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1. The Phenomenon

Let us start with an example. Suppose Jon, Ken, Gil, Bob, and Ron run races. They have a

way to resolve ties in arrival, so that runners have exclusive finishing places, from the first to the

fifth, in each race. Suppose we use the systemP of “position diagrams” to express the finishing

places of the five runners in particular races. Every well-formed diagram in this system is required

to have the names “Jon”, “Ken”, “Gil ”, “Bob”, and “Ron” in a horizontal row, with each

name appearing exactly once. Figure 1 shows an example of a diagram in this system:

Fig.1: An example of a well-formed diagram ofP.

The semantic convention of this system is that if the nameX′ appears in then-th position from

left, it means that the bearer ofX′ arrived inn-th place (in the represented race). As the name

“Gil” is in the first position from left, we learn that Gil arrived in first place; and as the name

“Jon” is in the second position from left, we learn that Jon arrived in second place, and so on.

This way of reading the diagram is, of course, a valid one, directly ligitimized by the semantic

convention of the system.

There are, however,other legitimate ways of reading the diagram. For example, you see the

name “Ken” appearing to the right of the name “Jon”, and you learn that Ken arrived later than

Jon. If youcountthe number of names between the names “Jon” and “Ron”, you see how many

people arrived between Jon and Ron in the race; if you notice that there are more names to the

left of “Ken” than to its right, you learn that more people arrived before Ken than after him.

Note that the meaning relations underlying these reading practices are different from the ones

directly legitimized by the basic semantic convention. To make this point clearer, (1) shows an

example of the meaning relations directly legitimized by the semantic convention, and (2)–(4)

show the meaning relations that we have just cited:

(1) If the name “Jon” appears in the second position from left, it means that Jon arrived in

second place

(2) If the name “Ken” appears to the right of the name “Jon”, it means that Ken arrived later

than Jon



(3) If there are two names between the names “Jon” and “Ron”, it means that two people

arrived between Jon and Ron

(4) If there are more names to the left of “Ken” than to its right, it means that more people

arrived before Ken than after him

The meaning relations (2)–(4) are clearly different from (1) in kind. Yet each of them appears

to be a valid evaluation of what is meant by the relevant aspect of the diagram. Although de-

viant from the system’s basic semantic convention, they are surely not arbitratry creations by the

interpreter.

In fact, the validity of (2)–(4) is partly based on the particular semantic convention that we

have chosen for the systemP. Imagine that the systemP has a totally different semantic con-

vention, say, interpreting the appearance of a name in then-th positionfrom right to mean the

person’s finishing place in the race. Then all the meaning relations (2)–(4) would no longer hold

and some alternatives would hold instead. In this respect, (2)–(4) arederivativesof the system’s

basic semantic convention.(1)

This phenomenon is quite prevalent in graphical representation systems. Specifically,sta-

tistical chartsare sources of relatively clear cases of derivative meanings, and practioners and

researchers discussed them under various conceptual frameworks. For example, bar charts enable

the viewer to see “higher-level abstractions” constructed from the basic numerical information

they carry (Guthrie, Weber & Kimmerly, 1993); visual patterns made by nearby lines in Carte-

sian line graphs carry “conceptual messages” about the data trend (Pinker, 1990); the shape of

“clouds” made by dots in scatter plots signal the relationship between the represented variables

(Kosslyn, 1994). Both practioners and researchers often distinguish “levels of questions” to be

asked for statistical charts (Bertin, 1981; Wainer, 1992; Ratwani, Trafton & Boehm-Davis, 2003;

Lohse, 1993) where higher-level questions are apparently directed to derivative meanings carried

by the relevant charts.

Although less frequently, maps were cited as sources of derivative meanings in our sense.

Lowe (1994) discussed “secondary structure”, where adjacent isobars on a meteorological map

together indicate a global trend of the area’s barometric situation, including the presense of a

trough. Gilhooly et al. found the use of “specialist schemata” in geographers’ reading of contour

maps, where visual patterns formed by several contour lines indicate some global structures in the

area, such as valleys and interlocking spurs (Gilhooly, Wood, Kinnear & Green, 1988).

Node-edge graphs and even tables support derivative meanings. Olivier (2001) discussed

the case of tree diagrams, where an extended path formed by consecutive edges indicates the

presence of a descent or chain in the represented relational structure. In London’s tube map,
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the concentration of edges touching a node indicates the presense of a “hub” station (Shimojima,

1999). Many tables are designed to allow the viewer to do “column-wise” or “row-wise” readings,

in addition to basic “cell-wise” readings (Shimojima, 1999).

Graphical meaning derivation is afunctionally importantphenomenon as well. Some re-

searchers hypothesize that the utility of a graphical system depends on what repeirtore of deriva-

tive meanings it allows the viewer to extract, and how easily the viewer can do so (Pinker, 1990;

Lohse, 1993). A related hypothesis is that the proficiency or expertise of reading graphics de-

pends on the ability to appreciate derivative meanings in the graphics (Lowe, 1989, 1994; Guthrie

et al., 1993; Pinker, 1990; Gilhooly et al., 1988). It has been also hypothesized that evaluations of

derivative meanings in a graphic forms a class of mental operations relatively independent from

evaluations of basic meanings, whose occurences depend on the given purposes of reading the

graphic (Guthrie et al., 1993; Kinnear & Wood, 1987; Ratwani et al., 2003).

Of course, all this is still hypothetical, and more research is required to determine the exact

functional implications of the derivative meaning phenomenon. The issue of the scope of graph-

ical meaning derivation, namely, to what range of instances the conept is coherently extendable,

also requires more careful treatment based on detailed case studies. Yet, we largely set aside these

issues in this paper, in order to concentrate on a more basic question concerning the logical origin

of a derivative meaning relation in a graphical system. Specifically: under what informational

conditions derivative meaning relations hold? What confers them their apparent legitimacy?

Despite its apparent prevalence and functional importance, the phenomenon of graphical

meaning derivation has received little explicit attention in the literature of graphics semantics.

No semantic theories of graphics, either grammatical, model-theoretic, or algbraic approaches,

have ever attempted to track its logical origin. Also, the phenomenon is apparently indepen-

dent of any informational relations, such as “secondary notations” (Petre & Green, 1992) and

“graphical implicatures” (Marks & Reiter, 1990), that have been studied in pragmatic accounts

of graphics. Pinker’s theory (1990) offers a systematic account of the conditions for a coginitive

system to comprehend derivative meanings, yet as a psychological theory, it is silent about the

logical relationship between derivative meanings and basic meanings.

In the following, we try to build a framework of graphics semantics in which meaning deriva-

tion properties of graphical systems are explicitly modeled and accounted for. In our account,

derivative meaning relations in a graphical system are results of the logical interactions involving

(i) constraints installed by the semantic conventions, (ii) constraints originated in the domain of

representations, and (iii) constraints originated in the domain of represented objects. We borrowed

the concept ofconstraint, as well as its formal characterizations, from channel theory (Barwise

& Seligman, 1997). Thus, our exploration has two broad parts: an exposition of the relevant part



of channel theory, and a development of our own account. The point of this paper is to closely

trace the logical origin of the meaning derivation phenomenon, so we will confine our analysis to

the relatively simple instances (2)–(4) in the system of position diagrams. We refer the reader to

Shimojima (1999) for broader (but less formal) treatment of the phenomenon.

2. Channel Theory

Definition 1 (Classification) A classificationA = 〈tok(A), typ(A), |=A〉 consists of a set tok(A)

of tokens, a set typ(A) of types, and a binary relation|=A on tok(A) × typ(A). We say a tokena

supportsa typeα in the classificationA if a |=A α.

As the definition indicates, “classification” is a quite general concept, applicable wherever

there is a collection of objects to which a specific set of properties are attributable. The following

examples in particular show how we use this concept to model “the domain of representations”

and “the domain of represented objects”.

Example 1 Recall the systemP of position diagrams representing running races, where the class of well-
formed diagrams was defined by the following syntactic stipulations: (i) the names“Jon”,“Ken”,“Gil”,
“Bob”, and“Ron”appear in a horizontal row, and (ii) each name appears exactly once. We can take the
class of well-formed diagrams ofP as the set of tokens of a classification, say,PS. Thus, tok(PS) consists
of all the inidvidual position diagrams, produced in past or future, on paper or sand, in red or black.
As the set of types typ(PS), one can take whatever set of properties that classify objects in tok(PS). Let us
assume that typ(PS) is the set of types taking the following forms:

− The nameX′ is in then-th position from left (wheren ∈ {1,2,3,4, 5})
− The nameX′ is to the right of the nameY′

− There aren names between the namesX′ andY′ (wheren ∈ {0,1,2,3})
− There are more names to the left of the nameX′ than to its right

For brevity, we symbolize these types respectively as:

In(n,X′) Right(X′,Y′) Between(n,X′,Y′) MoreLeft(X′)

We useJ′, B′, R′, K′, andG′ to denote the names “Jon”, “Bob”, “Ron”, “Ken”, and “Gil” respectively.
Thus, for example, Between(2, B′,R′)is the state of affairs that there are two names between the names
“Bob” and “Ron”. Let us use “d” to refer to the particular position diagram in Figure 1. Using the above
symbols, we can describe some ofd’s properties in the following way:

d |=PS In(5,R′) d |=PS Right(K′,G′)
d |=PS Between(3,G′,R′) d |=PS MoreLeft(K′)

Example 2 Remember that the systemP of position diagrams was designed to represent various running
races run by Jon, Ken, Gil, Bob, and Ron and to express their finishing places in individual races. Thus,
the target of this repersentation system can be considered another classification, sayPT , where the set of
tokens tok(PT) consists of all running races run by these people in future or past. So, if these five men run
30 races together in their life times, tok(PT) contains 30 tokens. The set of types of this classification could
then consist of types of the following forms:
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− The runnerX arrives in then-th place (wheren ∈ {1,2,3, 4,5})
− The runnerX arrives later than the runnerY
− There aren runners who arrive between the runnersX andY (wheren ∈ {0,1,2,3})
− More runners arrive beforeX than after him

For brevity, we symbolize these types as:

Arrive(n,X) Later(X,Y) Between(n,X,Y) MoreBefore(X)

We useJ, B, R, K, andG to denote the people Jon, Bob, Ron, Ken, and Gil, respectively. So, if these
men arrived in the order of Gil, Jon, Bob, Ken, and Ron in a particular racer, the following is a partial
description of the properties ofr:

r |=PT Arrive(3, B) r |=PT Later(R, B)
r |=PT Between(1, J,K) r |=PT MoreBefore(R)

Generally speaking, a constraint is a regularity over a class of objects. It is a regularity in the

sense that it is a recurrent pattern of properties shared by a class of objects. We use the notions of

sequentandsatisfactionto express such patterns of properties.

Definition 2 (Sequent) Let Σ be a set. Asequent ofΣ is a pair〈Γ, ∆〉 of subsets ofΣ.

Definition 3 (Satisfaction) Let A be a classification, and〈Γ, ∆〉 be a sequent of the set typ(A) of

types inA. Given a tokena, we saya satisfies〈Γ, ∆〉 if:

If a |=A α for every memberα of Γ, thena |=A β for some memberβ of ∆.

Thus, intuitively, when we talk about satisfaction, a sequent〈Γ, ∆〉 is taken as a material condi-

tional where the antecedent is the conjunction of the types inΓ and the subsequent is the disjunc-

tion of the types in∆.

Using the three concepts introduced so far, we can paraphrase our intuitive expression “recur-

rent patterns of properties” into a more precise “sequents of types satisfied by a class of tokens

in a classification”. Most generally, then, we can capture a precise notion of constraint in terms

of a triple, consiting of a classificationA, a set of sequents ofA’s types, and a set ofA’s tokens

satisfying those sequents. The notion oflocal logic in channel theory is an attempt to capture a

system of constraints along this line.

Definition 4 (Local logic) Let A be a classification. Alocal logicL on A is a triple〈A, `L,NL〉
consisting of:

1. A classificationA,

2. A set`L of sequents of typ(A) such that〈typ(A), `L〉 makes a regular theory on typ(A),

3. A subsetNL of tok(A), called thenormal tokensofL, which satisfy all the sequents of`L.



Fig.2: A local logic 〈A, `L,NL〉 on the classificationA.

Figure 2 shows how the local logicL is related to a classificationA. As we defined in

Definition 2, a sequent〈Γi , ∆i〉 is a pair of subsets of typ(A), and the component̀L of a local

logic is a collection of such sequents. Another componentNL of the local logic is a subset of

typ(A), and each member ofNL is required to satisfy each sequent in`L. According to this

definition, the component̀L of a local logic is not just any set of sequents, but a special set

of sequents called aregular theory. This requirement is necessary as the definition is trying to

capture asystemof constraints. The following definitions specify what “regular theory” means.

Definition 5 (Theory) Let Σ be a set. Atheory onΣ is a pairT = 〈Σ, `〉 where` is a set of

sequents ofΣ.

Definition 6 (Regular theory) A theoryT = 〈Σ, `〉 is calledregular if it satisfies the following

closure conditions:

− (Identity) {α} ` {α},
− (Weakening) IfΓ ` ∆, thenΓ, Γ′ ` ∆, ∆′.
− (Global Cut) IfΓ, Σ0 ` ∆, Σ1 for each partition〈Σ0, Σ1〉 of Σ′, thenΓ ` ∆.(2)

Thus, a theoryT = 〈Σ, `〉 is called “regular” if its set of sequents̀is “systematic” enough to

satisfy the closure conditions of Identity, Weakening, and Global Cut.(3)

Remember that we have modeled the domain of representing objects in a representation sys-

tem as a classification. Accordingly, the system of constraints governing this domain should be

modeled as a local logic on the classification. Example 3 specifies how this could be done. It also

shows the same for the domain of represented objects.
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Example 3 Recall the clasificationPS of position diagrams from Example 1. Consider the class of all
constraints govering the tokens ofPS, and they will make up a special local logic onPS. LetSP = 〈PS, `SP
, tok(PS)〉 be that local logic. The following are obvious examples of constraints inSP:

In(2, J′), In(2, B′) `SP ∅ Right(J′,R′),Right(R′,K′) `SP Right(J′,K′)

Between(3,G′, B′) `SP Between(3, B′,G′) In(5,R′) `SP MoreLeft(R′)

The same position cannot be occupied by more than one name, so (1) holds. The constraint (2) holds
because of the syntactic stipulation that names appear in a horizontal line, plus the transitivity of the
Right relation in the horizontal ordering. It is important to note that this constraint is based onboth
stipulative constraints (an enforcement of linear horizontal arrangement)and natural constraints on the
Between relation of names (transitivity). The constraint (3) comes from the nature of the tertiary relation
Between plus the stipulation that each name appears exactly once. By the synatctic stipulation, every
position diagram in this system have exactly fives names in it. Thus, if a name is placed in the fifth position
from left, then certainly there are more names to its left than to its right. Hence the constraint (4).

Turn to the clasificationPT of running races from Example 2, and letTP = 〈PT , `TP , tok(PT)〉 be the
local logic listing all constraints on the races in tok(PT). The following are obvious examples of constraints
in TP:

Arrive(2, J),Arrive(2, B) `TP ∅ Later(J,R),Later(R,K) `TP Later(J,K)

Between(3,G, B) `TP Between(3, B,G) In(5,R) `TP MoreLeft(R)
These constraints simply follow from the irreflexive, asymmetric and transitive nature of the defeating
relation. The logicTP also houses the following constraints because of the regularity condition on it:

(5) Defeat(J,R) `TP Defeat(J,R)

(6) Defeat(J, J),Defeat(K, B) `TP Defeat(G,R)

(7) Defeat(J,R),Defeat(R,K),Defeat(K, B) `TP Defeat(J, B)

Recall that these constraints (2)–(7) had exact analogues in the local logicTP in Example 3. As
the reader might have anticipated, this matching of constraints plays an important role in explaining the
functional properties of the representation systemP.

Thus, we can use local logics to model systems of constraints both for the domain of repre-

sentations and for the domain of represented objects. However, the tool kit obtained so far is not

quite sufficient for our purpose. As we will see shortly, our account of graphical meaning deriva-

tion crucially assumes that semantic conventions in a representation system produce constraints

holding betweenthe source domain and the target domain. Although we have shown that local

logics can model systems of constraintsin individual domains(such as constraints in the source

domain and the target domain of a representation system), we still want a machinery to extend

this model to cover constraints holdingacross multiple domains.

Before we start developing the wanted machinery, let us see exactly how we can view the

semantic conventions in a representation system as a producer of constraints.

Example 4 Representations are tools, and they are used for certain purposes—usually to convey infor-
mation about certain objects. We then can individuate differentusesof representations—particular events
or situations in which representations are used to represent certain objects. For example, when I produced



a sketch of my garden to show it my colleagues yesterday, the event makes up one particular use of a repre-
sentation, the skecth. When my colleage said, “I will be available on September the sixth,” that is another
use of a representation—this time, a linguistic representation produced as a sound sequence.

Likewise, if somebody produces a particular position diagramdk in the systemP to convey information
about a particular racerk, this act makes up a particular useuk of a position diagram. You may produce
another position diagramd j on a cocktail napkin to report the result of another racer j to your friend. This
act of yours makes up another use ofu j of a position diagram.

Let us put together these individual uses of position diagrams in the systemP, and call the class
tok(PU). Now suppose that Ken regularly reports the results of the races in his newsletters to his friends.
Supppose Ken never lies about the results of races (although he sometimes skips reporting races in which
he came in last). Given that Ken, as a runner, is always in the positon of directly witnessing the races,
Ken’s reports in his newsletter are reliably accurate. Thus, when his newsletter describes that Jon arrived
first in a race, then Jon arrived first in the race. In the same vein, when his newsletter shows a position
diagram where the name “Jon” appears in the first position from left, then Jon actually arrived first in the
race represented by the diagram.

This relationship is, in fact, a lawful constraint, enpowered by Ken’s determination to issue accurate
reports on the races he covers. It is a constraint from a type In(1, J′) of the classificationPS to a type
Arrive(1, J) of the classificationPT , guaranteed to hold in the uses of position diagrams in Ken’s newslet-
ter. Generally, Ken’s uses of position diagrams support any constraints, from the type In(n,X′) to the type
Arrive(n,X), where that the nameX′ denotes the personX.

Let NK be the subclass of tok(PU) consisting of those uses of position diagrams in Ken’s private
newsletters to his friends. There may, of course, be other uses, outsideNK , that genuinely respect these
constraints. For example, Jon too may have strong determination toward accurate race reports in his per-
sonal newsletters. Bob may have similar determination for his uses of position diagrams in cocktail-napkin
reports to his wife. And there are other reasons for accuracy constraints. Whatever the reason might be,
there are various circumstanes in which position diagrams are constrained to be accurate. LetNLP be the
class of all such uses of position diagrams. Then, the members ofNLP all respect the constraints from the
type In(n,X′) to the type Arrive(n,X).

Note that the mapping from the types In(n,X′) to the types Arrive(n,X) is precisely the basic semantic
indication relation of the representation systemP. This is no coincidence, of course, as the lawful con-
straints in question are the results of Ken’s and other people’s efforts to make produce accurate reports
according to the very semantic convention that they employ.

Any reasonable semantic convention thus produces lawful constraints on the uses of a certain class
of representations, or more precisely, installing such lawful constraints is the the purpose of instituting a
semantic convention. When you and I agree that I will wink when Tom comes in, we are installing a new
little constraint in our immediate environment—a constraint from my winking and Tom’s presence. Such
an additional constraint in our environment makes our life significantly easy, and that is why we agree on
the little semantic convention in question.

Semantic conventions in a representation system are thus a producer of constraints from the

domain of representing objects to the domain of represented objects. How do we go about mod-

eling such inter-domain constraints? Here again, the basic tools of channel theory prove to be

useful.(4) Specifically, two of its central concepts,infomorphismandchannel, are suitable for our

purpose.
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Fig.3: An infomorphismf = 〈 f ˆ, f ˇ〉 consisting of the functionf ˆ from typ(A) to typ(B) and the function
f ˇ from tok(B) to tok(A), where f ˇ(b) |=A α is required to be equivalent tob |=B f ˆ(α).

Definition 7 (Infomorphism) Let A andB be classfications. Aninfomorphism f: A � B from

A to B is a contravariant pair of functionsf = 〈 f ˆ, f ˇ〉 such that:

1. f ˆ : typ(A)→ typ(B),

2. f ˇ : tok(B)→ tok(A),

3. f ˇ(b) |=A α iff b |=B f ˆ(α) for each tokenb ∈ tok(A) and each typeα ∈ typ(B). (We will

call this condition “the fundamental property of infomorphisms”.)

Figure 3 shows the general form of infomorphismf = 〈 f ˆ, f ˇ〉 described in this definition.

The fundamental property requires the equivalence of the conditionf ˇ(b) |=A αwith the condition

b |=B f ˆ(α).

Generally speaking, the notion of infomorphism models a particular classificatory correspon-

dence between two classifications (B andA above). Intuitively, every tokenb of the classification

B has a unique tokenf ˇ(b) of the classificationA as one of its components playing a specific role

in it. Thus, every typeα describing the tokenf ˇ(b) of A is a description of a component of the

tokenb of B and hence can be considered a description ofb. As such,α has its “translation”f ˆ(α)

in the collection of types ofB, and f ˇ(b) |=A α is equivalent tob |=B f ˆ(α). The folowing are

examples of infomorphism directly relevent to our analysis.

Example 5 Consider the class tok(PU) of individual uses of position diagrams that we discussed in Ex-
ample 4. We can think of various classifications of this class of “objects”. In this example, we will describe
a particular classificationPU among them, and show there is a natural infomorphismpS : PS � PU from
the classificationPS of position diagrams (Example 1) to this classificationPU classifying particular uses
of position diagrams.

Remember that the set tok(PS) of tokens ofPS collects all the position diagrams in the systemP
produced in past and future. Then, there is a natural function from tok(PU) to tok(PS), mapping each
individual useui of a position diagram to the position diagramdi used in that use. Call this functionpSˇ.



Thus, in the above examples concerning Ken and Jon,pSˇ(uk) = dk and pSˇ(u j) = d j . Given a particular
useui in tok(PU), we callsiˇ(ui) the source diagram of u.

Now, this mappingpSˇ lets us define a particular collection of properties classifying tok(PU) with
reference to the properties classifying tok(PS). For example, take the type In(1, J′) classifying tok(PS).
From this, we can define a type classifying tok(PU), which might be expressed as In(1, J′)(Source). Its
intuitive meaning is “having the source diagram in which the name ‘Jon’ appearing to the right of the name
‘Ken’ ”. (Contrast this with the type In(1, J′), whose intuitive meaning would be “having the name ‘Jon’
appearing to the right of the name ‘Ken’ ”.) A memberui of tok(PU) supportsIn(1, J′) if and only if the
name “Jon” appearing to the right of the name “Ken” in the source diagram ofui .

Suppose typ(PU) contains all types that can be defined in this way from typ(PS). This implies that
typ(PU) contains all the types of the following forms:

In(n,X′)(Source), Right(X′,Y′)(Source), Between(n,X′,Y′)(Source), MoreLeft(X′)(Source)

Under this assumption, there is a natural function from typ(PS) to typ(PU), mapping each typeα in typ(PS)
to the typeα(Source). Calling this functionpSˆ, it should be clear that the pairsi = 〈pSˆ, pSˇ〉 is an
infomorphism from the classificationPS to the classificationPU . In particular, it satisfies the following
fundamental condition:

(8) For every tokenui ∈ tok(PU) and every typeα ∈ typ(PS),

pSˇ(ui) |=PS α iff ui |=PU pSˆ(α).

Example 6 Continuing on Example 5, we find another natural mapping that departs from the class
tok(PU). For in many cases, position diagrams in the systemP are used to convey information about
particular races run by Jon, Ken, Ron, Gil, and Bob. Thus, for each particular useui in this category, there
corresponds a particular racer i . Recalling the set tok(PT) of the classificationPT consists of all the races
run by these five men (Example 2), this means that there is a natural mapping, saypTˇ, from tok(PU) to
tok(PT). Given a particular useui in tok(PU), we callpTˇ(ui) the target object of ui .

Thus, again, we find a class of properties defined on the basis of this mappingpTˇ and the properties
typ(PT) classifying tok(PT). That is the class{β(Target) : β ∈ typ(PT)}. Since typ(PT) contains all the
types of the form Arrive(n,X), this class contains all the types of the form Arrive(n,X)(Target).

Now, the types in this class classify the members of tok(PU), so let us assume that they belong to
typ(PU). Then, there is a natural mapping from typ(PT) to typ(PU), which maps each typeβ to the type
β(Target). Calling this functionpTˆ, we see that the pairpT = 〈pTˆ, pTˇ〉 makes up another example of
infomorphism, this time from the classificationPT to the classificationPU .

Recall that the infomorphismpS = 〈pSˆ, pSˇ〉 in Example 5 is from the classificationPS to

the classificationPU . Thus, we have two infomorphisms going to the common corePU . The

combination of these infomorphisms is an example of “channel”, and we will see shortly that a

channel of this kind plays a crucial role in modeling inter-domain constraints bridging the source

domain and the target domain of a representation system.

Generally, a channel is a group of infomorphisms going toward a common core. The following

is the general definition:

Definition 8 (Channel) A channelC is an indexed family{ fi : A i � C}i∈I of infomorphisms

with a common codomainC, called thecore of C. The classificationsA i are calledcomponent

classifications ofC.
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Fig.4: The binary channelCP = {pi : Pi � PU}i∈{S,T}, consisting of two infomorphisms,pS : PS � PU

andpT : PT � PU .

Thus, a channel is a collection of informorphisms going to the common core. In particular, the

particualr channel discussed above can be expressed as the indexed family{pi : Pi � PU}i∈{S,T}.
This is abinary channelin that it has two coponent classification,PS andPT . We call this channel

CP.

Now, a binary channel of this kind lets us model inter-domain constraints bridging the domain

of representing objects and the domain of represented objects. The key idea is to define a local

logic on the core of such a channel. Then some constraints in that local logic will be a model of

such inter-domain constraints. The following example illutrates this method for the case of the

channelCP.

Example 7 Recall tok(PU) collects all individual uses of position diagrams in the systemP, and one of
its subsetsNLP is a collection of those uses under the accuracy pressure. We have seen that this group of
uses supports an inter-domain constraint from the type In(n,X′) to the type Arrive(n,X). Given the channel
CP = {pi : Pi � PU}i∈{S,T}, we may express such inter-domain constraints assequents in a local logic on
the core ofPU . This local logic, call itLP, hasNLP as the set of its normal tokens. The inter-domain
constraints in question are then described in the following way:

(9) In(n,X′)(Source) `LP Arrive(n,X)(Target)

According to the definitions in Examples 5 and 6, this is synonymous to:

(10) pSˆ(In(n,X′)) `LP pTˆ(Arrive(n,X))

Given the construction of the channelCP, these constraints assert lawful relationship between the two
classificationsPS andPT . That is, it asserts:

(11) For every useu in NLP if pSˇ(u) supports the type In(n,X′) in the classificationPS, thenpTˇ(u)
supports the type Arrive(n,X) in the classificationPT .

To wit, assume (11), and letu be an arbitrary use of a position diagram belonging to the classNLP. Then
pSˇ(u) is the source diagram ofu, andpTˇ(u) is the target object ofu. SupposepSˇ(u) |=PS In(n,X′). Then
by the fundamental property of the infomorphismpS, it follows u |=PU pSˆ(In(n,X′). Now u ∈ NLP by
asuumption. So, by the constraint (11), it followsu |=PU pTˆ(Arrive(n,X)). Then by the fundamental
property of the infomorphismpT , we obtainpTˇ(u) |=PT Arrive(n,X).

Let us return to a simple infomorphismf : A � B from the classificationA to B. We have

seen that an infomorphism models a classificatory correspondence between two classifications.



Now, letLA be the local logic capturing the system of constraints holding on the classificationA

andLB the local logic doing the same for the classificationB. SinceA andB have a classificatory

correspondence (due to the infomorphismf : A � B), there should be some correspondence

between their respective logicsLA andLB. What exactly is it? The following examples illustrate

this point.

Example 8 Consider the infomorphismpS : PS � PU discussed in Example 5. LetSP andLP be the
local logics capturing the system of constraints governing the classificationsPS andPU respectively. We
saw in Example 3 that the following is a constraint in the local logicSP on the classificationPS:

(12) Right(J′,R′),Right(R′,K′) `SP Right(J′,K′)

Intuitively, (12) asserts the following:

(13) Having “Jon” to the right of “Ron” and having “Ron” to the right of “Ken” entails having “Jon”
to the right of “Ken”.

Since this is a constraint governing position diagrams, it should be intuitively clear that the following hold
as a constraint governing the situations in which position diagrams are used:

(14) Having the source diagram in which “Jon” appearing to the right of “Ron” and having the source
diagram in which “Ron” appearing to the right of “Ken” entails having “Jon” appearing to the right
of “Ken”

Thus, a constraint in the local logicSP on the classificationPS of position diagrams is transferred to
a constraint in the local logicLP on the classificationPU of situations in which position diagrams are
used. This point may become more perspicuous if we rewrite (14) more formally in terms of the notations
involving the infomorphismpS : PS � PU :

(15) pSˆ(Right(J′,R′)), pSˆ(Right(R′,K′)) `LP pSˆ(Right(J′,K′))

Generally, every constraintΓ `SP ∆ in the logicSP on PS is reflected as the constraintpSˆ(Γ) `LP pSˆ(∆)
in the logicLP on PU . This is a natural assumption, given the classificatory correspondence betweenPS

to PU modeled by the infomorphismpS : PS � PU .

Example 9 The logicsSP andLP have a correspondece in their normal tokens, too. Consider a tokenu
of the classificationPU . As such,u is a particular situation in which a position diagram is used. Suppose
u is normal in the sense that it respects the system of constraintsLP on the classificationPU . Well, then,
it is a natural expectation that every component ofu be also normal, respecting the local logic on on its
own classification. In particular, the source diagrampSˇ(u) used in this particular useu is expected to be
normal, respecting the local logicSP on its own classificationPS. The idea is that the two logicsLP and
SP must be associated so that no use of a position diagram respectingLP may involve a source diagram
violatingSP. This means that for every tokenu of PU , if u ∈ NLP , thenpSˇ(u) ∈ NSP . Put another way,
pSˇ(NLP ) ⊆ NSP .

The two kinds of correspondences illustrated by Examples 8 and 9 are quite natural assump-

tions when we deal with logics of infomorphic classifications. When an infomorphismf : A � B

relates the logicsLA andLB in this way, we callf a logic infomorphismfromLA toLB. Here is

the formal definition:
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Definition 9 (Logic infomorphism) Let f be an infomorphism from the classificationA to the

classificationB, andLA,LB be local logics ofA,B respectively. We callf a logic infomorphism

from A to B, writing f : LA� LB if:

1. For all setsΓ, ∆ of types ofA, if Γ `LA ∆, then f ˆ(Γ) `LB f ˆ(∆),

2. f ˇ(NLB) ⊆ NLA.

3. The Account

Now that we have presented the relevant part of channel theory, we can start developing our

own concepts to be used for our account of graphical meaning derivation. We start with the notion

of “abstraction.”

Definition 10 (Abstraction relation) Let L = 〈A, `L,NL〉 be a local logic,α be a member of

typ(A), andG be a set of subsets of typ(A). We sayα is anabstraction overG in L, writing

α ./L G, if:

1. α `L Γ for every choice setΓ of G,

2. Γ `L α for every memberΓ of G.

Intuitively, the typeα abstracting over a collectionG is in fact an “abstract” type that can be

realized in various concrete ways, andG is the exhaustive collection of these concrete ways for

α to be realized. As the definition indicates, the abstraction relation can be modeled as a special

type of bi-directional constraints in a local logic.

More specifically, (i) each memberΓ of G constitutes a particular way in whichα can be

realized, and (ii) the members ofG exhausts all the ways in whichα can be realized. Because

of (i), if a token satisfies any memberΓ of G, then it supportsα, and because of (ii), if a token

supportsα, then it satisfies some member ofΓ. The following proposition makes this point more

precise:

Proposition 1 LetL = 〈A, `L,NL〉 be a local logic, and supposeα ./L G. For every token a in

NL, a |=A α iff a satisfies some member ofG.

Proof. For left to right, supposea ∈ NL anda |=A α. Suppose for reductio thatα satisfies no

member ofG. Then, every member ofG has a memberβ such thata 6|=A β. So, if we defineΣ

as the set of all members of
∪G that are not supported bya in A, thenΣ is a choice set overG.

But sinceα ./L G, it must hold thatα `L Σ. Then sincea ∈ NL anda |=A α by supposition,

a must support some member ofΣ in A. But this is not the case by the definition ofΣ. This is

a contradiction. For right to left, supposea ∈ NL anda satisfies some member∆ of G. Since



G1 =



{In(1, J′), In(2,K′)}
{In(1, J′), In(3,K′)}
{In(1, J′), In(4,K′)}
{In(1, J′), In(5,K′)}
{In(2, J′), In(3,K′)}
{In(2, J′), In(4,K′)}
{In(2, J′), In(5,K′)}
{In(3, J′), In(4,K′)}
{In(3, J′), In(5,K′)}
{In(4, J′), In(5,K′)}



G2 =


{In(1, J′), In(4,R′)}
{In(2, J′), In(5,R′)}
{In(4, J′), In(1,R′)}
{In(5, J′), In(2,R′)}

 G3 =

{
{In(4,K′)}
{In(5,K′)}

}

Fig.5: The collectionsG1, G2, andG3 of sets of source types of the systemP

D2 =


{Arrive(1, J), Arrive(4,R)}
{Arrive(2, J), Arrive(5,R)}
{Arrive(4, J), Arrive(1,R)}
{Arrive(5, J), Arrive(2,R)}

D1 =



{Arrive(1, J), Arrive(2,K)}
{Arrive(1, J), Arrive(3,K)}
{Arrive(1, J), Arrive(4,K)}
{Arrive(1, J), Arrive(5,K)}
{Arrive(2, J), Arrive(3,K)}
{Arrive(2, J), Arrive(4,K)}
{Arrive(2, J), Arrive(5,K)}
{Arrive(3, J), Arrive(4,K)}
{Arrive(3, J), Arrive(5,K)}
{Arrive(4, J), Arrive(5,K)}

 D3 =

{
{Arrive(4,K)}
{Arrive(5,K)}

}

Fig.6: The collectionsD1,D2, andD3 of sets of target types of the systemP

α ./L G, we knowΓ `L α for every memberΓ of G. In particular,∆ `L α. Sincea ∈ NL anda

satisfies∆, it follows thata |=A α.

The following examples give instances of the abstraction relation that are directly relevant to

our account of derivative meaning.

Example 10 Consider the local logicSP on the classificationPS of position diagrams. In this logic,
the type Right(K′, J′) is an abstraction over the collectionG1 of sets of types, whereG1 is as shown in
Fig. 5. Note that each member ofG1 is a particualr way in which Right(K′, J′) is realized. For example,
{In(1, J′), In(2,K′)} represents the state in which the name “Jon” appears in the leftmost position and the
name “Ken” appears in the second position from left. It is certainly a particular way in which the name
“Ken” appears to the right of the name “Jon”. Note also that this collection exhausts all particular ways in
which “Ken” appears to the right of “Jon”.

We cite two more instances of the abstraction relation in the logicSP: Between(2, J′,R′) is an ab-
straction overG2 and MoreLeft(K′) is an abstraction overG3, whereG2 andG3 are as shown in Fig.
5.

Example 11 Consider the local logicTP on the classificationPT of position diagrams. We find instances
of the abstraction relation that closely match the instances in Example 10. That is, Later(K, J) is an
abstraction overD1, Between(2, J,R) is an abstraction overD2, and MoreBefore(K) is an abstraction
overD3, where the collectionsD1,D2, andD3 are as shown in Fig. 6.
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Barwise & Seligman (1997) developed the notion ofinformation systemto model the con-

straints over whatever complex objects (“distributed systems”) with any number of inter-related

components. Abinary information systemdefined below is useful when we want to model rela-

tively simple objects with two immediate components.

Definition 11 (Binary information system) A binary information systemis an indexed family

of logic infomorphisms{ fi : Li � L}i∈I , whereI has exactly two members.

Specifically, the component logicsLi specify intra-domain regularities in the two compo-

nent classifications Cla(Li). The core logicL specifies inter-domain regularities across the two

classifications. Since the informorphismsfi are also logic infomorphisms, every intra-domain

regularity inLi is transferred to a regularity inL. Thus, the logicL is a central platform in which

inter-domain constraints logically interact with the intra-domain constraints originated in compo-

nent logics. This way,L predicts what collection of constraints are available in the entire binary

system. This capability of (the concept of) a binary information system plays a crucial role in our

account for meaning derivation in a graphical representation system.

We model representation systems as a special kind of binary information systems, developed

from initial institution of basic semantic conventions but equipped with a richer set of semantic

rules:

Definition 12 (Representation system)A representation systemR consists of a binary informa-

tion system{ fi : Li � LR}i∈{S,T} and a pair of binary relations
R and`R on dom(fSˆ)×dom(fTˆ)

such that:

1. 
R is a sub-relation of̀R,

2. `R is a sub-relation of̀LR .

We call`R thebasic semantic conventionsof R, and call̀ R thesemantic rulesof R.

Earlier, we individuated particularusesof diagrams as individual events or situations in which

a diagram is used to represent a certain object. As such, a particular use of a diagram is itself a

complex object with two main components—namely, the source diagram and the target object.

The binary information system{ fi : Li � LR}i∈{S,T} in Definition 12 is intended to capture

regularities over a certain class of diagram uses and their components. In particular,LR,LS, and

LT are local logics capturing the systems of constraints on diagram uses, source diagrams, and

target objects, respectively.

As illustrated in Examples 4 and 7, we can consider establishment of semantic conventions as

installment of new constraints into our immediate environment. They are constraints governing



the relevant class of diagram uses, and as such constraints in the core logicLR. They take the form

of inter-domain constraintsfSˆ(α′) ` fTˆ(α), connecting an individual typefSˆ(α′) to another

individual type fTˆ(α). Thus, the class of these constraints is a binary relation
R defined on

dom(fSˆ) × dom(fTˆ). One may think of the members of
R as “axioms” in the logical system

LR, since as initial conventions, they are not derived from any more basic constraints.

Now, a diagram use involves two main components, namely, a source diagram and a target

object. As such, individual diagram uses are also subject to local logicsLS andLT governing

these component objects, so that all constraints in these logics are reflected in the core logic

LR. In our definition, this correlation is expressed by the requirement thatfS and fT are logic

infomorphisms, making a binary information system.

Thus, three kinds of constraints coexist in the core logicLR: (i) the set of basic semantic

conventions
R, (ii) the set of constraints originated in the local logicLS on source diagrams, and

(iii) the set of constraints originated in the local logicLT on target objects. The semantic con-

ventions interact with the transferred constraints, and they spin out new constraints (“theorems”)

in the core logicLS. (The interactions are closure operations of Identity, Weakening, and Global

Cut underLS, to be exact.)

Some of these theorems take the formfSˆ(α′) `LR fTˆ(α), allowing a valid inference from

the typeα′ of a source diagram to the typeα of the represented object. Depending on their

utility, ease, and other factors, selected items of these inferences are automized and stabilized

as “semantic rules”. Combined with initial semantic conventions, these new rules make up the

collection of semantic rules available in the system at the moment. The binary relation`R in

our definition stands for this collection. (Hence the conditions 1 and 2 in Definition 12.) Our

definition of representation system is designed to capture a snapshot of the representation system

in this development.

In our view, derivative meaning relations in graphical representation systems are special in-

stances of the new semantic rules thus adopted. Before we can specify their exact logical origin,

however, we need introduce some auxiliary concepts.

Definition 13 (Source types and target types)Let R = 〈{ fi : Li � LR}i∈{S,T},
R, `R〉 be a

representation system, whereLS is the local logic〈AS, `LS ,NLS〉 andLS is the local logic

〈AT , `LT ,NLT 〉. We call types of the classificationAS source typesof R, and types of the classifi-

cationAT target typesof R.

Definition 14 (Conventional meaning and projection) Let R = 〈{ fi : Li � LR}i∈{S,T},
R, `R〉
be a representation system.
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1. Given a source typeα and a target typeβ of R, we sayα conventionally meansβ in R,

writing α ⇀R β, if fSˆ(α) 
R fTˆ(β).

2. LetΓ be a set of source types and∆ be a set of target types. We sayΓ is projected to∆

through⇀R, writing Γ ⇀R ∆, if the relation⇀R restricted to the domainΓ is a one-one

correspondence fromΓ to ∆.

3. LetG be a collection of sets of source types andD be a collection of sets of target types.

We sayG is projected toD through⇀R if the projection relation⇀R restricted to the

domainG is a one-one correspondence fromG toD.

Intuitively,⇀R is the semantic relation from source types to target types directly legitimized by

the semantic conventions
R of the system. The projection relation holds when a setΓ of source

types is “just enough” to conventionally mean all target types in∆: if you subtract any member

from Γ, it no longer suffices to cover all members in∆, and if you subtract any member from∆,

some member ofΓ is no longer necessary to cover all members in∆. The same idea applies to

collections of sets of types, and the projection relation holds fromG toD whenG is just enough

to conventionally mean all collections of sets of target types inD.

It is our main proposal that every derivative meaning relation is based on the following rela-

tionship between a source typeα and a target typeβ:

Definition 15 (Parallel abstraction pair) LetR = 〈{ fi : Li � LR}i∈{S,T},
R, `R〉 be a represen-

tation system. Letα′ be a source type andα be a target type. We call〈α, β〉 aparallel abstraction

pair in R if there exist a collectionG of sets of source types and a collectionD of sets of target

types such that:

1. α′ ./LS G,

2. G is projected toD through⇀R,

3. α ./LT D,

Figure 7 shows what it amounts to for typesα′ andα to be an parallel abstraction pair. Note

that the abstraction relations./LS and./LT are determined by the local logicsLS andLT , respec-

tively, whereas the projection relation⇀R is largely the matter of the local logicLU .

Example 12 It is not difficult to see that the condition of parallel abstraction applies to the source type
and the target type in each derivative meaning relation (2)–(4) discussed in the beginning of this paper. In
our current terminology, these meaning relations can be expressed in the following way:

(16) Right(K′, J′) means Later(K, J)

(17) Between(2, J′,R′) means Between(2, J,R)

(18) MoreLeft(K′) means MoreBefore(K)



Fig.7: The source typeα′ and the target typeα being a parallel abstraction pair, whereG andD are
depicted to have only three members for simplicity.

For (16), we have already seen that Right(K′, J′) is an abstraction ofG1 in the local logicSP, and also
that Later(K, J) is an abstraction ofD1 in the local logicTP (see Examples 10 and 11). Now the collections
G1 andD1 are clearly in a one-one correspondence under the conventional meaning relation⇀R. Thus, on
Definition 15, Right(K′, J′) and Later(K, J) are a parallel abstraction pair in the representation systemP.

As for (17), Between(2, J′,R′) is an abstraction ofG2 in the local logicSP, and also that Between(2, J,R)
is an abstraction ofD2 in the local logicTP. The collectionsG2 andD2 are again in a one-one correspon-
dence under⇀R. Thus, Between(2, J′,R′) and Between(2, J,R) are a parallel abstraction pair in the system
P. We leave the reader to check that the definition also applies to (18).

In the beginning of this paper, we claimed that derivative meaning relations are not arbitrary

creations of the interpreter, but valid evaluations of the information carried by the relevant aspects

of the diagrams. The following proposition demonstrates that a source type and a target type in

fact stand in a valid information relation whenever they make a parallel abstraction pair.

Proposition 2 LetR = 〈{ fi : Li � LR}i∈{S,T},
R, `R〉 be a representation system. If〈α′, α〉 is a

parallel abstraction pair inR, then fSˆ(α′) `LR fTˆ(α).

Proof. The antecedent implies that there are collectionsG andD such that:

(1) α′ ./LS G,

(2) G is projected to∆ through⇀R,

(3) α ./LT D.

We will show (a) and then (b):

(a) fSˆ(Γ) `LR fTˆ(α) for every memberΓ of G.

(b) fSˆ(α′) `LR fTˆ(α).

For (a), letΓ be an arbitrary member ofG. By (2), there exists a member∆ of D to whichΓ

is projected through⇀R. This implies:
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(4) For every memberδ of ∆, there exists a memberγ of Γ such thatfSˆ(γ) 
R fTˆ(δ).

Consider the setfTˆ(∆). If Σ1, fSˆ(Γ) `LR fTˆ(α), Σ2 is shown for every partition〈Σ1, Σ2〉 of

fTˆ(∆), then we obtainfSˆ(Γ) `LR fTˆ(α) by Global Cut. So, let〈Σ1, Σ2〉 be an arbitrary partition

of fTˆ(∆). We divide the cases into (i) whenΣ2 , ∅ and (ii) whenΣ2 = ∅. The proof for the

first case is trivial. In the second case,Σ2 = ∅ and soΣ1 = fTˆ(∆). Sinceα ./LT D by (3), the

following holds:

(5) ∆ `LT α for every member∆ ofD.

Since∆ ∈ D, it follows ∆ `LT α. But fTˆ is a logic infomorphism by the definition of represen-

tation systems. Hence,fTˆ(∆) `LR fTˆ(α). So by Weakening,Σ1, fSˆ(Γ) `LR fTˆ(α), Σ2. We thus

obtain (a).

For (b), consider the setfSˆ(
∪G). Due to Global Cut, it suffices to showΣ1, fSˆ(α′) `LR

fTˆ(α), Σ2 for every partition〈Σ1, Σ2〉 of fSˆ(
∪G). So let 〈Σ1, Σ2〉 be an arbitrary partition of

fSˆ(
∪G). Note that〈 fSˆ−1(Σ1), fSˆ−1(Σ2)〉 is a partition of

∪G. We divide the cases into (i)

when fSˆ−1(Σ2) ∩ Γ , ∅ for every memberΓ of G and (ii) fSˆ−1(Σ2) ∩ Γ = ∅ for some memberΓ

of G. In the first case, there is a choice setΘ of G such thatΘ ⊆ fSˆ−1(Σ2). Sinceα′ ./LS G by

(1), the following holds:

(6) α′ `LS Γ for every choice setΓ of G

In particular,α′ `LS Θ. SinceΘ ⊆ fSˆ−1(Σ2), we obtain fSˆ−1(Σ1), α′ `LS fSˆ−1(Σ2) by Weak-

ening. But fSˆ is a logic infomorphism. It follows thatΣ1, fSˆ(α′) `LR Σ2. By Weakening,

Σ1, fSˆ(α′) `LR fTˆ(α), Σ2. The proof for the second case is trivial.

Earlier, we indicated that a derivative meaning relation arises out of the logical interaction

of three kinds of constraints in the core logic: (i) a set of basic semantic conventions, (ii) a set

of constraints originated in source diagrams, and (iii) a set of constraints originated in target

objects. The proof of proposition 2 traces the logical interaction in question. In particular, (4),

(5), and (6) in the proof are respectively the places where the constraints in the first, the first,

and the second kind are appealed to. As the proof demonstrates, the logical interaction of these

constraints in fact spins out a new constraint,fSˆ(α′) `LR fTˆ(α), in the core logicLR. This

is an inter-domain constraint, makingβ a logical consequence ofα, as far as the diagrams uses

in NLR are concerned. This is why we can validly interpret Right(K′, J′) to mean Later(K, J),

Between(2, J′,R′) to mean Between(2, J,R), and MoreLeft(K′) to mean MoreBefore(K) in the

systemP of position diagrams. When a source type and a target make a parallel abstraction pair,

they are logically qualified to stand in a derivative meaning relation.



4. Conclusion

Derivative meaning is quite prevalent in graphical representation systems. It is also a func-

tionally important property of such systems. However, our account shows that doing justice to this

phenomenon requires a drastic change in the way we view meaning of graphical representations.

Derived meanings are completely different animals than basic meanings. Their treatment would

require an explicit attention to three different kinds of constraints on the domain of diagram uses,

the domain of diagram themselves, and the domain of target objects. Meaning derivation arises

when the last two kinds of constraints are “aligned” by the first kind of constraints, so we need a

mathematical tool to keep track of this alignment. As far as I could see, no existing framework of

graphics semantics was equipped with such a tool, nor even prepared for a separate treatment of

these kinds of constraints.

Channel theory, with its explicit attentions to local logics of separate domains and infomor-

phisms connecting them, seems like an ideal framework, so we sketched a framework of graphics

semantics on top of it. I do not expect that the present paper is an strong enough argument to

change every graphics semanticist’s mind to adopt the particular framework proposed in it. How-

ever, I do believe that it has done enough to show thatsomething like thisis necessary in order for

formal semantics to really extend its coverage into the domain of graphical representations

Notes

(1) The classifications of convenional and derivative meanings are not an absolute matter determined
solely by syntactic structures of a given diagram. We can easily imagine an alternative system of
position diagrams where (2) is a basic semantic convention while (1) is a derivative meaning. The
point is that whatever the initially chosen semantic convention may be, additional meaning relations
are often derived from them in graphical systems.

(2) Note on the theory notatioǹ: for readability, we writeΓ ` β instead ofΓ ` {β}, and writeα ` ∆
instead of{α} ` ∆. We also writeΣ, Γ ` ∆ instead ofΣ ∪ Γ ` ∆, and writeΓ ` ∆, Σ instead of
Γ ` ∆ ∪ Σ.

(3) In fact, Barwise and Seligman Barwise & Seligman (1997) have shown that these conditions must be
satisfied by any set of sequents if it is to be an exhaustive list of constraints on some class of objects.
They showed the converse too, namely, that any set of sequents satisfying these closure conditions can
be considered an exhaustive list of constraints on some class of objects. We refer interested readers to
Corollary 9.34 in Barwise & Seligman (1997).

(4) And this is certainly no accident, given the fact that chnnel theory is developed from a situation se-
mantics, a quintessential project of analyzing meaning as constraints.
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