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Abstract

In this paper, a method of the extension of a Hilbert space is proposed for a formal
orthogonalization of the eigenvector system of the operator Q + ig(P) where Q denotes the
position-coordinate operator and the and g(P) is a kind of rational function of the momen-
tum operator, in other words, for the orthogonalization of the minimum uncertainty states
between @ and g(P). This kind of orthogonalization is based on the ’commutabilization’
between Q and g(P) by the space extension by tensor product and the projection into the
analogue of the vacuum vector in the additional space. Especially, the special case with
g(P) = —kP~1, which is corresponding to a kind of Naimark extension of the continuous
wavelet transformtion, is investigeted in detail.

1 Introduction

In quantum mechanics, two observables X and Y which do not commute do not have their simul-
taneous eigenvectors. As is well known, the uncertainty product is minimized for the minimum
uncertainty states which are eigenvectors of X + icY. The minimum unceratinty state systems
of this kind are non-orthogonal over-complete systems because X + icY is not hermitian. For
example, the position @@ and the momentum P which satisfy [Q, P] = iI (where I denotes the
identity op.) do not have the simultaneous eigenvectors though the lower bound of the uncertaity
relation is achieved by the coherent states and a special class of the squeezed states which are not
orthogonal systems. However, for this cannonical pair, it is well known that these systems can
be orthogonalized formally by the extension of the Hilbert space from H into H & H; by tensor
product because Q @ I — I  Q; and P ® I + I ® P, commute and they have the simultaneous
eigenvectors. It is also known well that the coherent state system in H is corresponding to their
simultaneous eigenvector system in H ® H, by projecting it into the vacuum vector in H;. (About
these relations, there are many references. See, for example, [16].)

In this paper, the extension of these relations for a class of non-canonical pairs, the pair of
Q and g(P) = ¥, (coP + doI)Y(anP + b,I) (where the coefficients ay,,b,, c,,d,, are constant
real), are discussed. After a brief comment of the minimum uncertainty state of this pair, how
to ’commutabilize’ this pair by the space extension by the tensor product and how to relate the
simultaneous eigenvector system to the minimum uncertainty state system in the original space are
proposed in Section 3. Next, the spacial case with g(P) = —ikP~! (where k is a positive integer
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and P! denotes the inverse operator of P, or i-times integration operator for the wavefunction in
the position representation) is investigated. This case is closely related to the wavelet transform|1-
4] used in signal processing. The wavefunctions of the minimum uncertainty states of this pair are
identical to Cauchy wavelets[9,10,14,15]. It is also known well that they are a kind of the GCS[8]
associated with the affine group[6,7]. In section 4, for this case, the simulataneous eigenfunction
and the analogue of the vacuum in the additional space are investigated in datail.

2 Minimum uncertainty state of ) and g(P)

For the momentum operator P and the identity operator I on the original Hilbert space H, define

N
G(P) = Y- (0uP +baT) (caP +dpl)? o)

n=1
with real-valued scalar constants a,, by, ¢,,d, (n = 1,2,..N). ( We can restrict the domain of
g(P) into the subspace { ¥ | (1/y) (¥|(y — %))p is finite for any n} of H so that g(P) may be
bounded, though ¢(P) is not bounded on the whole . ) Indeed, this operator does not commute
with the position operator, and, from the CCR [Q, P] = i1, we have [@,g(P)] = ig'(P) where

¢'(z) denotes d—gd_(zﬂ. This results in the uncertainty relation

(AQ) (Ag(P)) > S (PN (2)

The equality of this relation holds for the eigenstates of the non-hermitian operator A = Q+icg(P),
which has complex eigenvalue whose real part indicates approximate position of the localization
of the wavepacket. By the scale change, with loss of generality, assuming ¢ = 1 below, re-define

A= Q +ig(P). 3)

Define the eigenfunction of this operator, in the position representation and the momentum rep-
resentation, respectively

$(g) = olal)”,  ¥™(p) = pple)Y (4)

where the eigenvalue may be degenerated and then the label (m) attatched to the eigenvector
denotes the corresponding momentum interval I, within which the function g(z) is continuous.
(I» denotes the m-th interval between the poles of g(z).) Then, from the characteristic equation,

const) - e~ Glp)—iop
s - (O ety .

where G(z) denotes [ g(p)dp.[17] (NB: the non-uniqueness of the integral constant does not trouble
anything because it affects only the normalization constant of the eigenfunction.) By making the
inverse Fourier transformation, we can show that the position shift of eigenfunction in the position
representation is just corresponding to the shift of the real part of the eigenvalue.

In a similar manner to the coherent state case, this eigenvector system have the over-completeness

E/|a)£;") S;")(a| wy,(Re a) &La=1. (6)

For the derivation of this and the relation between w,,(Re a) and the function g(z), see [17].
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3 Genaral method of ’Commutabilization’ of the pair

Now we are showing how to commutabilize @ and g(P) for the orthogonalization of the minimum
‘uncertainty states of them. Prepare N additional degrees of freedom ¢ = 1,2, ..., N and the Hilbert
spaces H,’s with the same type of H, and let

N
Hada. = Q He (7)
. =1
be the additional Hilbert space corresponding to these degrees of freedom. By making the tensor
product with this additional space, we extend the original space H into H® Hgqq4.- For the position

operator (), and the momentum operator P, and on each H,, define

1
By = {Qq, i} (8)
Then, (with the notation I denoting the identity,) we have
Qe Pl=ily, [B,PJ=1tP, [B,Qd=—1Qe (9)
On the extended space H @ H,q4., define the hermitian operators
Q=QR I + Z(QP +d ) g (® Jii) (10)
=1 =1
A . N N
and G =g(P) @ Laa. + ) (P + ded) ™' @ (R Kij), (11)
: =1 =1
" = CjB_,' - (a_,-d,- - bjCj)QJ' (lfj = Z) = PJ (lf] = [)
with  J,; = {Ij (otherwise) ’ K= I; (otherwise) ° (12)
Then, from (1) and (9)-(12), we can prove
[Q,G] =o. (13)

Since Q and G are hermitean, this commutability implies that they have an orthogonal simulta-
neous eigenvector system, where the simultaneous eigenvector |, §) satisfies

014,9) = 13,8),  Gl@3) = 313 9) (14)
(3,916,,4) =0 for G# g or§#4. (15)

This simulataneous eigenvector system can be related to the minimum uncertainty state system
of @ and g(P) in the original space, as follows; On the extended space H & Haaq., define

A=Q+iG. (16)

Then, this operator is not hermitian, and it has the common eigenvectors to the above simultaneous
eigenvectors, as is shown from (14),

Alg,) = (§+i9) 16,9). ar)
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By the definition of Q and G, and from (3) and (16), we have

N N )
A=AQ Laa+ Y (P +d ) g (R F, ) with  Fy; = Jy; — iKy;. (18)

=1 j=1

By using the eigenvector |0)f,, of Fy = ¢ By — (aeds — bece)Qe — i Py with eigenvalue 0, define
the analogue of the 'vacuum’ vector '
N

0)r = Q) [0)r,, ' (19)

=1

in Heq4a.- (The existance of such an analogue of the vacuum will be exemplified in the next section.)
Then, by the definition, we have

(0] (® Fj)=o. (20)

j=1

From (17),(18) and (20), we have
(A& Laa) (I € 10)r £(01)|3, §) = (I & |0)r £(0))Al4,3) = (§+§)( & [0)r F(OD)IZ3). (21)

This relation implies that the vector (/& [0)r #(0])|¢, §) is an eigenvector of the operator (A® I 44.)
with the eigenvalue (§ + ¢g). Hence, we have

(I&10)r #(0])AlG, §) = (2 (const)n 13+ i5)5) & 10)r. (22)

The result is interpreted as follows; The minimum uncertainty state of @ and g(P) is obtained
from the simultaneous eigenvector of @ and G by projecting it into the analog of the ’vacuum’
|0)F in the additional space Hoqa..

4 Special case : Cauchy wavelet
As a special case with N =1, a; =dy =0, b;/¢; = —k, (k :positive integer), in other words, the
case for the pair of Q and (—k)P~!, the above result is just corresponding to the relation between
Cauchy wavelet and the simulatneous eigenvectors in the extended space. We are going to discuss
this case in detail. As is already known[10,14], the eigenfunction of the operator

A= Q — ikP™? (23)

with the complex eigenvalue « is
ofalaya, = B(g) = (29)

with a normalization constant G;:’). (Often this function is called Cauchy wavelet.) This is a
complex-valued wavepacket-like square-integrable function almost localized around ¢ = Re a.
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The ’width’ of the wavepacket is proportional to Im «, and the number of large wave peaks is
approximately proportional to v/%.[14] This eigenfunction has a interesting property

1

(b+ia) 1y _
hk (t) - lalllg

9,t—0b
(), (25)
a
which is directly derived from (24). This property is quite same as the wavelets used in signal
processing[1-4]. The over-complete eigenfunction system of Ay is related to the following space
extension.

On H & H,, define
¢=QehL-P'e@-B), G=P'eL-P'gP. (26)

Then, in the manner discussed in the previous section, we can show that they commute and they
have the simultaneous eigenvectors. Define the wavefunctions of the simultaneous eigenvector, in
the position representation and the momentum representation, respectively,

Ya3(60) = (ldl @ olal) 14:9),  Yas(p.p1) =(p(PI® R(p) 13,9) - (27)

By noting that the simultaneous eigenvector |p)p & |p;}p, of the momenta is an eigenvector of
the operator G associated with the eigenvalue 1—;21 and that the system of the simultaneous
eigenvectors of the momenta is complete in H ® H;, we can show that ¥ ;(p, p1) is written, with
an appropriate function S;3(p1), as

W35(p,p1) = Saalpr) 8- 2. (28)

By the substitution of this relation into the differntial equation corresponding to the characteristic
function of Q) , we have the differential equation for S;;(p;)

d 1 e
(a ~ 5 +19) S3(p1) = 0. (29)

The general solution of this is easily shown to be
Sia(pr) = K &7+ 0P1 (30)

By substituting this solution into (29), we have the simultaneous eigenfunction in the momentum
representation

1 1—
Ws5(p,p) = K 257 p"s(Tpl ~p), (31)

and by the inverse Fourier transformation we have the simultaneous eigenfunction in the position-
coordinate representation

bai( 1) = KeHt55(—g + g +aqr)- (32)

Both are localized on the straight lines, and both function are (exponentially weighted) sinusoidal
on these lines. These properties are very similar to those of the simultaneous eigenfunctions of
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Q&L —-18Q1 and PRI + 1@ P,. However, there are some differences in the slope of the
straight line and in the restriction of the p, —intercept.

Next, we are investigating the wavefunction of |0}z which is analogous to the vacuum in the
additional space. In this case, F' = Fj; = @y — By + tkP;. Define x3x(t1) = @,(9:1/0)5,,- Then,
we have the differential equation for x1x(q1)

(G + k)i% + (@ + %)) x1k(q1) = 0. (33)

By solving this, we have .
x1k(q1) = (const.) - (g — sk)"*a)ea (34)

By letting the phase factor of the constant to be e“'(‘;*%)”, it is easily shown the shape of this
eigenfunction is very similar to that of the boson vacuum, or a Gaussian packet, under an appro-
priate scale change, especially for large k. This resemblance is quite parallel to the resemblance
between the eigenfunction of A; and the coherent states discussed in [14]..

5 Conclusions

A concrete method for relating the minimum uncertainty state system of a kind of non-cannonical
pair to the orthogonal simultaneous eigenfunction system in the space extended by the tensor
product has been proposed. For the pair of Q and P~! which is closely related to the continuous
wavelet transform, the wavefunctions of the simultaneous eigenvectors of the 'commutabilized’
pair on the extended space and those of the analogue of the 'vacuum’ in the extended space have
been investigated in detail.

References

[1] Daubechies,I. IEEE Trans. Information Theory, 36, 961- (1990). [2] Grossman,A. et al.,
in Wavelets (Combes,J.M. et al. eds.), Springer, 2- (1989). [3] Daubechies,l. Ten Lectures on
Wavelets, SIAM (1992). [4] Meyer,Y., Wavelets: Algorithms & Applications(Ryan,R.D. tr.),
SIAM. [5] Torrésani, B., J. Math. Phys., 32, 1273- (1991). [6] GeI’fand,].M. & Neumark,M.A.
C.R. Acad. Sci. USSR, 55, 567- (1947). [7] Aslaksen,E.W. & Klauder,J.R. J. Math. Phys., 9,
206- (1968); J. Math. Phys., 10, 2267- (1969). [8] Perelomov,A.M., Soviet Physics Uspekhi,
20, 703- (1977). [9] Daubechies,l. & Paul,T., Proc. 8th Int. Congr. .Math. Phys., Marseilles,
675- (1986). [10]Paul,T. & Seip.,K., in Wavelets and Its Applications (Ruskai, M.B. et al
eds.) Jones and Bartlett Pub., 303- (1992) [11] Glauber,R.J., Phys. Rev. , 131, 2766- (1963).
[12] Klauder,J.R. & Sudarshan E.C.G., Fundamentals of Quantum Optics, W. A. Benjamin,
Inc. (1968). [13] Louisel, W.H., Quantum Statistical Properties of Radiation, John Wiley &
Sons, Chap.3 (1973). [14] Sakaguchi,F., RIMS Koukyuroku, Kyoto University, 885, 8- (1994)
[15] Falomir,H. et al., J. Math. Phys., 35, 1939- (1994). [16] Holevo,A.S., Probabilistic and
Statistical Aspects of Quantum Mechanics, North-Holland Pub., Chaps.II-III, (1982), [17]
F.Sakaguchi Proc. International Symposium on Information Theory and Its Applications ’94,
Sydney Vol.1, 303- (1994)

- 909 —



