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The existence of fluctuations of the energy dissipation field is one well-accepted signature

of the small-scale intermittency of fully-developed turbulent flows (1). The purpose of this

work is to characterize these fluctations in a quantitative manner, thanks to a detailed

analysis of experimental data.

Our velocity signal was measured in a low temperature jet flow at high Reynolds number

(Re = 20000, R>, = 341) by hot-wire anemometry (see, e.g., (2) for the specifics of the

experimental set-up). Taylor's frozen turbulence hypothesis is used to convert time series

obtained at one point of the flow into the spatial dependence of the velocity field v(x). The

one-dimensional surrogate of the dissipation field f1.( x) is conventionally defined as:

15v 1:r:+r/2 ( dv ) 2 I
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where x and T respectively denote physical space and scale, and v is th~ kinematic viscosity.

Our main result is that the energy cascade is well-described by the following linear

Langevin equation:

d;; (I) = ,(I) Y(l) + J2D(1) e(l),

where the stochastic variable Y(l) is defined as Y(l) = In €r - (In €r) at scale I = In(L/r)

(L denotes the flow's in.tegral scale). The drift and diffusion coefficients ,(I) and D(l) of

the Ornstein-Uhlenbeck process (2) are given by:
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where ,0, ,1, Do and 6 are (measurable) positive constants. The interested reader is refered

to (3) for details of our measurement protocol.

We find that the random force e( I) is approximately Markov - i.e. its autocorrelation

scalp r(l) is always much smaller than 1/,(l) - but also non-Gaussian - the skewness of
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p(e,1) is negative. This last point is consistent with the well-known existence of a weak

deviation of the statistics of €r from a log-normal distribution.

The Langevin equation (2-3) is exactly solvable, and yields the following expression of

the variance of Y(l):

(4)(Y(l?) ::; e21'ol-2'Y11
2 ((Y(0)2) +2Do11

e2(O-1'o)l'+21'l l
l2 dl')

where we assumed that the random force eel) is 8-correlated ((e(l)e([')) = 8(1- 1')) and

that the initial width is (Y(0)2) at large scale 1= 0 (e.g. r = L). Fig. 1 shows that Eq. (4)

is in excellent agreement with experimental data.
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ffiQ 1: Variance of Y(r ). The prediction obtained from Eq. (4) (dashed line, for the nu­

merical values "Yo = 0.32, "Yl = 0.025, Do = 0.01, 8 = 0040, estimated independently) is
indi..:tinguishable from experimental data (dots) in the range of scales 1077 ::; r ::; L = 50077,
where 77 is Kolmogorov's dissipation scale.
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