<table>
<thead>
<tr>
<th>タイトル</th>
<th>クーペルマップレッタによる圧縮性流体のモデル 複雑系</th>
</tr>
</thead>
<tbody>
<tr>
<td>作者</td>
<td>横井 研介</td>
</tr>
<tr>
<td>引用文献</td>
<td>物性研究 複雑系のモデル化の研究</td>
</tr>
<tr>
<td>脚注</td>
<td>京都大学学術情報リポジトリ</td>
</tr>
</tbody>
</table>

Kyoto University
Coupled Map Lattice による圧縮性流体のモデル

1 はじめに

宇宙には様々なパターンが存在する。それを簡略化したモデルを用いて調べることが本研究の最終的な目的である。しかし今回はその前段階として圧縮性流体のモデルを構築し、それを shock tube 問題（解析解のある 1 次元の圧縮性流体の問題）に適用した。

2 モデル

モデルを作るにあたっては、Coupled Map Lattice (CML) [1] を用いる。CML によるモデル化には多くの成功例（スピノーダル分解 [2]、沸騰 [3]、風紋 [4]、対流 [5]、雲 [6]等）がある。今回の方のモデルは 1 次元で、時間 n での場の変数は $\rho_i^n \ (密度), \ P_i^n \ (圧力), v_i^n \ (速度)$ である。具体的な手法は、Eulerian process (移流以外) と Lagrangian process (移流) に分けられる [7][8]。

1. Eulerian process:

$$P_i^{n'} = \rho_i^n$$

$$v_i^{n'} = v_i^n - \frac{1}{2\rho_i^n} (P_{i+1}^n - P_{i-1}^n) \Delta t$$

$$P_i^{n'} = P_i^n - (\gamma - 1) \frac{P_i^n}{2} (v_{i+1}^n - v_{i-1}^n) \Delta t$$

$\gamma$ は比熱比

2. Lagrangian process: [5]

\[ i-1 \quad i \quad i+1 \quad i+2 \]

\[ v_i^{n'} \Delta t \]

$v_i^{n'} \Delta t$ を使って図のように格子を動かす。そして動いた格子 $i$ の場の変数は、以下のように対応される。格子 $i + \Delta i$ に対しては $A_i^{n'} |v_i^{n'}| \Delta t が、格子 $i$ に対しては $A_i^{n'} (1 - |v_i^{n'}| \Delta t)$ が分配される (site の間隔を 1 とする)。ここで $\Delta i$ は $v_i^{n'} \Delta t > 0$ の時 1, $v_i^{n'} \Delta t < 0$ の時 -1 である。$A_i^{n'} は \rho_i^n, \rho_i^n v_i^{n'}, \frac{1}{2} \rho_i^n v_i^n v_i^{n'} + \frac{P_i^n}{(\gamma - 1)}$ である。この結果解まった場の変数を $\rho_i^{n+\Delta t}, v_i^{n+\Delta t}, P_i^{n+\Delta t}$ とする。

これで 1 step である。ここで用いた $\Delta t$ は、各 step ごとに、最大の $|v_i^n| \Delta t が 1 を越えないように決める。これらの手続きを繰り返すことによって時間発展を調べる。

3 shock tube 問題

このモデルが圧縮性流体を扱っているかどうかの判定には shock tube 問題 [9] を使う。この問題には解析解が存在する。簡単に説明すると、一定断面積の長い管の真中を下図のように膜で仕切る。そして左側に高密度、高圧のガスを入れ、右側に低密度、低圧のガスを入れ、膜を外すと

<table>
<thead>
<tr>
<th>high density</th>
<th>low density</th>
</tr>
</thead>
<tbody>
<tr>
<td>high pressure</td>
<td>low pressure</td>
</tr>
</tbody>
</table>

$v = 0$

membrane

密度分布が $t = 0$ の時、左図 (膜の左側 $\rho = 1.0$, 右側 $\rho = 0.125$) であったのが、$t > 0$ では右図のようになる。これは保存の式と運動方程式から導くことができる。詳しくは [9]。
4 結果

図はこのモデルを shock tube 問題に適用した結果である。このモデルは圧縮性流体が関連したパターン形成の問題に威力を発揮すると思われる。

参考文献

[9] ラングダウ＝リフィッシャ、流体力学 2、8 章 9 章；森岡 茂樹、気体力学、4 章