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Introduction

Genetic Algorithm (GA) has been applied to many
practical problems as stochastic search and optimization
techniques (see, for a recent review, [1]). It is unique in
the population-based parallel algorithm and the genetic
operators. Theoretical analysis and understanding, how-
ever, is in infancy due to the unique stochastic process
of GA. Although some general aspects are clarified by
Markov chain analysis, there are too few powerful tools of
theoretical analysis. Rather than a problem-independent
“general theory”, one would need theoretical tools to
analyze problem-specific aspects of GA so as to utilize
them for planning parameters and for modifying GA al-
gorithms, and in order to study evolutionary dynamics.

A. Prugel-Bennett, J. Shapiro and M. Rattray have ex-
tensively developed a theoretical formalism of GA [2]-[4].
It is motivated by statistical mechanics but, basically,
is a rather standard analysis in statistics. The formal-
ism predicts statistical quantities such as the mean and
the variance of fitness distribution in the population and
their time evolution. So far their formalism has been
successfully applied to bit-counting, “random field para-
magnet”, “spin glass” system, subset-sum problems as
well as a learning perceptron problem.

In this manuscript with limited space, we shall con-
centrate on reviewing the basic idea of their approach
and its simple application. Our purpose is to show how
the theoretical technique can be applied practically in
engineering field and study on evolution. Discussion on
related things and possible extensions is omitted. Details
of calculation can be found in [6].

Basic Idea of the Theory

The basic idea is quite natural in the viewpoint of
statistics. One performs simulations with different ini-
tial populations and obtains many different realizations
in the stochastic process of GA. Those different realiza-
tions give an ensemble of finite populations.. One needs
some statistical quantities in order to compare the theory
with the simulations performed. A natural statistics in
GA would be the fitness distribution of population.

This leads us quite naturally to model the ensemble
of finite populations with a distribution. Each realiza-
tion can then be regarded as a set of P individuals inde-
pendently sampled from a distribution p(F). Here and
hereafter we denote the size of population by P and the
fitness of each individual by F.

This viewpoint is essentially equivalent to the “pop-
ulation and sample” in statistical inference. Neverthe-
less, it gives us an important bridge between a theory
and an experiment. For example, the variance of the
fitness distribution in a finite population is defined by
ke = (1/P) 2P B2 — (1/p%)(F Fi)2. One takes the av-
erage Ky over many simulations. On the other hand, it is
well known in statistics that the averaged variance over
all the different samplings of each set {F;}i=1,...p from a
distribution is related to the variance of the distribution

Ry = (1 - %) K, (1)

where K is the variance of the distribution p(F).

We assume that the fitness distribution does not devi-
ate much from a Gaussian distribution. (This assumption
is valid in many practical situations in GA with some
important exceptions that will be not discussed here.)
A standard way to characterize such a distribution is to
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X 1: Simulation (dots) and theory (broken lines). From
upper to lower: the best R;, §, {n =1,2,3,4).

employ the so-called cumulant expansion (Gram-Charlier
expansion). By ignoring higher order cumulants, one has
areduced dynamical space of a few significant cumulants,
on which stochastics dynamics can be described.

Similarly as (1), one can easily derive relations for each
order of cumulants. Through these relations one can go
back and forth from a distribution to an ensemble of finite
populations taking into account the effect of the finite size
of the population.

The above picture has practical advantage over the
starting finite-population picture. Generally speaking,
distributions are much simpler to handle than finite pop-
ulations. This is due to the fact that as one tries to
calculate the statistical quantities one necessarily has to
treat a strong constraint appearing in the corresponding
probability distribution. Since the idea of ensemble and
distribution allows us to sample a set of members in-
dependently, the calculation can be extremely simplified
and transparent.!

In this way one can follow the time-evolution of the fit-
ness distribution in terms of the change of the cumulants
of the probability distribution. One might call such sta-
tistical quantities as macroscopic variables analogously
to statistical mechanics, whose space is the arena of the
GA dynamics.?

Example for Illustration

We assume a bit string for each gene, whose allele s,
can take either +1 or —1. We denote the ath allele of
the ith gene by s;4. Letting the length of the bit string
be L, the problem is to minimize a quadratic potential

! This is apparently analogous to the relation between the canon-
ical ensemble and micro-canonical ensemble in statistical mechan-
ics, the latter of which has to handle with the constraint for the
total energy of a system.

20One can further go beyound this “mean field” picture. Fluc-
tuations may not be ignored for a long-time behavior due to the
non-linearity of GA dynamics. See [4] for its treatment.
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of bit-counting:
Fi = V(R) = (R = Ro)? (2)

where R; = Zl; Sia. This problem is studied in [3]. (The
theoretical curves for cumulant dynamics given below are
obtained by a higher-order calculation made by me.)

Simulation 1s done and compared in Figure . Popu-
lation consists of P = 100 such genes with L = 64 bits.
Selection is done by the so-called roulette-wheel selection
with Boltzman weight. This means to select each individ-
ual (for successive genetic operations) with a probability
proportional to its fitness:

pi = %Ftl—', w(F) =exp(—BF;), (3)
2 w(F)

where (3 is a parameter representing selection pressure.
Mutation is performed by bit-flipping for each allele. Mu-
tation rate is 1/L and 8 = 1/L?. The minimum of po-
tential Rg is L/2.
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