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Surfaces of revolution with constant mean curvature, called Delaunay's surfaces, are catenoids, undu­
loids, nodoids, circular cylinders, and spheres. It is shown that all these surfaces are solutions of the
Helfrich variation problem that is the determination of the equilibrium shapes of lipid bilayer vesicles.

1. Introduction
The minimal surfaces and surfaces with constant mean curvatures have extensively been studied

since the study of soap bubbles by Plateau [1] and of the shape of air/liquid interfaces in a capillary
tube by Young [2] and Laplace [3] in the middle of the nineteenth century. These surfaces also make
their appearance in gas dynamics, stems of plants, and other biological systems (see Chapter V of the
marvellous book by D'ArcyThompson for an essay on the occurrence and properties of such surfaces
in nature [4]). Even nowadays, there are still interesting problems in this field. For instance, many
new problems of surfaces arise from the shapes of vesicles that are formed by lipid bilayers in aqueous
solution and are simple models for biological membranes and cells. The theoretical approach for the
determination of the equilibrium shapes is based on the elasticity oflipid bilayers proposed by Helfrich
[5], and is called the Helfrich variation problem. In this approach, the shape free energy is give by

F = ~k f(cI + C2 - co )2dA +kf CIC2dA + LlpJdV +A fdA, (1)

where k is the bending rigidity, k Gaussian curvature modulus, Cl and C2 two principal curvatures, Co

the spontaneous curvature, dA surface area, dV volume elements, Llp = (Po - Pi) the osmotic pressure
difference between outer (Po) and inner media (Pi), and Athe tensile stress. Llp and Aare also regarded
as the Lagrange multipliers to take account of the constraints of constant volume and area, depending
on the situation.

The expression for the shape of the vesicle at mechanical equilibrium has been derived from the
first variation of F with respect to normal to the vesicle surface by using general rules of differential
geometry and imposing the closed surface condition [6]. The expression is called the general shape
equation and is given by

Llp - 2AH + k(2H +co)(2H2
- 2K - coH) + 2kV2H = 0, (2)

whereH [= -(CI + c2)/2] and K (= CIC2) are the mean and the Gaussian curvatures, respectively,
and V 2 is the Laplace-Beltrami operator. Most studies in the Helfrich variation problem have been
based on the numerical calculation of the shape equation for vesicles with special geometries such as
axisymmetry so far [7, 8]. lIowever, the general shapes surfaces have not been analytically examined
yet except for a sphere, a cylinder, and a Clifford torus and its conformal transformations [6, 9].

In 1841 Delaunay [4, 10] has shown that the surfaces of revolution with constant mean curvature
in Euclidean space are catenoids (H =0), unduloids, nodoids, circular cylinders, and spheres. These
surfaces are called Delaunay's surfaces. In this article, we show Delaunay;s surfaces are solutions of
the Helfrich variation problem [Eq. (2)].

2. Shape Equation
We describe here the shape equation for axisymmetric vesicles that has been derived from Eq. (2)

by Hu and Ou-Yang [11] and which is a third-order differential equation of "p(p),

d3 ¢ ~¢ d¢ 1 d¢
cos3 1/;( dp3) = 4 sin "p cos2"p( d

p
2 )( dp ) - cos 1/;(sin2"p - 2" cos2"p)( dp )3
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+ 7sin 'r/J cos2 'r/J (d1jJ )2 _ 2 cos3 1jJ (d21jJ )
2p dp P dp2

[ c~ 2cosin1/J·..\ .sin2 1/J-2cos2 1/J.] ..,.(d1/;)+ -- +-- cos.,..,-
2 p k 2p2 dp'

[
f!..p ..\ sin 1jJ c~ sin 1jJ sin3 1jJ +2sin 1/J cos2 1/J ]

+ k +~ + 2p - 2p3 '
(3)

where p is the distance from the symmetric axis (z axis) of rotation and 1jJ(p) is the angle made by
the surface tangent and the p axis. In this case, we have the following relations:

dz . ..I.- =SIn.,..,
ds

(4)

(5)
dp
- = cos'r/J,
ds

where s is the arc-length of the vesicle with axisymmetry. The vesicle surface is hence represented by
the vector Yes,</»~ in Euclidean space as

and

Yes,</»~ =(p(s) cos </>,p(s) sin </>, z(s)), (6)

where </> is the azimuth angle. Once 1/;(p) is solved from Eq. (3), we can obtain the contour z(p) [=z(s)]
by a simple integration,

z(p) - z(O) = lP tan 1jJ(p')dp'. (7)

3. Shape Equation Problem
Hu and Ou-Yang [11] have pointed out that three different shape equations for axisymmetric vesicles

have been derived within the framework of the same Helfrich spontaneous curvature model [5]. We
call this confused situation the shape equation problem. The three different shape equations for
the axisymmetric vesicles have been reported by Deuling and Helfrich (DH) [7], Seifert, Bernd! and
Lipowsky (SBL) [8], and Hu and Ou-Yang (HO) [11] with different variational methods on the basis
of the same Helfrich spontaneOus curvature model. The three ways to obtain the shape equations are:
(i) Equation (1) is changed to an action form by using p as a parameter,

fPC d1/J
Fb +..\A + f!..pV = 21rk 10 L(1jJ(p), dp ,p)dp , (8)

where Pc is the equatorial radius of an axisymmetric vesicle, and L is the Lagrange function. After
the parametrization of the vesicle shape, L is determined from Eq. (8). The DR shape equation [7] is
then obtained from the Euler-Lagrange equation

8L d 8L
81/J - dp fJ(d'r/J/dp) =O. (9)

(ll) The SBL shape equation [8] is derived in a way similar to (i) except for the parameter in the action
form, which is the arclength of the contour s.
(iii) The HO shape equation, Eq. (3), [11] is obtained by simply substituting the mean and the
Gaussian curvatures of an axisymmetric vesicle,

1 d1jJ sin'r/J
H = - -[cos1/J- +-]

2 dp p'

K = cos 1jJ sin 1jJ d1jJ
p dp'

(10)

(11)

into the general shape equation [Eq. (2)].
Hu and Ou-Yang have shown that these three equations are degenerate for a spherical vesicle, while
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Figure 1: Delaunay's surfaces: (a) catenoid, (b) unduloid, (c) nodoid, (d) circular cylinder,
and (e) sphere

the DR equation is not identical to the SBL and the HO equations in case of a cylindrical vesicle,
and that a Clifford torus is a solution for all the equations, but the constraints on D..p, ,x, and Co are
different [11] .

. The difference in the three shape equations is due to the different minimization procedure of the
general action. In case of the HO approach, they first make minimization and then the specific
parametrization of the shape. On the other hand, in the DH and the SBL approaches, they first make
the· parametrization of the shape and t~en minimization. This procedure leaves some free parameters
which in general depend on the shape like Pc for example. These free parameters are not correctly
variated in DH nor in SBL hamiltonians. Hu and Ou-Yang [11] have carefully shown the erroneous
calculus of variations used in deriving the DH and the SBL equations. After the publication of the Ru
and Ou-Yang paper, the shape equation problem was recognized and then several papers in which the
shape equation problem was discussed have been published [12, 13, 14]. We believe that through the
controversy on the shape equation problem the HO equation has been accepted as the correct shape
equation for axisymmetric vesicles [12, 13, 14].

4. Analytical Solutions to the Shape Equation for Axisymmetric Vesicles: Delaunay's
surfaces

We show here that Delaunay's surfaces are the solution to the Helfrich variation problem. In bio­
logical cells and vesicles, these surfaces can also be observed; the unduloidlike shapes have been found
in myelin shapes of red blood cells and in lipid bilayers either treated by laser tweezer or by increasing
osmotic pressure.

To do this, we first give the mathematical expression of D~launay's surfaces [15], which is

(12)

where the two parameters, a and d determine the types of the surfaces: (i) the unduloids: 0 < ad < 1/4
and (ii) the nodoids: ad < o. The spheres and the circular cylinders are corresponding to the two
limiting cases: when d -+ 0 the unduloids become the spheres, and when ad -+ 1/4 the unduloids
degenerate to the cylinders. The catenoids are the only minimal surfaces of revolution when a = O.
These surfaces are shown in Fig. 1. By substituting Eq. (12) into Eq. (10), we have H = -a and
hence can show that the surfaces described by Eq. (12) are the surfaces of revolution with constant
mean curvature.

It is easily shown that Eq. (12) is an analytical solution to Eq. (3) by substituting Eq. (12) and
its first, second and third differentiations of'¢ with respect to pinto Eq. (3) under the conditions,

(13)
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and
Co

a = 2' (14)

au-Yang and Helfrich [6] have derived the relations for a sphere with radius ro (= l/a)

~PT~+2AT~ - kCoTo(2 - coro) = 0,

and for a circular cylinder with radius Po (= 1/2a)

~PP~ + AP~ + ~(c~p~ -1) = O.

It is important to note that Eqs. (13) and (14) satisfy these relations.

5. Conclusions
We have shown that surfaces of revolution with constant mean curvature (catenoids, unduloids,

nodoids, circular cylinders, and spheres), called Delaunay's surfaces, are solutions of the Helfrich vari­
ation problem for the equilibrium shapes of lipid bilayer vesicles. The present analytical results for
Delaunay's surfaces are valuable for the investigation of the shapes of vesicles such as the unduloidlike
shape in red blood cells and in vesicles.
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