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Abstract

The "turbo codes", recently proposed by Berrou et. al. [1] are written as a
disordered spin Hamiltonian. It is shown that there is a threshold e such that
for signal to noise ratios v2 / w2 > e the error probability per bit vanishes in the
thermodynamic limit, i.e. the limit of infinitly long sequences. The value of the
threshold has been computed for two particular turbo codes. It is found that it
depends on the code. These results are compared with numerical simulations. This
work was done in collaboration with Andrea Montanari [8].

The recent invention of "turbo codes" by Berrou and Glavieux [1] is considered a
major breakthrough in communications. For the first time one can communicate almost
error-free for signal to noise ratios very close to the theoretical bounds of information
theory. Turbo codes are fastly becoming the new standard for error correcting codes in
digital communications. The invention of turbo codes and their iterative decoding algo­
rithm was empirical. There is no theoretical understanding of why they are so successfull.
The decoding algorithm is thought to be an appro~imatealgorithm. We think that turbo
codes are interesting, even outside the context of communication theory, because they
provide a non trivial example of a disordered system which can be studied numerically
with a fast algorithm.
In this paper we will study turbo codes and turbo decoding using the modern tools of
statistical mechanics of disordered systems. We have already shown in the past [4] that
there is a mathematical equivalence between error correcting codes and theoretical models
of spin glasses. In particular the logarithm of the probability for any given signal, condi­
tional on the communication channel output, has the form of a spin glass Hamiltonian.

*UMR 8549, Unite Mixte de Recherche du Centre National de la Recherche Scientifique et de l' Ecole
Normale Superieure.
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We will construct the Hamiltonian which corresponds to the turbo codes and study its
properties. This will clarify why they are so successfull. In particular we will show that
there is a threshold e such that for signal to noise ratios v2 / w 2 > e the average error
probability per bit Pe vanishes in the thermodynamic limit, i.e. the limit of infinitly long
sequences. In Pe the average is taken over a large class of turbo codes (see later) and over
"channel" noise. The value of the threshold has been computed for two particular turbo
codes. It was found that it depends on the code. We also compare these results with
numerical simulations.
We consider this result as particularly interesting. They were only two known families
of codes which can achieve zero error asymptotically: a) orthogonal codes and b) codes
based on Derrida's random energy model. Both families become error-free only in the
zero rate limit i.e. the limit of infinite redundancy (see later). Turbo codes are the first
finite rate codes to be shown to permit error-free communication.
We consider this paper as a new application of statistical mechanics to a problem outside
its original domain of applicability. Our results are typical of the statistical mechanics
approach: we study only the average performance of turbo codes, not the performance
of any particular one. Furthermore there exist (very "few") particular codes (the ones
corresponding to permutations close to the identity, see later), performing much worse
than the average. For those codes the error probability per bit Pe # 0, but they are so
"few" that this does not prevent the average Pe from vanishing.
Let us first briefly remind the connection between error-correction codes and spin-glass
models. In the mathematical theory of communication both the production of informa­
tion and its transmission are considered as probabilistic events. A source is producing
information messages according to a certain probability distribution. Messages of length
N are sequencies of N symbols or "letters of an alphabet" aI, a2, ... , aN. We will assume
for simplicity a binary alphabet, i.e. ai = 0 or 1 and that all symbols are equally probable.
Instead of ai we can equally well use Ising spins

(1)

The messages are sent through a noisy transmission channel. If a (J = ± 1 is sent through
the transmission channel, because of the noise, the output will be a real number (J0ut, in
general different from (J. Again, the statistical properties of the transmission channel are
supposed to be known. Let us call Q(u out 10' )duout the probability for the transmission
channel's output to be between u out and uout+duout, when the input was 0'. Q(u out 10')
is supposed to be known. We assume that the noise is independent for any pair of bits
("memoryless channel"), i.e.

(2)

In the case of a memoryless channel and a gaussian noise:

(3)
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Shannon calculated the channels capacity C, i.e. the maximum information per use of the
channel that can be transmitted.

(4)

where v2 is the signal power.
Under the above assumptions, communication is a statistical inference problem. Given
the transmission channel's output and the statistical properties of the source and of the
channel, one has to infer what message was sent. In order to reduce communication errors,
one may introduce (deterministic) redundancy into the message ("channel encoding") and
use this redundancy to infer the message sent through the channel ("decoding"). The
algorithms which transform the source outputs to redundant messages are called error­
correcting codes. More precisely, instead of sending the N original bits ai, one sends M
bits Jtn , k = 1,"', M,M > N, constructed in the following way

(5)

where the "connectivity" matrix Ci(~~.ilk has elements zero or one. For any k, all the Ci(~~.ilk

except from one are equal to zero, i.e. the Jtn are equal to ±l. Ci(~.~.ilk defines the code,
i.e. it tells from which of the a's to construct the kth bit of the code.
This kind of codes are called parity checking codes because J~n counts the parity of the
minusis among the lk a's. The ratio R = N / M which specifies the redudancy of the code,
is called the rate of the code.
Knowing the source probability, the noise probability, the code and the channel output,

. one has to infer the message that was sent. The quality of inference depends on the choice
of the code.
According to the famous Shannon's channel encoding theorem, there exist codes which,
in the limit of infinitly long messages, allow error-free communication, provided the rate
of the code R is less than the channel capacity C. This theorem says that such "ideal"
codes exist, but does not say how to construct them.
We have shown that there exists a close mathematical relationship between error-correcting
codes and theoretical models of disosdered systems. As we previously said, the output of
the channel is a sequence of M real numbers Jout = {Jfut, k = 1,' . " M}, which are

random variables, obeying the probability distribution Q(JfutIJ~n). Once the channel

output Jout is known, it is possible to compute the probability P(rlJout ) for any par­
ticular sequence r = {Ti' i = 1,"', N} to be the source output (i.e. the information
message).
More precisely, the equivalence between spin-glass models and error correcting codes is
based on the following property.
The probability P(rlJout ) for any sequence r to be the information message, conditional
on the channel output Jout is given by

M

In P(rJJout) = const +L Cf~~.ilk B k Til' .. Tilk

k=l
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where

(7)

We recognize in this expression the Hamiltonian of a p-spin spin-glass Hamiltonian. The
distribution of the couplings is determined by the probability Q(JoutIJin).
In the case when Q(JoutIJin) = Q(_Joutl_ Jin) (the case of a "symmetric channel"),
B(Jout ) = -Bk ( _Jout ) and one recovers the invariance of the spin-glass Hamiltonian
under gauge transformations.
"Minimum error probability decoding" (or MED), which is widely used in communications
[2], consists in choosing the most prob9-ble sequence rO. This is equivalent to finding the
ground state of the above spin-glass Hamiltonian.
Instead of considering the most probable instance, one may only be interested in the most
probable value TrAP of the "bit" Ti (Maximum A posteriori Probability or MAP decoding)
[3] which can be expressed in terms of the magnetization at temperature T= 1/f3 equal
to one [6]:

~ I:Ti exp{ -H(r)}
r

(8)

where H(r) is defined by Eq.(6).
It is remarkable that f3 = 1 coincides with the Nishimori temperature in spin glasses [7].
MAP decoding is an essential ingredient in turbo decoding (see later).
When all messages are equally probable and the transmission channel is memoryless and
symmetric, the error probability is the same for all input sequences. It is enough to
compute it in the case where all input bits are equal to one. In this case, the error
probability per bit Pe is

1 (d) _ 1 ( 1 ~ (d))Pe = 2(1 - m ) = 2 1 - N ~ Ti
z=l

(9)

and Ti(d) is the symbol sequence produced by the decoding procedure. One can derive from
this a very general lower bound for Pe , using the analog of the low temperature expansion.
An obvious bound (for zero temperature decoding) is provided by the probability pP) that
only one bit is incorrect, i.e. Tj = -1 while all other bits are correct, i.e. Ti = 1 for all
i i- j:

Pe ;::: p~1) = Probability of { I: B k < o}
kEr2(j)

(10)

where the O(j) denotes the set of the couplings in which Tj appears.
A necessary condition for transmitting without errors is that LkEr2U) B k > 0 with prob­
ability one. This is only possible if every spin appears in an infinite number of terms in
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the Hamiltonian. Let lk be the number of spins coupled through the coupling Bk .

The total number of spins beeing N, a spin appears on the average in

(11 )

terms, where [ is the average of lk (the number of spins coupled together) and R is the
rate of the code.
So a necessary condition for a finite rate code to achieve zero error probability, is that the
average number of spins coupled together diverges in the thermodynamic limit (N --+ 00).
This condition is realised in Derrida's random energy model [5] which has been shown to
be an ideal code [4] ( in that case R = °).
We will show in the following that this is also true for the case of recursive turbo codes,
while it is not true for non recursive turbo codes.
We first present a review of convolutional codes. Convolutional codes are the building
blocks of turbo codes. We shall describe both non recursive and recursive convolutional
codes. They correspond to one-dimensional spin models. The information message will
be denoted by:

(12)

It is convenient to think of the source producing a symbol per unit time, i.e. in Ti, i
denotes the time. For simplicity we consider a code of rate R = 1/2. The encoded
message has the form:

_ ( (1) (1). (2) (2))J = J1 , ..• , JN ,J1 , ... , JN (13)

Any hardware implementation of a convolutional encoder contains a sequence of r memory
registers. We shall call r the range of the code.
Let's denote by ~l(t), ... , ~r(t) the content of the memory registers at time t. At each
time step the content of the memory register is shifted to the right:

~j+1(t + 1) = ~j(t) for j = 1, ... , r - 1, ~o(t) - ~l(t + 1)

We define the following sequence of bits which we shall call the register sequence:

IT=(Ol, ... ,ON), oi-~o(i)

For non recursive convolutional codes,

(14)

(15)

The encoded message J is easily defined in terms of the content of the register sequence:

r r

Ji(n) = IT(~j(i)t(j;n) = IT(Oi_jt(j;n)
j=O j=O

i = 1, ... , N ; n = 1,_2

K,(j; n) E {O, I}
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The numbers K-(j; n) define the code.
Recursive convolutional codes are most easily defined by

r r

ai(T) = Eo(i) = Ti II Ej (i)K(jjl) = Ti II(ai_j)K(jjl)

j=l j=l

(17)

We shall now consider decoding. The probability distribution of the register sequence
conditional to some ouput can be written as the Boltzmann weight of a spin model with
random couplings. The Hamiltonian is given by:

(18)

where B(·) is defined in Eq.(7).

We define the decoding at arbitrary temperature T - 1/(3 as follows:

sign((Ti (U ) ) fJ )

1 t "" O(u) exp{ -(3H(u; Joutn
Z(Jou ;(3) 7

(19)

(20)

where the expression for Ti(U) is given by Eq.(17) or by Eq.(15) depending whether the
code is recursive or not.
As seen in the introduction there are two widely used decoding strategies:

• Maximum Likelihood decoding which consists in finding the most probable sequence
of bits and corresponds to the choice f3 = 00 in Eq.(19): Ti

ML Tf=oo .

• Maximum A posteriori Probability decoding which consists in finding the most
probable sequence of bits and corresponds to the choice (3 = 1 in Eq.(19): Ti

MAP =
Tf=l. This is the strategy which enters in turbo decoding.

Both these strategies can be implemented in a very efficient way using the transfer matrix
technique. The corresponding algorithms are known in communication theory as the
Viterbi algorithm [2] for the (3 = 00 case and the BCJR algorithm [3] for the (3 = 1 case.
The complexity of these algorithms grows like N2r .

A turbo code is defined by the choice of a convolutional code and of a permutation of N
objects. We use for the permutation the following notation:

P:{I, ... ,N} --t {1, ... ,N}, if----tP(i) (21)

The basic idea is to apply the permution P to the source sequence T to produce a new
sequence T P . Both sequences T and T P are the inputs to two set of registers, each one
implementing a convolutional encoding. In this way the rate of the code is decreased (i.e.
greater redundancy).
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We illustrate this idea with the example of a rate 1/2 recursive convolutional code, defined
by the constants K(j; 1) and K(j; 2). The two register sequences are:

r

ail) - ai(T) => Ti = II(ai-=:jt(jj1) - Ei(U(1))

j=l
r

a?) - ai(TP) => Tt = II(ai~jt(jj1) _ Ei(U(2))

j=l

(22)

(23)

where T P is the permuted message (Tt - TP(i))'
The relation between the two register sequences is rather involved and nonlocal for a gen­
eral choice of the permutation. Moreover ap) can be expressed only in terms of a large
number of ay) 'So

It turns out that it is convenient to write the corresponding Hamiltonian as a function
of both register sequences. This introduces new degrees of freedom and the Hamiltonian
is a function of 2N instead of N spin. The unwanted degrees of freedom are eliminated
by imposing the constraint Tt = Tp(i). This constraint can be written in terms of the a's

using Eqs.(22) and (23). In this way the probability distribution is a local function of the
spin variables a(1) and a(2).

Solving the constraint produces an infinite connectivity Hamiltonian for recursive turbo
codes. For non recursive codes, the connectivity remains finite. This finite versus infinite
connectivity is the essential difference between non recursive and recursive turbo codes
and explains why recursive turbo codes are so better and why they can achieve zero error
probability for low enough noise.
We now discuss decoding. There is no exact decoding algorithm for turbo codes. Berrou et
al. have proposed a very ingenious algorithm, called turbo decoding, which is thought to
be approximate. Turbo decoding is an iterative procedure. At each step of the iteration,
one considers one of the two chains and proceeds to MAP decoding. The information so
obtained is injected to the next step by adding appropriate external fields to the Hamil­
tonian of the other chain. The algorithm terminates if a fixed point is reached.
Turbo decoding can be seeing as the union of two one dimensional subsystem. Each
subsystem acts on the other one through a magnetic field (in the non recursive case) or
through an additional coupling (in the recursive case).
We would like to compute the error probability per bit. As explained above, in the case
of a symmetric transmission channel, it is enough to compute the magnetization in the
case of all inputs Ti = 1.
The similarity of the Hamiltonian of turbo codes with the Hamiltonians of disordered spin
systems is obvious. The disorder in the case of turbo codes has two origins. One is due to
the (random) permutation which defines the particular code. The other is more conven­
tional and is related to the randomness of the couplings which is due to· the transmission
noise. As usual in disordered systems, we can only compute the average over disorder and
for that we have to introduce replicas. We briefly report the main results of this approach
[8] for the gaussian channel described by Eq. (3).
For recursive turbo codes there exists a low noise phase w2 < w~ where the error prob­
ability vanishes in the thermodynamic limit (Le. for infinitely long sequences). In this
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phase the model is completely ordered. A local stability analysis yields the critical value
wloc such that for w2 > wloc the no-error phase is destroyed by small fluctuations. Clearly
wloc ~ w~. We computed wfoc for the two cases of turbo codes.

It is well known that the replica method is not mathematically rigorous. So it is natural
to question the validity of our results. For this purpose we have carried out numerical
simulations. We used the Berrou et al. turbo decoding algorithm and averaged over 200
to 500 realizations of the disorder.
The first conclusion is that recursive turbo codes are much better codes that non recursive
ones. Furthemore our results for recursive turbo codes are compatible with the existence
of a threshold w~ such that for w2 < w~ the error probability per bit is zero, while no such
threshold seems to exist for non recurs~ve codes. This is in agreement with replica theory.
Zero error probability can only be achieved in the N ~ 00 limit. OUf simulations are for
N = 105 . It would be interesting to perform a detailed study of finite size corrections, i.e.
of the N dependance of the error probability per bit.
Another important issue is the breaking of replica symmetry. Since turbo-decoding is
thought to be an approximate algorithm, it may be not the best tool to look for replica
symmetry breaking. We have started an analytical investigation of replica symmetry
breaking.
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