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The problem of two-dimensional electrons in a periodic potential and a uniform mag

netic field (Azbel-Hofstadter problem [1, 2]) has a rich history and numerous applications.

It is equivalent (in the Landau gauge) to a one-dimensional quasiperiodic dIfference equa

tion:

¢n+l + ¢n-l + 2A cos(ky + 27rnT/)¢n = E1/Jn (1)

with two competing incommensurate periods 1 and 1/T/. Here T/ is the flux of the magnetic

field through the unit cell in units of the flux quantum hie. This equation is also known as

the Harper equation, the almost (or discrete) Mathieu equation, etc. It has been applied

to quasicrystals, localization/delocalization transition[3, 4, 5], quantum Hall effect[6] and

evenDNA chains[7]. For recent review of models of Hofstadter type see [8] and references

therein.

The spectrum of this equation is complex. If the flux T/ is a rational number P / Q,

there is a common period Q in the equation (1) and the spectrum consists of Q bands.

In the incommensurate limit, when T/ is an irrational number (P --+ 00, Q --+ 00) the

spectrum becomes an infinite Cantor set1 [1, 9] with total bandwidth (Lebesgue measure

of the spectrum) 41A - 11 [3, 10, 11]. At IAI = 1 the spectrum becomes a purely singular

continuous-uncountable but measure zero set of points[12] (for review see [13, 5]). There

is numerical evidence that in this case the spectrum and wave functions are multifractal

[14] .

The Azbel-Hofstadter problem as a typical quasiperiodic system generates a complex

spectrum. Similar complex spectra were found in a number of dynamical systems. Since

the empirical observations of Hofstadter [2], evidence has been mounting that these spectra

are regular and universal rather than erratic or "chaotic". They have a determiNistic

hierarchical structure.

The scaling description of multifractal sets, generated by a quasiperiodic equation, an

1closed, nowhere dense set which has no isolated points
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important and challenging problem, is far from being understood.

Recently, it has been shown that the Harper equation, belongs to the class of integrable

models of quantum field theory. Despite being just a one particle problem, it has been

"solved" by the Bethe Ansatz [15]. This creates a perspective for an analytical solution of

the problem and eventually for the employment of methods of conformal field theory for

finding scaling properties of multifractal sets.

In this lecture we present a first step towards solving the Bethe Ansatz equations for

the most interesting critical case IAI = 12 . We show that the topology of the strange sets,

generated in the problem is determined by the Chern numbers of the spectral curve i.e. by

the Hall conductances. Even more so-at every finite step of the hierarchy the spectrum

is integrable. We have found an a.nticipated match between Hall conductances and dimen

sions of representations of the quantum group Uq(sI2)' The latter are Takahashi-Suzuki

numbers or the lengths of the strings of the Bethe Ansatz solution. This correspondence

suggests a natural hierarchical tree, which, we believe, is relevant for general quasiperiodic

systems.

In the Bethe Ansatz language, each state is characterized by a particular string con

tent. Proceeding along the tree toward the incommensurate limit corresponds to addition

of strings. This picture is somewhat reminiscent of the discrete renormalization group

approach [21].

We were concentrated on the topological aspect of the string hypothesis. It alone

gives the explicit asymptotically exact form of some wave functions for irrational flux.

Multi-fractal properties of these functions, although not exact, are in good agreement

with numerical results.

We show that in the incommensurate limit roots of the Bethe Ansatz equations are

2The initial progress toward solving Bethe equations of [15] has been made in [16] where

the explicit analytical solution for zero energy level as well as some numerical results for

midband levels are reported.
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grouped in complexes called strings, so that each state is a composition of strings. Strings

are well known for standard integrable models of quantum field theory, for instance XXZ

Heisenberg chain [17]. They become exact only for a macroscopic system, where the

number of particles and the size of the system are sent to infinity. The role of ther

modynamic limit for the AH problem is obviously the incommensurability-P, Q ~ 00,

P / Q ~ 7J = irrational. The common period Q plays the role of the size of the system.

Indeed, we present numerical evidence that the "string hypothesis" remains valid--strings

become exact in the incommensurate limit Q ~ 00.

A first important application of the string structure of solutions is a detailed hierarchi

cal tree of the spectrum, i.e. an algorithm for generating this Cantor set spectrum[18]. The

hierarchical tree gives the topology of the set. We show that the string decomposition of a

state is tied to the holonomy of the wave function, i.e. the Hall conductance of the state,

and therefore must be of an algebraic geometrical nature. The set of Hall conductances

generates the spectral flow, which in its turn describes the hierarchical tree.

However, the major ends of the strings are loose. The string hypothesis solves the

Bethe Ansatz equations with an accuracy O(Q-2), i.e. is asymptotically exact in the

incommensurate limit Q ~ 00. However, the most interesting quantitative characteristics

of the spectrum are actually in the finite size corrections of the order of O(Q-2) to the bare

value of strings. Among them are the anomalous dimensions of the spectrum. We believe

that it is possible to find them analytically via a more detailed study of the Bethe Ansatz

equations, beyond just the analysis of singularities. This is a technically involved but a

fascinating problem. The ultimate solution of the problem, however, would be through

the application of conformal field theory approach, which has been proven to be effective

for finding the finite size corrections of integrable systems, without the actual solution of

the Bethe Ansatz.
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