Sketching Formal Semantics of Graphical Meaning Derivation

Atsushi Shimojima

1. The Phenomenon

Let us start with an example. Suppose Jon, Ken, Gil, Bob, and Ron run races. They have a
way to resolve ties in arrival, so that runners have exclusive finishing places, from the first to the
fifth, in each race. Suppose we use the systeof “position diagrams” to express the finishing
places of the five runners in particular races. Every well-formed diagram in this system is required
to have the names “Jdn, “Ken” , “Gil ” , “Bob ™ , and “Ron” in a horizontal row, with each
name appearing exactly once. Figure 1 shows an example of a diagram in this system:

Gil Jon Bob Ken Ron

Fig.1: An example of a well-formed diagram &f.

The semantic convention of this system is that if the nafn&ppears in thae-th position from
left, it means that the bearer &f arrived inn-th place (in the represented race). As the name
“Gil” is in the first position from left, we learn that Gil arrived in first place; and as the name
“Jon” is in the second position from left, we learn that Jon arrived in second place, and so on.
This way of reading the diagram is, of course, a valid one, directly ligitimized by the semantic
convention of the system.

There are, howeveatherlegitimate ways of reading the diagram. For example, you see the
name “Ken” appearing to the right of the name “Jon”, and you learn that Ken arrived later than
Jon. If youcountthe number of names between the names “Jon” and “Ron”, you see how many
people arrived between Jon and Ron in the race; if you notice that there are more names to the
left of “Ken” than to its right, you learn that more people arrived before Ken than after him.

Note that the meaning relations underlying these reading practicedi@medi from the ones
directly legitimized by the basic semantic convention. To make this point clearer, (1) shows an
example of the meaning relations directly legitimized by the semantic convention, and (2)—(4)
show the meaning relations that we have just cited:

(1) If the name “Jon” appears in the second position from left, it means that Jon arrived in
second place

(2) If the name “Ken” appears to the right of the name “Jon”, it means that Ken arrived later
than Jon



(3) If there are two names between the names “Jon” and “Ron”, it means that two people
arrived between Jon and Ron

(4) If there are more names to the left of “Ken” than to its right, it means that more people
arrived before Ken than after him

The meaning relations (2)—(4) are clearlyfeient from (1) in kind. Yet each of them appears
to be a valid evaluation of what is meant by the relevant aspect of the diagram. Although de-
viant from the system’s basic semantic convention, they are surely not arbitratry creations by the
interpreter.

In fact, the validity of (2)—(4) is partly based on the particular semantic convention that we
have chosen for the systef Imagine that the system has a totally dferent semantic con-
vention, say, interpreting the appearance of a name im-thepositionfrom right to mean the
person’s finishing place in the race. Then all the meaning relations (2)—(4) would no longer hold
and some alternatives would hold instead. In this respect, (2)—(4beaineativesof the system’s
basic semantic conventidh.

This phenomenon is quite prevalent in graphical representation systems. Spec#Hieally,
tistical chartsare sources of relatively clear cases of derivative meanings, and practioners and
researchers discussed them under various conceptual frameworks. For example, bar charts enable
the viewer to see “higher-level abstractions” constructed from the basic humerical information
they carry (Guthrie, Weber & Kimmerly, 1993); visual patterns made by nearby lines in Carte-
sian line graphs carry “conceptual messages” about the data trend (Pinker, 1990); the shape of
“clouds” made by dots in scatter plots signal the relationship between the represented variables
(Kosslyn, 1994). Both practioners and researchers often distinguish “levels of questions” to be
asked for statistical charts (Bertin, 1981; Wainer, 1992; Ratwani, Trafton & Boehm-Davis, 2003;
Lohse, 1993) where higher-level questions are apparently directed to derivative meanings carried
by the relevant charts.

Although less frequently, maps were cited as sources of derivative meanings in our sense.
Lowe (1994) discussed “secondary structure”, where adjacent isobars on a meteorological map
together indicate a global trend of the area’s barometric situation, including the presense of a
trough. Gilhooly et al. found the use of “specialist schemata” in geographers’ reading of contour
maps, where visual patterns formed by several contour lines indicate some global structures in the
area, such as valleys and interlocking spurs (Gilhooly, Wood, Kinnear & Green, 1988).

Node-edge graphs and even tables support derivative meanings. Olivier (2001) discussed
the case of tree diagrams, where an extended path formed by consecutive edges indicates the
presence of a descent or chain in the represented relational structure. In London’s tube map,
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the concentration of edges touching a node indicates the presense of a “hub” station (Shimojima,
1999). Many tables are designed to allow the viewer to do “column-wise” or “row-wise” readings,
in addition to basic “cell-wise” readings (Shimojima, 1999).

Graphical meaning derivation is fanctionally importantphenomenon as well. Some re-
searchers hypothesize that the utility of a graphical system depends on what repeirtore of deriva-
tive meanings it allows the viewer to extract, and how easily the viewer can do so (Pinker, 1990;
Lohse, 1993). A related hypothesis is that the proficiency or expertise of reading graphics de-
pends on the ability to appreciate derivative meanings in the graphics (Lowe, 1989, 1994; Guthrie
etal., 1993; Pinker, 1990; Gilhooly et al., 1988). It has been also hypothesized that evaluations of
derivative meanings in a graphic forms a class of mental operations relatively independent from
evaluations of basic meanings, whose occurences depend on the given purposes of reading the
graphic (Guthrie et al., 1993; Kinnear & Wood, 1987; Ratwani et al., 2003).

Of course, all this is still hypothetical, and more research is required to determine the exact
functional implications of the derivative meaning phenomenon. The issue of the scope of graph-
ical meaning derivation, namely, to what range of instances the conept is coherently extendable,
also requires more careful treatment based on detailed case studies. Yet, we largely set aside thes
issues in this paper, in order to concentrate on a more basic question concerning the logical origin
of a derivative meaning relation in a graphical system. Specifically: under what informational
conditions derivative meaning relations hold? What confers them their apparent legitimacy?

Despite its apparent prevalence and functional importance, the phenomenon of graphical
meaning derivation has received little explicit attention in the literature of graphics semantics.
No semantic theories of graphics, either grammatical, model-theoretic, or algbraic approaches,
have ever attempted to track its logical origin. Also, the phenomenon is apparently indepen-
dent of any informational relations, such as “secondary notations” (Petre & Green, 1992) and
“graphical implicatures” (Marks & Reiter, 1990), that have been studied in pragmatic accounts
of graphics. Pinker’s theory (1990jfers a systematic account of the conditions for a coginitive
system to comprehend derivative meanings, yet as a psychological theory, it is silent about the
logical relationship between derivative meanings and basic meanings.

In the following, we try to build a framework of graphics semantics in which meaning deriva-
tion properties of graphical systems are explicitly modeled and accounted for. In our account,
derivative meaning relations in a graphical system are results of the logical interactions involving
(i) constraints installed by the semantic conventions, (ii) constraints originated in the domain of
representations, and (iii) constraints originated in the domain of represented objects. We borrowed
the concept otonstraint as well as its formal characterizations, from channel theory (Barwise
& Seligman, 1997). Thus, our exploration has two broad parts: an exposition of the relevant part



of channel theory, and a development of our own account. The point of this paper is to closely
trace the logical origin of the meaning derivation phenomenon, so we will confine our analysis to
the relatively simple instances (2)—(4) in the system of position diagrams. We refer the reader to
Shimojima (1999) for broader (but less formal) treatment of the phenomenon.

2. Channel Theory

Definition 1 (Classification) A classificationA = (tok(A), typ(A), Ea) consists of a set tok()
of tokens a set typf) of types and a binary relatiog=a on tok(A) x typ(A). We say a tokem
supportsa typea in the classificatiom if a Ep a.

As the definition indicates, “classification” is a quite general concept, applicable wherever
there is a collection of objects to which a specific set of properties are attributable. The following
examples in particular show how we use this concept to model “the domain of representations”
and “the domain of represented objects”.

Example 1 Recall the systerf of position diagrams representing running races, where the class of well-
formed diagrams was defined by the following syntactic stipulations: (i) the hadws ;' Ken”; Gil”,

“ Bob”,and Ron” appear in a horizontal row, and (ii) each name appears exactly once. We can take the
class of well-formed diagrams @f as the set of tokens of a classification, 92y, Thus, tokPs) consists
of all the inidvidual position diagrams, produced in past or future, on paper or sand, in red or black.
As the set of types typls), one can take whatever set of properties that classify objects iRgbk(et us
assume that ty{s) is the set of types taking the following forms:

The nameX’ is in then-th position from left (where € {1, 2, 3,4, 5})
— The nameX’ is to the right of the nam¥’

There aren names between the namésandY’ (wheren € {0, 1, 2, 3})
There are more names to the left of the nafé¢han to its right

For brevity, we symbolize these types respectively as:
In(n, X’) Rigut(X’,Y’) Berween(n, X, Y’) MoreLErT(X")

We useJ’, B, R, K’, andG’ to denote the names “Jon”, “Bob”, “Ron”, “Ken”, and “Gil” respectively.
Thus, for example, Brween(2, B’, R)is the state of fiairs that there are two names between the names
“Bob” and “Ron”. Let us used” to refer to the particular position diagram in Figure 1. Using the above
symbols, we can describe somed properties in the following way:

d p, IN(B,R) d Ep; RiaT(K’,G')
d ps BETweEEN(3,G, R)) d Eps MoreLErT(K’)

Example 2 Remember that the systefnof position diagrams was designed to represent various running
races run by Jon, Ken, Gil, Bob, and Ron and to express their finishing places in individual races. Thus,
the target of this repersentation system can be considered another classificatien, whgre the set of
tokens tokPr) consists of all running races run by these people in future or past. So, if these five men run
30 races together in their life times, ték() contains 30 tokens. The set of types of this classification could
then consist of types of the following forms:
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The runneiX arrives in then-th place (whera € {1, 2, 3,4, 5})

The runnerX arrives later than the runn&r

There aren runners who arrive between the runnrandY (wheren € {0, 1, 2, 3})
More runners arrive befor than after him

For brevity, we symbolize these types as:
ARrIvE(N, X) Larer(X,Y) Berween(n, X, Y) MoreBEFORE(X)

We uselJ, B, R, K, andG to denote the people Jon, Bob, Ron, Ken, and Gil, respectively. So, if these
men arrived in the order of Gil, Jon, Bob, Ken, and Ron in a particular ratiee following is a partial
description of the properties of

I Ep, ARRIVE(3, B) I Ep, LaTER(R, B)
r Ep, Berween(1, J, K) I Ep, MoReBEFORE(R)

Generally speaking, a constraint is a regularity over a class of objects. Itis a regularity in the
sense that it is a recurrent pattern of properties shared by a class of objects. We use the notions of
sequentindsatisfactionto express such patterns of properties.

Definition 2 (Sequent) Let 2 be a set. Asequent of' is a pair(l, 4) of subsets of'.

Definition 3 (Satisfaction) Let A be a classification, and”, 4) be a sequent of the set ty)(of
types inA. Given a tokera, we saya satisfiegr, 4) if:

If aEa a for every membew of I', thena Ea B for some membes of 4.

Thus, intuitively, when we talk about satisfaction, a seqént) is taken as a material condi-
tional where the antecedent is the conjunction of the typésand the subsequent is the disjunc-
tion of the types im.

Using the three concepts introduced so far, we can paraphrase our intuitive expression “recur-
rent patterns of properties” into a more precise “sequents of types satisfied by a class of tokens
in a classification”. Most generally, then, we can capture a precise notion of constraint in terms
of a triple, consiting of a classificatiof, a set of sequents @’s types, and a set &k’s tokens
satisfying those sequents. The notionaxal logic in channel theory is an attempt to capture a
system of constraints along this line.

Definition 4 (Local logic) Let A be a classification. Aocal logic £ onA is a triple(A, +z, Nz)
consisting of:

1. A classificatiomA,
2. A setr, of sequents of ty@) such thaktyp(A), - ) makes a regular theory on ty),
3. A subsetN, of tok(A), called thenormal token®f £, which satisfy all the sequents ef.



Each member of N satisies
each sequent of + o

tok(A)

Fig.2: Alocal logic(A,+,, Ns) on the classificatior.

Figure 2 shows how the local logi€ is related to a classificatioA. As we defined in
Definition 2, a sequenili, ;) is a pair of subsets of typ(), and the componemt, of a local
logic is a collection of such sequents. Another compomgniof the local logic is a subset of
typ(A), and each member dfi, is required to satisfy each sequentHp. According to this
definition, the componert, of a local logic is not just any set of sequents, but a special set
of sequents called gegular theory This requirement is necessary as the definition is trying to
capture asystenof constraints. The following definitions specify what “regular theory” means.

Definition 5 (Theory) Let 2 be a set. Atheory onX' is a pairT = (X, +) wherer is a set of
sequents of.

Definition 6 (Regular theory) A theoryT = (X, +) is calledregular if it satisfies the following
closure conditions:

— (Identity) {a} + {a},
— (Weakening) Ifl" + 4, thenI, I + 4, 4’.
— (Global Cut) IfI, Xy + 4, 24 for each partitionZp, 21) of 27, thenl" + 4.

Thus, a theoryT = (2, +) is called “regular” if its set of sequentsis “systematic” enough to
satisfy the closure conditions of Identity, Weakening, and Global Gut.

Remember that we have modeled the domain of representing objects in a representation sys-
tem as a classification. Accordingly, the system of constraints governing this domain should be
modeled as a local logic on the classification. Example 3 specifies how this could be done. It also
shows the same for the domain of represented objects.
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Example 3 Recall the clasificatiofPs of position diagrams from Example 1. Consider the class of all
constraints govering the tokensk, and they will make up a special local logic Bs. LetSp = (Ps, s,
,tok(Ps)) be that local logic. The following are obvious examples of constrainin

IN(2, ), IN(2,B") ks, 0 Ricat(J, R), Ricar(R, K’) s, Rigar(J’, K’)

Berween(3,G’, B') s, BETweeN(3, B, G') IN(5,R’) +s, MoreLEFT(R')
The same position cannot be occupied by more than one name, so (1) holds. The constraint (2) holds
because of the syntactic stipulation that nhames appear in a horizontal line, plus the transitivity of the
Riut relation in the horizontal ordering. It is important to note that this constraint is basdmbtbn
stipulative constraints (an enforcement of linear horizontal arrangeraadthatural constraints on the
BerweeN relation of names (transitivity). The constraint (3) comes from the nature of the tertiary relation
Berween plus the stipulation that each name appears exactly once. By the synatctic stipulation, every
position diagram in this system have exactly fives names in it. Thus, if a name is placed in the fifth position
from left, then certainly there are more names to its left than to its right. Hence the constraint (4).

Turn to the clasificatiofPr of running races from Example 2, and ¥ = (P, +7,,, tok(P7)) be the

local logic listing all constraints on the races in tBkj. The following are obvious examples of constraints
in 7p:

ARRIVE(2, J), ARRIVE(2, B) Fr;, 0 Larer(J, R), Later(R, K) F7,, Later(J, K)

Berween(3, G, B) ¢, BETweeN(3, B, G) IN(5,R) +7,, MoreLErFT(R)
These constraints simply follow from the irreflexive, asymmetric and transitive nature of the defeating
relation. The logicyy also houses the following constraints because of the regularity condition on it:

(5) Derear(J, R) +g,, Derear(J, R)
(6) Derear(J, J), Derear(K, B) +-7,, DErEAT(G, R)
(7) Derear(J, R), Derear(R, K), Derear(K, B) +¢,, DEreat(J, B)

Recall that these constraints (2)—(7) had exact analogues in the local7lpgit Example 3. As
the reader might have anticipated, this matching of constraints plays an important role in explaining the
functional properties of the representation sysfém

Thus, we can use local logics to model systems of constraints both for the domain of repre-
sentations and for the domain of represented objects. However, the tool kit obtained so far is not
quite suficient for our purpose. As we will see shortly, our account of graphical meaning deriva-
tion crucially assumes that semantic conventions in a representation system produce constraints
holding betweerthe source domain and the target domain. Although we have shown that local
logics can model systems of constraiimsndividual domaingsuch as constraints in the source
domain and the target domain of a representation system), we still want a machinery to extend
this model to cover constraints holdiagross multiple domains

Before we start developing the wanted machinery, let us see exactly how we can view the
semantic conventions in a representation system as a producer of constraints.

Example 4 Representations are tools, and they are used for certain purposes—usually to convey infor-
mation about certain objects. We then can individuafiet@ntusesof representations—particular events
or situations in which representations are used to represent certain objects. For example, when | produced



a sketch of my garden to show it my colleagues yesterday, the event makes up one particular use of a repre-
sentation, the skecth. When my colleage said, “I will be available on September the sixth,” that is another
use of a representation—this time, a linguistic representation produced as a sound sequence.

Likewise, if somebody produces a particular position diagdaim the systen to convey information
about a particular race, this act makes up a particular uggof a position diagram. You may produce
another position diagramh on a cocktail napkin to report the result of another ngae your friend. This
act of yours makes up another useupbf a position diagram.

Let us put together these individual uses of position diagrams in the syBteand call the class
tok(Py). Now suppose that Ken regularly reports the results of the races in his newsletters to his friends.
Supppose Ken never lies about the results of races (although he sometimes skips reporting races in which
he came in last). Given that Ken, as a runner, is always in the positon of directly witnessing the races,
Ken's reports in his newsletter are reliably accurate. Thus, when his newsletter describes that Jon arrived
first in a race, then Jon arrived first in the race. In the same vein, when his newsletter shows a position
diagram where the name “Jon” appears in the first position from left, then Jon actually arrived first in the
race represented by the diagram.

This relationship is, in fact, a lawful constraint, enpowered by Ken'’s determination to issue accurate
reports on the races he covers. It is a constraint from a ty(le J') of the classificatiorPs to a type
Arrive(1, J) of the classificatioPr, guaranteed to hold in the uses of position diagrams in Ken’s newslet-
ter. Generally, Ken’s uses of position diagrams support any constraints, from theifgp¢’) to the type
Arrive(n, X), where that the nam¥’ denotes the persox.

Let Nk be the subclass of toR()) consisting of those uses of position diagrams in Ken’s private
newsletters to his friends. There may, of course, be other uses, olsjdbat genuinely respect these
constraints. For example, Jon too may have strong determination toward accurate race reports in his per-
sonal newsletters. Bob may have similar determination for his uses of position diagrams in cocktail-napkin
reports to his wife. And there are other reasons for accuracy constraints. Whatever the reason might be,
there are various circumstanes in which position diagrams are constrained to be accurblte. hesthe
class of all such uses of position diagrams. Then, the memb&tg odll respect the constraints from the
type IN(n, X’) to the type Arive(n, X).

Note that the mapping from the typegm, X’) to the types Arive(n, X) is precisely the basic semantic
indication relation of the representation syst®mThis is no coincidence, of course, as the lawful con-
straints in question are the results of Ken’s and other peopffdst® to make produce accurate reports
according to the very semantic convention that they employ.

Any reasonable semantic convention thus produces lawful constraints on the uses of a certain class
of representations, or more precisely, installing such lawful constraints is the the purpose of instituting a
semantic convention. When you and | agree that | will wink when Tom comes in, we are installing a new
little constraint in our immediate environment—a constraint from my winking and Tom’s presence. Such
an additional constraint in our environment makes our life significantly easy, and that is why we agree on
the little semantic convention in question.

Semantic conventions in a representation system are thus a producer of constraints from the
domain of representing objects to the domain of represented objects. How do we go about mod-
eling such inter-domain constraints? Here again, the basic tools of channel theory prove to be
useful® Specifically, two of its central conceptafomorphismandchanne)] are suitable for our
purpose.
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wpa) (@ @ ) typ(B)
Fa e
\ r \
tok(A) f7(b) ' b tok(B)
A B

Fig.3: An infomorphismf = (f”, f*) consisting of the functiori” from typ(A) to typ(B) and the function
f” from tok(B) to tok(A), wheref™(b) =a « is required to be equivalent tog f ().

Definition 7 (Infomorphism) Let A andB be classfications. Amfomorphism f: A 2 B from
A to B is a contravariant pair of functionfs= (f~, f”) such that:

1. 71 typ(A) — typ(B),

2. f7: tok(B) — tok(A),

3. f°(b) Ea a iff b Eg f7(@) for each tokerb € tok(A) and each type € typ(B). (We will
call this condition “the fundamental property of infomorphisms”.)

Figure 3 shows the general form of infomorphidm= (f", f”) described in this definition.
The fundamental property requires the equivalence of the condit{bh =4 « with the condition
bEg f ().

Generally speaking, the notion of infomorphism models a particular classificatory correspon-
dence between two classificatioisgndA above). Intuitively, every tokeh of the classification
B has a unique tokef’(b) of the classificatioA as one of its components playing a specific role
in it. Thus, every typer describing the tokeri*(b) of A is a description of a component of the
tokenb of B and hence can be considered a descriptidn é&fs such has its “translation"(«)
in the collection of types oB, and f*(b) Ea « is equivalent td =g f™(@). The folowing are
examples of infomorphism directly relevent to our analysis.

Example 5 Consider the class toR()) of individual uses of position diagrams that we discussed in Ex-
ample 4. We can think of various classifications of this class of “objects”. In this example, we will describe
a particular classificatioRy among them, and show there is a natural infomorphigm Ps 2 Py from
the classificationPs of position diagrams (Example 1) to this classificatign classifying particular uses
of position diagrams.

Remember that the set té¥{) of tokens ofPs collects all the position diagrams in the systém
produced in past and future. Then, there is a natural function fronfPgQkio tok(Ps), mapping each
individual usey; of a position diagram to the position diagrainused in that use. Call this functiqe™.



Thus, in the above examples concerning Ken and pgef{uik) = dc and ps™(u;) = d;. Given a particular
usey; in tok(Py), we calls™(u;) the source diagram of.u

Now, this mappingps™ lets us define a particular collection of properties classifyingRgk(with
reference to the properties classifying t8k). For example, take the type&(l, J') classifying tokPs).
From this, we can define a type classifying t®k{, which might be expressed ag(1, J')(Sourcg). Its
intuitive meaning is “having the source diagram in which the name ‘Jon’ appearing to the right of the name
‘Ken’”. (Contrast this with the typen(1, J'), whose intuitive meaning would be “having the name ‘Jon’
appearing to the right of the name ‘Ken’ ”.) A membhegrof tok(Py) supportsk(1, J’) if and only if the
name “Jon” appearing to the right of the name “Ken” in the source diagram of

Suppose tyffy) contains all types that can be defined in this way fromBgp( This implies that
typ(Py) contains all the types of the following forms:

In(n, X")(Sourck), Riat(X’, Y’)(Source), BeErween(n, X', Y')(Source), MoreLEFT(X’)(SoURCE)

Under this assumption, there is a natural function fromRgp(o typ(Py ), mapping each type in typ(Ps)
to the typea(Source). Calling this functionps™, it should be clear that the pasr = (ps”, ps™) is an
infomorphism from the classificatioRs to the classificatioPy. In particular, it satisfies the following
fundamental condition:

(8) For every tokem; € tok(Py) and every typer € typ(Ps),
Ps”(u) Eps @ iff Ui Fp, ps’(a).

Example 6 Continuing on Example 5, we find another natural mapping that departs from the class
tok(Py). For in many cases, position diagrams in the sysfemre used to convey information about
particular races run by Jon, Ken, Ron, Gil, and Bob. Thus, for each particular ursthis category, there
corresponds a particular rage Recalling the set toR) of the classificatioriPt consists of all the races
run by these five men (Example 2), this means that there is a natural mapping; sépm tok(Py) to
tok(Pt). Given a particular usg in tok(Py), we call pr”(u;) the target object ofu

Thus, again, we find a class of properties defined on the basis of this mampiagd the properties
typ(Pr) classifying tokPr). That is the clas§8(TarceT) : 8 € typ(Pr)}. Since typPr) contains all the
types of the form Arive(n, X), this class contains all the types of the formréve(n, X)(TarGET).

Now, the types in this class classify the members of Rgl( so let us assume that they belong to
typ(Pu). Then, there is a natural mapping from ti?pj to typ(Py), which maps each type to the type
B(Tarager). Calling this functionpr”, we see that the papr = (pr”, pr~) makes up another example of
infomorphism, this time from the classificati®® to the classificatiofPy.

Recall that the infomorphisms = (ps”, ps”) in Example 5 is from the classificatid?s to
the classificatiorPy. Thus, we have two infomorphisms going to the common ¢tye The
combination of these infomorphisms is an example of “channel”, and we will see shortly that a
channel of this kind plays a crucial role in modeling inter-domain constraints bridging the source
domain and the target domain of a representation system.

Generally, a channelis a group of infomorphisms going toward a common core. The following
is the general definition:

Definition 8 (Channel) A channelC is an indexed family{f; : Aj 2 C}iq of infomorphisms
with a common codomaig, called thecore of C. The classification#; are calledcomponent
classifications of.
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s’ rr’

\T/

s’ ‘ rr

Pg Py Pr

Fig.4: The binary channely = {p; : Pi 2 PyligsT), consisting of two infomorphismfs : Ps 2 Py
andpr : Pt 2 Py.

Thus, a channel is a collection of informorphisms going to the common core. In particular, the
particualr channel discussed above can be expressed as the indexed famity 2 Py lic;s ).
This is abinary channeln that it has two coponent classificatid®s andPy. We call this channel
Cop.

Now, a binary channel of this kind lets us model inter-domain constraints bridging the domain
of representing objects and the domain of represented objects. The key idea is to define a local
logic on the core of such a channel. Then some constraints in that local logic will be a model of
such inter-domain constraints. The following example illutrates this method for the case of the
channelCp.

Example 7 Recall tokPy) collects all individual uses of position diagrams in the sysfgmand one of
its subsetdN, is a collection of those uses under the accuracy pressure. We have seen that this group of
uses supports an inter-domain constraint from the tyfe X’) to the type Arive(n, X). Given the channel
Cp = {pi : Pi 2 PuligsT}, We may express such inter-domain constraintseggients in a local logic on

the core ofPy. This local logic, call itLp, hasN,, as the set of its normal tokens. The inter-domain
constraints in question are then described in the following way:

(9) In(n, X")(SourcE) +r, ARRIVE(N, X)(TARGET)
According to the definitions in Examples 5 and 6, this is synonymous to:
(10) ps”(In(n, X)) k£, pr (Arrive(n, X))

Given the construction of the chanr@}p, these constraints assert lawful relationship between the two
classification®s andPt. That is, it asserts:

(11) Forevery usein N, if ps’(u) supports the typex(n, X’) in the classificatiorPs, then pr™(u)
supports the type #&rive(n, X) in the classificatiorPr.

To wit, assume (11), and letbe an arbitrary use of a position diagram belonging to the dlgss Then
ps”(u) is the source diagram of andpr~(u) is the target object ai. Supposes™(U) Eps IN(N, X’). Then
by the fundamental property of the infomorphig, it follows u Ep, ps”(IN(n, X’). Nowu € N, by
asuumption. So, by the constraint (11), it follows=p, pr (Arrive(n, X)). Then by the fundamental
property of the infomorphisnpy, we obtainpr“(u) Ep, Arrive(n, X).

Let us return to a simple infomorphisi: A 2 B from the classificatio®\ to B. We have
seen that an infomorphism models a classificatory correspondence between two classifications.



Now, let £a be the local logic capturing the system of constraints holding on the classifiéation
and.Lg the local logic doing the same for the classificatifarSinceA andB have a classificatory
correspondence (due to the infomorphism A 2 B), there should be some correspondence
between their respective logigg and.Lg. What exactly is it? The following examples illustrate
this point.

Example 8 Consider the infomorphismps : Ps 2 Py discussed in Example 5. L& and £y be the
local logics capturing the system of constraints governing the classific®pasdPy respectively. We
saw in Example 3 that the following is a constraint in the local Iagjicon the classificatioRs:

(12) Rur(J,R), Ricar(R, K’) ks, Rigat(J’, K’)
Intuitively, (12) asserts the following:

(13) Having “Jon” to the right of “Ron” and having “Ron” to the right of “Ken” entails having “Jon”
to the right of “Ken”.

Since this is a constraint governing position diagrams, it should be intuitively clear that the following hold
as a constraint governing the situations in which position diagrams are used:

(14) Having the source diagram in which “Jon” appearing to the right of “Ron” and having the source
diagram in which “Ron” appearing to the right of “Ken” entails having “Jon” appearing to the right
of “Ken”

Thus, a constraint in the local logi§, on the classificatioriPs of position diagrams is transferred to

a constraint in the local logids on the classificatiofPy of situations in which position diagrams are
used. This point may become more perspicuous if we rewrite (14) more formally in terms of the notations
involving the infomorphisnps : Ps 2 Py:

(15) ps"(Ricur(J', R)), ps"(Ricur(R, K’)) + £, ps”(Ricur(J’, K”))

Generally, every constraitit s, 4 in the logicSe on Ps is reflected as the constraipt™(I') +, ps”(4)
in the logic Ly on Py. This is a natural assumption, given the classificatory correspondence bétween
to Py modeled by the infomorphismps : Ps 2 Py.

Example 9 The logicsS, and Ly have a correspondece in their normal tokens, too. Consider a token
of the classificatioPy. As such,u is a particular situation in which a position diagram is used. Suppose
u is normalin the sense that it respects the system of constrdipten the classificatio®y. Well, then,

it is a natural expectation that every componentidife also normal, respecting the local logic on on its
own classification. In particular, the source diagrpgi(u) used in this particular useis expected to be
normal, respecting the local logi€y on its own classificatio®s. The idea is that the two logic§y and

Sp must be associated so that no use of a position diagram respgitintay involve a source diagram
violating Sp. This means that for every tokenof Py, if u € N, thenps™(u) € Ng,. Put another way,

Ps (Nz,) € Ns,.

The two kinds of correspondences illustrated by Examples 8 and 9 are quite natural assump-
tions when we deal with logics of infomorphic classifications. When an infomorphisi 2 B
relates the logic€La and.Lg in this way, we callf alogic infomorphisnfrom £ to £Lg. Here is
the formal definition:
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Definition 9 (Logic infomorphism) Let f be an infomorphism from the classificatiénto the
classificatiorB, and£a, £Lg be local logics ofA, B respectively. We calf alogic infomorphism
from A to B, writing f : La 2 Lgif:

1. For all setd", 4 of types ofA, if I' -, 4, thenf™(I') -, 17(4),
2. T'(Ngg) € Ng,.

3. The Account

Now that we have presented the relevant part of channel theory, we can start developing our
own concepts to be used for our account of graphical meaning derivation. We start with the notion
of “abstraction.”

Definition 10 (Abstraction relation) Let £ = (A,+,, Ny) be a local logica be a member of
typ(A), andG be a set of subsets of typ]. We saya is anabstraction overg in £, writing

avy G, if:

1. a +p I for every choice sef of G,
2. I +, « for every member of G.

Intuitively, the typea abstracting over a collectiog is in fact an “abstract” type that can be
realized in various concrete ways, a@ds the exhaustive collection of these concrete ways for
a to be realized. As the definition indicates, the abstraction relation can be modeled as a special
type of bi-directional constraints in a local logic.

More specifically, (i) each membét of G constitutes a particular way in whiah can be
realized, and (ii) the members ¢f exhausts all the ways in whiah can be realized. Because
of (i), if a token satisfies any membérof G, then it supportsr, and because of (i), if a token
supportsz, then it satisfies some member/of The following proposition makes this point more
precise:

Proposition 1 Let £ = (A,+,,N,) be a local logic, and suppose>, G. For every token a in
Ny, aEa « iff a satisfies some member@f

Proof. For left to right, supposa € Ny anda Ea a. Suppose for reductio that satisfies no
member ofG. Then, every member @ has a membes such thata [ta 8. So, if we defineX
as the set of all members pf G that are not supported lgyin A, thenX' is a choice set oves.
But sincea >, G, it must hold thatr +, 2. Then sincea € N anda Ea a by supposition,
a must support some member Bfin A. But this is not the case by the definition Bf This is
a contradiction. For right to left, supposes N, anda satisfies some membdrof G. Since



{(IN(1, '), IN(2,K")}
{IN(1, ), IN(B,K')}
{IN(1,7), IN(4,K'))
{IN(1,7), IN(5,K")) (IN(1,7), IN(4R))
] iN@ ), NGB K ] iINR, ), INGB,R)) [ {IN(4, K}
G1= {(IN(2,7), IN(4,K")} G2 = {IN(4,7), IN(LR)} 93‘{{|N(5,K')}}
{(IN(2, ), IN(5,K")} {IN(5, ), IN(2,R)}
{IN(3,7), IN(4,K")}
{IN(3, ), IN(5,K'))
{IN(4,7), IN(5,K"))

Fig.5: The collectiong71, G2, andGs of sets of source types of the systém

Dy =

{ArrIvE(L, J),
{ArrIVE(L, J),
{ArrIVE(L, J),
{ARRIVE(L, J),
{ARRIVE(2, J),
{ARRIVE(2, J),
{ARRIVE(2, J),
{ARrRIVE(3, J),
{ARRIVE(3, J),

ARrrIVE(2, K)
ArrIve(3, K)
Arrive(4, K)
ArrIve(5, K)
ArrIVE(3, K)

ArrIve(5, K)
ARrrive(4, K)
ArrIve(5, K)

Arrive(l, J),
ARrRIVE(2, J),
ARrrIve(4, J),
Arrive(5, J),

Arrive(4, R)}
Arrive(5, R)}
ArrIve(l, R)}
ARrrIVE(2, R)}

)
N
|
— — — —

}
}
}
}
}
Arrive(4, K)}
}
}
}
}

Dy = {{ARRIVE(4, K)}}

{ARrRIVE(5, K)}

{ARrIVE(4,J), ARrIVE(5, K)

Fig.6: The collectionsD, D,, andDs of sets of target types of the systémn

a vy G, we knowI™ +, a for every member” of G. In particular4 +, a. Sincea € Ny anda
satisfiess, it follows thata =a «.

The following examples give instances of the abstraction relation that are directly relevant to
our account of derivative meaning.

Example 10 Consider the local logiSe on the classificationPs of position diagrams. In this logic,
the type Reur(K’, J') is an abstraction over the collectigh of sets of types, wherg; is as shown in
Fig. 5. Note that each member 61 is a particualr way in which Rut(K’, J) is realized. For example,
{In(1, J), IN(2, K")} represents the state in which the name “Jon” appears in the leftmost position and the
name “Ken” appears in the second position from left. It is certainly a particular way in which the name
“Ken” appears to the right of the name “Jon”. Note also that this collection exhausts all particular ways in
which “Ken” appears to the right of “Jon”.

We cite two more instances of the abstraction relation in the I8gic Berween(2, J',R) is an ab-
straction overg, and MoreLerr(K’) is an abstraction ovefs, whereG, and Gs are as shown in Fig.
5.

Example 11 Consider the local logi@, on the classificatioRr of position diagrams. We find instances
of the abstraction relation that closely match the instances in Example 10. Thairig(K, J) is an
abstraction oveD;, Berween(2, J, R) is an abstraction oveD,, and MoreBerorg(K) is an abstraction
over D3, where the collection®;, D,, andD; are as shown in Fig. 6.
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Barwise & Seligman (1997) developed the notionirdbrmation systento model the con-
straints over whatever complex objects (“distributed systems”) with any number of inter-related
components. Ainary information systerdefined below is useful when we want to model rela-
tively simple objects with two immediate components.

Definition 11 (Binary information system) A binary information systeris an indexed family
of logic infomorphismg fi : £j 2 L}ic|, wherel has exactly two members.

Specifically, the component logics; specify intra-domain regularities in the two compo-
nent classifications Cldf). The core logicL specifies inter-domain regularities across the two
classifications. Since the informorphismsare also logic infomorphisms, every intra-domain
regularity inZ; is transferred to a regularity ii. Thus, the logicL is a central platform in which
inter-domain constraints logically interact with the intra-domain constraints originated in compo-
nent logics. This way/ predicts what collection of constraints are available in the entire binary
system. This capability of (the concept of) a binary information system plays a crucial role in our
account for meaning derivation in a graphical representation system.

We model representation systems as a special kind of binary information systems, developed
from initial institution of basic semantic conventions but equipped with a richer set of semantic
rules:

Definition 12 (Representation system)A representation systef consists of a binary informa-
tion system{f; : Li 2 Lrlicis 1) and a pair of binary relationsg andrz on dom(s”) x dom(fr”)
such that:

1. ¢ is a sub-relation ofx,
2. g is a sub-relation of ..

We callrg thebasic semantic convention$ R, and call-g the semantic rulesf R.

Earlier, we individuated particularsesof diagrams as individual events or situations in which
a diagram is used to represent a certain object. As such, a particular use of a diagram is itself a
complex object with two main components—namely, the source diagram and the target object.
The binary information systerffi : £i 2 LgligsT) In Definition 12 is intended to capture
regularities over a certain class of diagram uses and their components. In parfigul#g, and
Lt are local logics capturing the systems of constraints on diagram uses, source diagrams, and
target objects, respectively.

As illustrated in Examples 4 and 7, we can consider establishment of semantic conventions as
installment of new constraints into our immediate environment. They are constraints governing



the relevant class of diagram uses, and as such constraints in the cotégogdicey take the form
of inter-domain constraintés™(e’) + fr"(«), connecting an individual typés™(a’) to another
individual type fr"(a). Thus, the class of these constraints is a binary relatipmefined on
dom(fs”) x dom(fr"). One may think of the members Bfk as “axioms” in the logical system
L, since as initial conventions, they are not derived from any more basic constraints.

Now, a diagram use involves two main components, namely, a source diagram and a target
object. As such, individual diagram uses are also subject to local la@icand L1 governing
these component objects, so that all constraints in these logics are reflected in the core logic
Lz. In our definition, this correlation is expressed by the requirementfthand fy are logic
infomorphisms, making a binary information system.

Thus, three kinds of constraints coexist in the core lagic (i) the set of basic semantic
conventiongg, (ii) the set of constraints originated in the local logig on source diagrams, and
(i) the set of constraints originated in the local loglig on target objects. The semantic con-
ventions interact with the transferred constraints, and they spin out new constraints (“theorems”)
in the core logicLs. (The interactions are closure operations of Identity, Weakening, and Global
Cut underLs, to be exact.)

Some of these theorems take the fofgi(e’) ., fr (@), allowing a valid inference from
the typea’ of a source diagram to the type of the represented object. Depending on their
utility, ease, and other factors, selected items of these inferences are automized and stabilized
as “semantic rules”. Combined with initial semantic conventions, these new rules make up the
collection of semantic rules available in the system at the moment. The binary relation
our definition stands for this collection. (Hence the conditions 1 and 2 in Definition 12.) Our
definition of representation system is designed to capture a snapshot of the representation system
in this development.

In our view, derivative meaning relations in graphical representation systems are special in-
stances of the new semantic rules thus adopted. Before we can specify their exact logical origin,
however, we need introduce some auxiliary concepts.

Definition 13 (Source types and target types)et R = ({fi : Li 2 LgrligsT), Fr.Fr) be a
representation system, whegs is the local logic(As, .. Ngg) and Ls is the local logic
(AT,Fr, Ngp). We call types of the classificatighs source typesf R, and types of the classifi-
cationAr target typesof R.

Definition 14 (Conventional meaning and projection) Let R = ({fi : Li 2 LrlicisT}. Fr. FR)
be a representation system.
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1. Given a source type and a target typg of R, we saya conventionally means in R,
writing @ —g B, if fs™(@) Fg fr7(B).

2. LetI" be a set of source types ardoe a set of target types. We sAyis projected to4
through—g, writing I' —g 4, if the relation—¢ restricted to the domaif is a one-one
correspondence frotfi to 4.

3. LetG be a collection of sets of source types ande a collection of sets of target types.
We sayg is projected toD through — if the projection relation—g restricted to the
domaing is a one-one correspondence frghto D.

Intuitively, —« is the semantic relation from source types to target types directly legitimized by
the semantic conventions; of the system. The projection relation holds when alsef source
types is “just enough” to conventionally mean all target typeg:inf you subtract any member
from I, it no longer sifices to cover all members iy and if you subtract any member froi
some member of is no longer necessary to cover all memberd.inThe same idea applies to
collections of sets of typeand the projection relation holds froghto D wheng is just enough
to conventionally mean all collections of sets of target type®in

It is our main proposal that every derivative meaning relation is based on the following rela-
tionship between a source typeand a target typg:

Definition 15 (Parallel abstraction pair) LetR = ({fi : Li 2 Lrlic(sT), F%, =) b€ a represen-
tation system. Let’ be a source type andbe a target type. We cally, 3) aparallel abstraction
pair in R if there exist a collectiorgy of sets of source types and a collecti®nof sets of target
types such that:

1o >rs G
2. Gis projected taD through—g,

3. avap D,

Figure 7 shows what it amounts to for typ&sanda to be an parallel abstraction pair. Note
that the abstraction relations,, ands<,, are determined by the local logigs and L, respec-
tively, whereas the projection relatieng, is largely the matter of the local logi€y,.

Example 12 It is not difficult to see that the condition of parallel abstraction applies to the source type

and the target type in each derivative meaning relation (2)—(4) discussed in the beginning of this paper. In
our current terminology, these meaning relations can be expressed in the following way:

(16) Rwcur(K’, J) means larer(K, J)
(17) Berween(2,J,R) means Brween(2, J R)
(18) MoreLEerr(K’) means MreBerore(K)



Fig.7: The source typ@’ and the target type being a parallel abstraction pair, whegeand O are
depicted to have only three members for simplicity.

For (16), we have already seen thatdr(K’, J') is an abstraction af, in the local logicSe, and also
that Later(K, J) is an abstraction ab; in the local logic7y (see Examples 10 and 11). Now the collections
G1 andD; are clearly in a one-one correspondence under the conventional meaning relatidius, on
Definition 15, Reur(K’, J’) and Later(K, J) are a parallel abstraction pair in the representation sygtem
Asfor (17), Berween(2, J', R) is an abstraction af, in the local logicSe, and also that Brween(2, J, R)
is an abstraction af), in the local logic7». The collectiongs, andD, are again in a one-one correspon-
dence under¢. Thus, Birween(2, J', R) and Berween(2, J, R) are a parallel abstraction pair in the system
P. We leave the reader to check that the definition also applies to (18).
In the beginning of this paper, we claimed that derivative meaning relations are not arbitrary
creations of the interpreter, but valid evaluations of the information carried by the relevant aspects
of the diagrams. The following proposition demonstrates that a source type and a target type in

fact stand in a valid information relation whenever they make a parallel abstraction pair.

Proposition 2 LetR = ({fi : £Li 2 Lrlic;sT), F%, F=) b€ a representation system.(df’, o) is a
parallel abstraction pair inR, then £°(¢’) Fz, fr ().

Proof. The antecedent implies that there are collect@rad D such that:

1) « > Ls G,

(2) G is projected taf through—g,

(3) @y D.
We will show (a) and then (b):

(@) fs"(I') -z, fr'(a) for every member” of G.

(b) fs"(@’) k1 Fr7(a).

For (a), letlI" be an arbitrary member @. By (2), there exists a membgrof D to whichI”
is projected through~%. This implies:
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(4) For every membaef of 4, there exists a memberof I such thatfs™(y) rz fr7(5).

Consider the setr™(4). If 21, fs"(I) Fg, fr(), 22 is shown for every partitiody, 2) of
fr7(4), then we obtairfs™(I') -, fr"(a) by Global Cut. So, letx1, 2>) be an arbitrary partition
of f17(4). We divide the cases into (i) wheXy # 0 and (ii) whenX> = 0. The proof for the
first case is trivial. In the second cag®, = 0 and soX; = fr"(4). Sincea o, D by (3), the
following holds:

(5) 4+, a for every member! of D.

Sinced € D, it follows 4 +,, a. But fr™ is a logic infomorphism by the definition of represen-
tation systems. Hencéy™(4) -, fr'(a). So by Weakeningyy, fs™(I) +z, fr (@), 22. We thus
obtain (a).

For (b), consider the se™(|J G). Due to Global Cut, it sfices to showZy, fs™(a’) Fr,
fr(a), 2> for every partition(Z, 2») of fs"(lJ G). So let(X1,2) be an arbitrary partition of
fs°(UG). Note that(fs~1(2y), fs™1(2»)) is a partition of JG. We divide the cases into (i)
whenfs™1(Z,) N I # 0 for every member of G and (i) fs"~1(Z2) N I" = 0 for some member
of G. In the first case, there is a choice 8ebf G such tha® ¢ fs"~1(2»). Sinced’ >ars G Dy
(1), the following holds:

(6) o' rg I for every choice sel’ of G

In particular,’ rr4 ©. Since® C fs™1(Z,), we obtainfs™1(Z1),a’ +rs fs™1(22) by Weak-
ening. Butfs” is a logic infomorphism. It follows thaty, fs"(¢’) Fr, 2Z2. By Weakening,
21, 1s7(@’) £ fr7(@),22. The proof for the second case is trivial.

Earlier, we indicated that a derivative meaning relation arises out of the logical interaction
of three kinds of constraints in the core logic: (i) a set of basic semantic conventions, (ii) a set
of constraints originated in source diagrams, and (iii) a set of constraints originated in target
objects. The proof of proposition 2 traces the logical interaction in question. In particular, (4),
(5), and (6) in the proof are respectively the places where the constraints in the first, the first,
and the second kind are appealed to. As the proof demonstrates, the logical interaction of these
constraints in fact spins out a new constraif¥f,(¢’) +r, fr'(@), in the core logicLg. This
is an inter-domain constraint, makigga logical consequence of as far as the diagrams uses
in Nz, are concerned. This is why we can validly interprettR(K’, J’) to mean larer(K, J),
Berween(2, J', R') to mean Brween(2, J, R), and MoreLerr(K’) to mean MreBerorg(K) in the
systemP of position diagrams. When a source type and a target make a parallel abstraction pair,
they are logically qualified to stand in a derivative meaning relation.



4. Conclusion

Derivative meaning is quite prevalent in graphical representation systems. It is also a func-
tionally important property of such systems. However, our account shows that doing justice to this
phenomenon requires a drastic change in the way we view meaning of graphical representations.
Derived meanings are completelyffidgrent animals than basic meanings. Their treatment would
require an explicit attention to threefidirent kinds of constraints on the domain of diagram uses,
the domain of diagram themselves, and the domain of target objects. Meaning derivation arises
when the last two kinds of constraints are “aligned” by the first kind of constraints, so we need a
mathematical tool to keep track of this alignment. As far as | could see, no existing framewaork of
graphics semantics was equipped with such a tool, nor even prepared for a separate treatment of
these kinds of constraints.

Channel theory, with its explicit attentions to local logics of separate domains and infomor-
phisms connecting them, seems like an ideal framework, so we sketched a framework of graphics
semantics on top of it. | do not expect that the present paper is an strong enough argument to
change every graphics semanticist's mind to adopt the particular framework proposed in it. How-
ever, | do believe that it has done enough to showdbaiething like thiss necessary in order for
formal semantics to really extend its coverage into the domain of graphical representations

Notes

(@) The classifications of convenional and derivative meanings are not an absolute matter determined
solely by syntactic structures of a given diagram. We can easily imagine an alternative system of
position diagrams where (2) is a basic semantic convention while (1) is a derivative meaning. The
point is that whatever the initially chosen semantic convention may be, additional meaning relations
are often derived from them in graphical systems.

(2) Note on the theory notatior: for readability, we writel” + 8 instead ofl" + {8}, and writea + A
instead of{a} + 4. We also writeX,I" + 4 instead ofX U T + 4, and writeI" + 4,2 instead of
I'r4u2X.

©) In fact, Barwise and Seligman Barwise & Seligman (1997) have shown that these conditions must be
satisfied by any set of sequents if it is to be an exhaustive list of constraints on some class of objects.
They showed the converse too, namely, that any set of sequents satisfying these closure conditions can
be considered an exhaustive list of constraints on some class of objects. We refer interested readers to
Corollary 9.34 in Barwise & Seligman (1997).

@) And this is certainly no accident, given the fact that chnnel theory is developed from a situation se-
mantics, a quintessential project of analyzing meaning as constraints.
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