 $O^{6+,7+}$ の1電子捕獲・損失過程でも同様な結果が 得られている。

図4はO^{6+,7+}による分解片イオンの強度比を示 す。7価入射による1電子捕獲・損失過程の分解 片強度比が同じ傾向を示している。一般に電子捕 獲・損失での衝突径数は電子損失過程の方が小さ い。すると、7価入射の場合、1電子損失過程で の分解イオンの強度比は1電子捕獲過程より、強 度比は急な指数関数的減衰を示すと考えられる。 この実験で得られている分解片生成断面積は、電 子捕獲と電子損失断面積は同程度の寄与している か、もしくは、励起・電離からの寄与が主要因で あることが考えられる。

低質量分解片イオンの質量相関は、非常に対称 性がよい、すなわち、 C_1^+ とコインシデンスする 相手は C_2^+ 、 C_3^+ 、 C_4^+ 等のイオンであり、 C_{11}^{1+} とコ インシデンスする相手は C_8^+ 、 C_9^+ 、 C_{10}^+ 等の質量 の大きい分解片イオンである。この様な分解片イ オンの質量相関の研究はevaporation による C_2 、

図 4: O^{6+,7+}荷電変換衝突による C⁺の強度比

C4損失する高質量分解片イオンの生成機構やクラ スターイオンの安定性を議論する上で重要であり 今後さらに研究が必要である。

4 まとめ

高エネルギー重イオンによるC60電離断面積に おいて、1価、2価電離機構はplasmon 励起で説 明できる。しかし、直接電離過程によるイオン化 機構も考えられるため検討が必要である。また、 荷電変換による分解機構の解明等、原子・分子衝 突では見られないクラスター特有の現象も興味 ある研究である。高エネルギー衝突での分解機構 における入射粒子及びエネルギー依存性は標的 高励起状態の生成機構より定性的評価ができ、低 エネルギー衝突では起こらない分解機構が測定さ れている。クラスター分解で重要なevaporation、 multifragmentation での分解片質量相関はさらに 研究する必要がある。また、中性分解片の観測も 必要であろう。内殻電離過程の解明において、ク ラスター衝突で不明な衝突径数を明らかにするた めにクラスターからのAuger 電子との同時測定等 の研究は非常に重要と思われる。

参考文献

- P.Scheier and T. D. Märk, Phys. Rev. Lett. 73, 54 (1994)
- [2] Jian Jin et al, Phys. Rev. A 53, 615 (1996)

- [3] B. Walch et al, Phys. Rev. Lett. 72 1439 (1994)
- [4] J. Abrefah et al, Appl. Phys. Lett. 60, 1313 (1992)
- [5] B. Dünser et al, Phys. Rev. Lett. 74 3364 (1995)
- [6] T. LeBrun et al., Phys. Rev. Lett. 72 3965 (1994)
- [7] G. F. Bertsch et al, Phys. Rev. Lett. 67 2690 (1991)
- [8]. A. Itoh, XIX ICPEAC (1995)