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Abstract: An important issue in neural computing concerns the description of
learning dynamics with macroscopic dynamical variables. Recent progress on on-
line learning only addresses the often unrealistic case of an infinite training set.
For restricted training sets, previous studies have so far been limited to asymptotic
dynamics or simple learning rules. We introduce a many-body theory to model
batch learning of restricted sets of examples, widely applicable to any learning cost
function, and fully taking into account the temporal correlations introduced by the
recycling of the examples.

1. Introduction

The dynamics of learning in neural computing is a complex problem on both
the macroscopic and microscopic levels. Recently, much progress has been
made on modelling the dynamics of on-line learning, in which an independent
example is generated for each learning step [1, 2]. Since statistical correla-
tions among the examples can be ignored, the dynamics can be described by
instantaneous dynamical variables, facilitating a simple description.

However, on-line learning represents an ideal case in which the network
has access to an almost infinite training set, whereas in many applications,
the collection of training examples may be costly. A restricted set of examples
introduces extra temporal correlations during learning, and the dynamics is
much more complicated. As a result, progress has so far been limited to
Adaline learning (3, 4, 5], linear perceptrons learning nonlinear rules [6, 7],
Hebbian learning [8] and binary weights [12].

Here we introduce a many-body theory to model batch learning of restricted
sets of examples, fully taking into account the temporal correlations during
learning, and exact for large networks. It is widely applicable to any learning
rule which minimizes an arbitrary cost function by gradient descent.

2. Formulation

Consider the single-layer perceptron with N >> 1 input nodes {¢;} connecting
to a single output node by the weights {J;}. The inputs &; are Gaussian
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variables with mean 0 and variance 1, and the output state S is a function
f(x) of the activation x at the output node, i.e.

S=flz); z=J-& (1)

For binary outputs, f(x) = sgnz.

The network is assigned to “learn” p = a/N examples which map inputs
{f;‘} to the outputs {S,} (# =1,...,p). In the case of random examples, S,
are random binary variables, and the perceptron is used as a storage device.
In the case of teacher-generated examples, S, are the outputs generated by a
teacher perceptron {B;}, namely

S, =fyu); y.=B- €. (2)

Batch learning by gradient descent is achieved by adjusting the weights {J;}
iteratively so that a certain cost function in terms of the activations {z,} and
{y,} is minimized. Hence we consider a general cost function

E=-Yglmu) 3)

The precise functional form of g(z,y) depends on the adopted learning algo-
rithm. For Hebbian learning, g(z,y) = zf(y), for Adaline learning, g(z,y) =
—(f(y) — 2)*/2 and for backprop, g(z,y) = —(f(y) - f(z))*/2.

To ensure that the perceptron is regularized after learning, it is customary
to introduce a weight decay term. Furthermore, to avoid the system from
getting trapped in local minima, it is customary to add noise in the dynamics.
Hence the gradient descent dynamics for batch learning is given by

de (t) N 1

=2 = 5 20 @098 = A1) + i (0), (@)

where ¢'(z,y) represents the partial derivative of g(z,y) with respect to z, A
is the weight decay strength, and 7;(t) is noise at temperature 7" with

(s (0) =0 and (o (Ome(s)) = 506348t~ 9). @

3. The Cavity Method and Many-Body Theory

The cavity method is the starting point of our work [9]. It has been used
in studying the physical properties of magnetic and disordered systems. For
neural networks, it has been used to study the steady-state properties of learn-
ing [10, 11]. The dynamics of learning has been studied for perceptrons with
discrete weights, using a generating function approach, which is mathemati-
cally equivalent to the cavity method [12]. However, the cavity method has
not been applied to the dynamics of learning with analog weights and general
learning rules, especially in the transient regime.
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The method uses a self-consistency argument to consider what happens
when a new example is added to a training set. The central quantity in this
method is the cavity activation, which is the activation of the new example
on a node for a perceptron trained without that example. Since the original
network has no information about the new example, the cavity activation is a
Gaussian variable. Specifically, denoting the new example by the label 0, its
cavity activation at time ¢ is

ho(t) = J(¢) - €. (6)

For large N, ho(t) is a Gaussian variable. For random examples, its covariance
is given by the correlation function C(t, s) of the weights at times ¢ and s,

(ho(t)ho(s)) = J(t) - J(s) = C(t,5), (7)

where we have made use of the independence of the random variables f? and &9
for j # k. For teacher-generated examples, the distribution is further specified
by the teacher-student correlation R(t), given by

(ho(t)yo) = J(t) - B = R(2). (8)

Now suppose the perceptron incorporates the new example at the batch-mode
learning step at time s. Then the activation of this new example at a sub-
sequent time ¢ > s will no longer be a random variable. Furthermore, the
activations of the original p examples at time ¢ will also be adjusted from
{zu(t)} to {z),(t)} because of the newcomer, which will in turn affect the
evolution of the activation of example 0, giving rise to the so-called Onsager
reaction effects. This makes the dynamics complex, but fortunately for large
p ~ N, we can assume that the adjustment from z,(t) to a;g(t) is small, and
linear response theory can be applied.

In the linear response theory for many-body systems, one is interested
in how the effects of a delta-function disturbance at time s propagates to a
later time ¢. This is called the Green’s function G(¢,s). In the simulational
experiment in Fig. 1(a), we compare the evolution of two perceptrons {J;(t)}
and {J?(t)} in Adaline learning. At the initial state J7(0) — J;(0) = 1/N for
all j, but otherwise their subsequent learning dynamics are exactly identical.
Hence the total sum ) (J7(t) — J;(t)) provides an estimate for the averaged
Green’s function G(t,0), which gives an excellent agreement with the Green’s
function obtained from many-body theory.

Superposing the effects of the gradient term g{(s) of example 0 due to its
presence in the learning history, we have

0(t) = ho(t) = [ dsGilt,)gh (o). (9)

Statistically, this equation enables us to express the activation distribution in
terms of the cavity activation distribution, and we can study the macroscopic
dynamics.
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In another simulational experiment in Fig. 1(b), we first measure the
Green’s function as in Fig. 1(a), and monitor the evolution of the activations
z,(t) of the examples. The corresponding cavity activations are then computed
from Eq. (9) and presented in the histogram in Fig. 1(b). It resembles a
Gaussian distribution, whose computed mean and variance agree with those
obtained from the macroscopic dynamics of the order parameters.
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Figure 1: (a) The Green’s function G(¢,0) for Adaline learningat « =1.2and T =0
for different weight decay strengths A, A,p: being given by Eq. (11). Theory: solid
line, simulation: symbols. (b) Histogram of the cavity activations as computed from
Eq. (9) for @« = 1.2, A = 0.1, N = 500, 50 samples at ¢ = 2. The mean and width
of the histogram are 0.413 and 0.574 respectively, compared with the values of 0.415
and 0.573 computed from the dynamics of the order parameters.

4. A Solvable Case

Here for illustration, we present the results for the Adaline rule. This is a
common learning rule and bears resemblance with the more common back-
propagation rule. Theoretically, its dynamics is particularly convenient for
analysis since ¢"”(x) = —1, rendering the weight Green’s function time transla-
tion invariant, i.e. G(,8) = G(f —s). In this case, the dynamics can be solved
by Laplace transform.

To monitor the progress of learning, we are interested in three performance
measures: (a) Training error €;, which is the probability of error for the train-
ing examples. It is given by €; = (O(—2xsgny)).y, where the average is taken
over the joint distribution p(z,y). (b) Test error €.s, which is the probabil-
ity of error when the inputs 5;-‘ of the training examples are corrupted by an
additive Gaussian noise of variance A2. This is a relevant performance mea-
sure when the perceptron is applied to process data which are the corrupted
versions of the training data. It is given by €sest = (H(zsgny/A\/C(t,1)))zy,
where H (z) is the probability that a Gaussian variable, with mean 0 and vari-
ance 1, is larger than z. When A? = 0, the test error reduces to the training
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error. (c) Generalization error €4, which is the probability of error for an arbi-
trary input &; when the teacher and student outputs are compared. It is given
by €, = arccos[R(t)/\/C(t,t)]/m.

To verify the theoretical predictions, simulations were done with N = 500
and using 50 samples for averaging. As shown in Figs. 2-3, the agreement is
excellent. For illustration, we discuss the following aspects of the results.

1) Convergence time: Figure 2(a) shows the evolution of the average ac-
tivation. Figure 2(b) shows the behaviour of the convergence time, which is
defined as the time for the average activation to reach half its asymptotic
value. In the limit of few and numerous examples, the convergence times 7
are respectively given by

lim 7 = —ﬂ, and lim 7= !-1—1—2— (10)
a—0 14+ ) 00 o
Thus for few examples, the convergence rate is determined by the weight decay
strength, whereas for numerous examples, the convergence rate is determined
by the size of the training set. .

The convergence time is different from the relazation time in early studies,
which is more appropriate for asymptotic dynamics rather than the transient
behaviour [3]. For example, in the limit of few examples and weak weight
decay, the convergence time approaches a constant, whereas the relaxation
time diverges as A~!. This is because transient learning is dominated by a
significant growth of the projection onto the highly degenerate space of zero
training error, whereas steady-state learning merely involves relaxation in this
space by weight decay.

0.6 - 0.8

A=0.1

0.6

0OQO00000SL80G00000000300

A=0.5

04

average activation
convergence time

02

‘OAOA...I...x.,,,..l.,A.n
4 5 0.0 0.5 1.0 1.5 2.0

examples per node «

Figure 2: (a) The evolution of the average activation at o = 1.5 for different weight
decay strengths A. (b) Dependence of the convergence time on the examples per node
a for different weight decay strengths A. The dashed line is 0.3 times the relaxation
time in [3] for A = 0.1.

2) Behaviour of €,: Figure 3(a) shows the evolution of the generalization
error at T = 0. When the weight decay strength varies, the steady-state
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generalization error is minimized at the optimum

Aopt = g -1, (11)
which is independent of a. For A < A,p:, the generalization error is a non-
monotonic function in learning time. Hence the dynamics is plagued by over-
training, and it is desirable to introduce early stopping to improve the percep-
tron performance. Similar behaviour is observed in linear perceptrons [5, 6, 7].

Figure 3(b) compares the generalization errors at the steady-state and the
early stopping point. It shows that early stopping improves the performance
for A < Aopt, which becomes near-optimal when compared with the best result
at A = A,pt- Hence early stopping can speed up the learning process without
significant sacrifice in the generalization ability. However, it cannot outper-
form the optimal result at steady-state. This agrees with a recent empirical
observation that a careful control of the weight decay may be better than early
stopping in optimizing generalization {13].

3) Behaviour of €ies¢: Again, there is an optimal weight decay parameter
Aopt Which minimizes the test error. Furthermore, when the weight decay
is weak, early stopping is desirable. The optimal weight decay A,p: for the
test error depends on input noise. For random examples, A\,pt = aA%. Hence
when the perceptron is applied to process increasingly noisy data, weight decay
becomes more and more important in performance enhancement. For teacher-
generated examples, A,pr o< A% approximately.

It is interesting to consider the weight decay A,: below which overtraining
occurs for the test error. For random examples, Ay coincides with A,p;. For
teacher-generated examples, Ay = Ayp: to the lowest order approximation.
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Figure 3: (a) The evolution of the generalization error at T = 0 for « = 0.5,1.2 and
different weight decay strengths A. (b) Comparing the generalization error at the
steady state (0o) and at the early stopping point (t.s) for « = 0.5,1.2 and T = 0.
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5. Conclusion

Based on the cavity method, we have introduced a many-body theory for mod-
elling the dynamics of learning, which is much more versatile than existing
theories. It is more realistic in many situations than theories of on-line learn-
ing. Compared with early work on Adaline learning (3, 4], which focuses more
on the asymptotic dynamics, we have a better understanding on the transient
behaviour and the convergence time. Compared with recent work on Hebbian
learning [8], which is based on certain self-averaging assumptions, our theory
develops naturally from the stochastic nature of the cavity activations. Hence
our theory has the best potential to extend to more sophisticated multilayer
networks of practical importance. :

We consider the present work as only the beginning of a new area of study.
Many interesting and challenging issues remain to be explored. For exam-
ple, while the dynamics in the present work corresponds to the limit of very
low learning rate, it is interesting to generalize the method to dynamics with
discrete learning steps of finite learning rates.
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