
Quantum Correction to the Gross-Pitaevskii Equation
in a Bose-Eisntein Condensate

M. Okumural and Y. Yamanaka2

1Department of Physics. Waseda University, Tokyo 169-8555, Japan
2 Wascda Univ. Senior High School, Kamishakujii, Nerima-ku, Tokyo 177-0044, Japan

amJ*O~tiJ-=f~;f-'T /' ~ -\' JVrflO) 7 Jv iJ 1) 1*-=f0) Bose-Einstein (~*ffi (BEC) O)~"~~:~;j

T .Q ~ <O)J1UifliB9~~Hj: Gross-Pitaevskii(GP) 7Jfi~~:£-:>It'""(1t'.Q. -:. O)*Ili5:i=--c' ~j:,
GP7Jfi~~m.z6~h.t ~""(, ~0)~~~:J:.Q5E~1t~q:y-?t.:. ~T, ~ftl:'~~1t~,

-fn~ Thermo Field Dynamics~:: J: ~ lf~lUliiifi~:tJ.t~T.Q. ~F1~jh89~5E~1tO)t.:<t)~:

~,~t:t~1~~t. t q:YIt" fJU t ~""(, GP 7Jfi~~:~;jT.Q1-Jv-7' l/~JvO)*itLiE~~t.~ t.:.
~ t.:, (~miffi ~':~;jT.Q;' -=f . jgJtflijlEO)~W ~ ~ffjffi L t.:.

So far many theoretical considerations for experiments of Bose-Einstein condensation
(BEC) of alkali atoms in harmonic traps are based on the Gross-Pitaevskii (GP) equa­
tion. In this report, we attempt to formulate theBEC in the language of quantum field
theory in order to go beyond the approximation of GP equation. First the formulation
at zero-temperature is presented, and then it is extended to finite-temperature case by
means of Thermo Field Dynamics. Numerical calculations, which are inevitable even
in the unperturbative formulation of our approach, a.re performed. For illustration, the
corrections at one-loop level to the original GP equation are given. We also calculate
the effects of quantum and thermal fluctuations to the distribution of condensed atoms
numerically.

1 Introdunction

Since the first experiments of Bose-Einstein condensation (BEC) [1, 2, 3], BEC of atomic
gases trapped by a confining potential has attracted much attention among many experi­
mental and theoretical physicists. Experiments of BEC are being performed in laborato­
ries all over the world, and are giving us various interesting results. One can expect that
the experiments will be improved further and that experimental results, more accurate
and belonging to more wide ranges of physical parameters, will be acquired.

From the viewpoint of theoretical study, the BEC phenomena appearing at the present
experiments is rather simple: The interaction 'between trapped atoms is weak and has a
simple structure of two-body contact type, meaning that the potential can be described
by a delta function. This situation is a contrast to other phenomena in condensed matter
physics, e.g., superfluid. Our main concern is in the fact that the BEC offers us a clean
field to check fundamental aspects of physics, i.e., the foundation of statistical physics,
quantum field theory which is an ultimate one to deal with quantum many-body systems,
and thermal field theory.

As the first approximation the approach using Gross-Pitaevskii equation (GP eq. ) [41:
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which is a mean-field theory, explains the behaviors at the BEe experiments consistently.
This is because the most part of trapped atoms are condensed and the effects of non­
condensed (fluctuating) atoms are very small. But, as was pointed above, for future
experiments in which physical quantities will be measured more accurately, or in which
fluctuations (quantum as well as thermal) will play an important role, we will need more
sophisticated theoretical considerations. For example, during the last few years, many
attempts had been made to describe behaviors of the atomic system at finite-temperature
in a trapping potential [5].

Our strategy is to start from an original quantum field theory, which is believed to be
the most fundamental for description of quantum physics of many-body problems. \hie
first formulate a quantum field theory for the BEe problem in this report. As will be
shown below, we do not employ a plane wave expansion for the field operators, because the
presence of trapping potential breaks space-translational invariance explicitly. Instead we
expand the field operators by a complete set of appropriate wave functions, which can not
be obtained analytically. We perform necessary numerical estimations to obtain physical
results.

Our formulation above is limited to zero-temperature case. But, as is well-known, the
formulation of quantum field theory can be readily extended to include thermal effects,
that is, to thermal field theory. We will take Thermo Field Dynamics [6] for this purpose.

As an exemplar calculation we demonstrate one-loop correction to the GP eq. at z;ero­
temperature and at finite-temperature cases. While the former involves only quantum
corrections, the latter does thermal corrections as well as quantum ones. \Ve also study the
modification of the distribution function of condensate part numerically after fluctuation
effects at one-loop level are taken account of.

2 Model and Notations

2.1 Action

We start with the following action for the self-interacting bosonic fields 'ljJ(x, t) and 'ljJt(x, t)
trapped by a confining potential V (x),

where J-L is the chemical potential, and the coupling constant 9 is given in terms of the
scattering length a

47rn?a
9 = ------ (2)

m

In the recent experiments, the confining potential V (x) is of harmonic-oscillator type:

V(x) = ~1, (w;x2+ w~y2 + w;Z2) . (3)

Let us consider a stationary situation in which Bose-Einstein condensation takes place.
Then 'ljJ is divided into two parts~

'ljJ(x, t) = v(x) + <p(x, t),
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where v and <p describe condensate and non-condensate (fluctuating) parts, respectively.
In what follows, v is assumed to be real and time-independent. (This implies that the
possible existence of vortex is neglected.) This expression is substituted into (1), and the
action is rewritten in terms of v and <p as follows:

8 = 80 + 81 + 82 + 8int

So = Jdtd
3
x H-(-:~ \72) - V +I}- ~V4]

SI = Jdtd
3
x [v { - ( - :~ \72) - V + I' - 9V

2
} ;0 + ;01 { - ( - ;:, \72) - V + I' - 9V

2
} v]

J [{ a (li2

) } gv
2

]82 = dtd3x <pt iii at - - 2m \72 - V + /-l <P - 2 (4<pt <p + <p2 + <pt
2
))

8int = Jdtd3x [-gv (<p + <pt) <pt<p - ~ (<p t<Pr] . (5)

The 81, linear in <Pi is dropped if the equation for v holds,

[-2~ \72 + V(X) -I' + 9V
2 (X)] v(X) = o.

This is the GP equation [4].
The integration of the square of v is interpreted as the condensate particle number

No,
(7)

2.2 Hamiltonian

Under the condition in (6), we have the Hamiltonian given by

H = Ho+ Hint (8)

flo = Jd3x [cpl (- ;~ \72 + V - I') ;0 + g;2 (4cplcp + cp2 + cp(2) ] (9)

Hint = 9Jd3X [V (';3 + ';3t) ';3\3 + ~ (<pt';3) 2] . (10)

For the field operators in the Heisenberg picture, the equal-time canonical commutation
relations are

[';3(x, t), ';3t(x', t)] = 83 (x - x') (11)

and [';3(x, t), ';3(x', t)] = [';3t(x, t), ';3t(x', t)] = 0'.
Now we move to the interaction picture in which Ho and Hint are considered as un­

perturbative and perturbative Hamiltonians, respectively. The Hint may include possible
renormalization counter terms, but they will be suppressed in this report.

2.3 Experimental Parameters

We list for later convenience the typical energy and length scales (Table 1) (for 87Rb case)
[7].
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Table 1: Energy and Length Scale

Energy Scale Length Scale

harmonic oscillator
6.59 x 10-32 [J]

oscillator length
6.47 x 10 [f.lm]

level spacing nw aho = J2~W

limiting temperature 1 [mK] scattering length 5.77 [nm]
for S-wave scattering = 2.09 x 105nw a = 8.92 x 10-3aho

thermal de Broglie
BEe transition 300 [nK] wavelength 5.94 x 10[f.lm]
temperature Tc = 6.28 x 10nw

AdB = 27rh2 = 0.919aho
mkBT

3 Formulation and Numerical Calculation of Unper­
turbative Part

3.1 Diagonalization of U nperturbative Hamiltonian

It is crucial in the formulation of the interaction picture to find an appropriate unpertur­
bative vacuum. To do this, we expand the unperturbative field operators as

00

0(x, t) = L an(t)un(x)
n=l

00

0t (x, t) = L a~(t)un(x).
n=l

Here the orthonormal complete set {un} (n = 0,1,2, ...) are eigenfunctions of

[- :~ \72 + V(x) - f1 + 9V
2(X)] u,,(x) = E"U,,(X) ,

with

00 .

L un(x)un(x' ) = 83 (x - x').
n=O

(12)

(13)

(14)

(15)

Note that the eigenfunctions are chosen to be real. The operators an and a~ are subject
to

[an (t), a~, (t)] = 8nn, ,

and [an(t), an/(t)] = [a~(t), a~,(t)] = o.
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From (6) and (13), it is seen that v is proportional to Uo with a vanishing eigenvalue

co = 0,

and from (7)

v(X) = fNouo(x).

Put (12) into (9) and organize the expression:

with the notation of

(17)

(18)

(19)

Unn, = ~ Jd3xv2(x)un(x)unl(x). (20)

The unperturbed Hamiltonian is not diagonalized in terms of the an-operators. As is done
in [8] (see also [9]), we introduce the generalized Bogoliubov transformation

00

bn = L [Cnmam+ Snmatn]
m=!

00

b~ = L [Cnma;n + Snmam]
m=!

The canonical commutation relations

(21)

(22)

and [bn(t), bnl (t)] = [b~ (t), b~, (t)] = 0 require the relations among the coefficients Cnm and
8nm ,

00

L [CnmCnlm - SnmSn1m] = 8nnl
m=l

00

L [CmnSnlm - SnmCn1m] = O.
m=!

To fix the Cnm and Smn, let us define

(23)

(24)

(n # 0), (25)

which satisfy the commutation relation

[fin, Pn'] = i8nn, .

The Ho is written in terms of fin and Pn as
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where

The symmetric matrix Wnn, can be diagonalized by an orthogonal matrix 0 :

00

L (OnmWmm,On'm') = E~8nn"
m,m'=l

Using this O-matrix, we introduce a new pair of canonical operators by

00

On = L Onn,qn'
n'=l

00

?n = L Onn'Pn' ,
n'=l

In the last equality, we have related {O, ?} to {b, btl as

The manipulations above lead to

c - ~ (If:n If:n) 0nm - 2 + E nm
Cn n

1(~ @
Smn = 2 Vz: - VE:t) Onm .

From these expressions, the relations in (21) can be inverted as

00

an = L [Cmnbm - Smnb~]
m=l

00

At ~ [At A ]an = L.-J Cmnbm - Smnbm
m=l

(28)

(29)

(30)

(31 )

(32)

(33)

(34)

The expression (31) is a digonalized one, so that the operator bcan define the unper­
turbative vacuum, denoted by IDb):

bnlDb) = 0

(nblb~ = o.
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We thus obtain field operators composed of bt and b, which properly represent quasi
particles in the situation of the BEe experiments,

00

cp(x, t) = L iin(t)un(X)
n=l

00

= L [bm(t)CmnUn(X) - b:n(t)Smn'Un(X)] ,
m,n=l

00

cpt(x, t) = L a~(t)un(x)
n=l

00

= L [b:n(t)CmnUn(X) - bm(t)SmnUn(X)] .
m,n=l

3.2 Unperturbed Propagator

(36)

We now calculate the unperturbative propagator for the field operator cp. Introduce the
column notation as

<i?i = { CPt
cjJ

{

~t

<i?I= <p
cp

and define a 2x 2-matrix propagator by

(for i = 1)
(for i = 2) ,

(for i= 1)
(for i = 2) ,

(37)

(38)

(39)

Then we obtain the unperturbative propagators with the field operators (36) and the
vacuum (35),

00

= -iB(t - t') L CnlCnmUl(X)um(x')e-tE1l(t-t')
l,m,n=l

00

- iB(t' - t) L SnlSnmUl(X')um(x)e--tE1l(t'-t) (40)
1,1n,n=1

= GO,22(X', x; t' - t), (41)

GO,12(X, x'; t - t') = -i(ObIT[<p(x, t)<p(x', t')]IOb)
00

- °B(t t') '" C S () (') - iEn(t-t')- ~ -, L...; ° nl nmUI X U m X e rt

l,m,n=l
00

+ iB(t' - t) L SnlCnm'Ul(X')Um(x)e-fiEn(t'-t) (42)
l,1n,n=1

= GO,21(X, x'; t - t'). (43)

These propagators depend on x and x' separately due to the absence of space-translational
invariance, but are functions of t - t' since the stationary situation is under consideration.
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3.3 Numerical Calculations in Perturbative Formulation

According to the unperturbative formulation in the previous subsections, we summarize
the steps to numerically obtain all the parameters in the unperturbative formulation at
zer~temperature.

1. Solve the nonlinear equation (6) numerically.

2. Relate the integration of the square of v to No. This relation determines It as a
function of No.

3. With the known v and f.-l, obtain 'lLn and Cn'

4. Perform the integration in (20).

5. Obtain the orthogonal matrix together with En according to (29).

6. Calculate Gnm and Snm.

The series of the steps demand troublesome numerical calculations. This price must
be paid for precisely estimating physical quantities of our system which is very much
complicated, nonlinear many-body one.

We' have actually done the calculatinos for v, It, Un, Cn~ En, Gnm and Snm with pa­
rameters: m(87Rb) = 1.42 x 10-25kg, the frequency of the spherical trap w = 27r x 200Hz,
S-wave scattering length a = 5.77nm, the number of atoms No=2000.

Our results for Cn and En are given below (Table 2). Note that they are close to each
other as n grow.

Table 2: Cn and En
n 1 2 3 4 5 10 20 30 40 50

Cn 1.14 2.68 4.40 6.22 8.08 17.73 37.48 57.36 77.30 97.25
En 1.83 3.39 5.07 6.84 8.66 18.16 37.78 57.61 77.51 97.49

We also have Gnm and Smn, for example, 5 x 5 matrices are shown for 1 to 5 of n,m.

G=

S=

0.996
-0.248

2.28 x 10-2

1.19 X 10-2

4.20 X 10-4

0.231
-2.91 x 10-2

1.61 X 10-3

5.64 X 10-4

1.44 X 10-5

0.250
0.938

-0.270
3.32 x 10-3

1.39 X 10-2

5.80 X 10-2

0.110
-1.91 x 10-2

1.58 X 10-4

4.75 X 10-4

4.82 X 10-2

0.259
0.929

-0.271
-1.50 x 10-2

1.12 X io-- 2

3.04 X 10-2

6.57 X 10-2

-1.29 X 10-2

-5.15 X 10-4

-1.21 X 10-3

-7.25 X 10-2

-0.248
-0.930
0.263

-2.81 X 10-4

-8.52 X 10-3

-1.75 X 10-2

~4.42 X 10-2

9.04 X 10-5

-2.88 X 10-3

1.15 X 10-2

8.38 X 10-2

0.234
0.935

-6.69 X 10-4

1.35 X 10-3

5.93 X 10-3

1.11 X 10-2

3.21 X 10-2

The behavior at large n can be seen below (Table 3).
We have Cnn ---+ 1 and Snn ---+ 0 with n ---+ oo,as should be.
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Table 3: Cnn and Snn

n Cnn Snn
1 0.996 0.232

10 -0.955 -1.14x10-2

20 -0.973 -3.96x10-3

30 -0.981 -2.13x 10-3

40 0.985 1.38x 10-3

50 0.992 1.21 x 10-3

4 Quantum Correction

With the unpertubative formulation, we are now ready to develop Feynman diagram
method as usual. Then the unperturbative propagators are 2x2-matrix ones GO,ij in
(40) rv (43) and the interaction Hamiltonian is in (10). It should be remarked that the
Feynman diagram method is formulated not in momentum space, but in configuration
space, due to absence of space-translational invariance.

Let us demonstrate a loop calculation of quantum corrections to the GP eq. as an
example of utilizing the Feynman diagram method. We calculate tadpole diagram at
one-loop level: The Feynman diagrams to be evaluated are

••----~ + ••----0 = a

The first diagram (at tree level) represents the propagator from x' to x with GP term
at the end. The second diagram is the .quantum correction. The sum of the contributions
at tree and one-loop levels leads to

GO,ij(X', x; t' - t) [GP term(x) + loop(x)] = O. (44)

Since x' is arbitrary, this equation gives us

[- 2~ '\7' + Vex) - JL +gv'(x) + igGo,;j(x, x) + 2igGo,;;(x, X)] v(x) = o. (45)

GO,ii(X, x) and GO,ij(X, x) are defined as

i 00

GO,ii(X, x) == -2 L [CntCmn + SntSnm] 'lLt(x)um(x) , (46)
t,m.,n=l

00

GO,ij(X,X) == i L CntSnmUt(x)um(x). (47)
t,m,n=l

Put (46), (47) into (45), one can get

[- ~: '\7' + V (x) - JL + gv' (x)

+g L (CnlCnm - CnlSnm + Snl Smn)1.J,t(X)um(X)]V(X) = O. (48)
l,ln,n
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(49)

This way GP eq. (6) is modified, the last term in (48) being quantum correction. Our
calculation is neither Hartree-Fock approximation nor Thomas-Fermi one.

We comment that this procedure above amounts to calculating quantum correction to
the effective action, giving the one-loop order correction to the GP equation.

5 Finite Temperature Effect

Once the field-theoretical formulation at zero-temperature has been established, it is
formally straightforward to extend it to thermal situations, in particular, to fineite­
temperature case. (Here we use the expression "formally straightforward" with the reser­
vation that the physical situation under consideration is not so different from that at
zero-temperature that the same unperturbative formulation as at zero-temperature can
be applied. If thermal effects are very large, then one has to reformulate the unperturba­
tive formulation and the extension to thermal situation is never straightforward. In what
follows, we restrict ourselves to the situation in which the unperturbative formulation is
not so much influenced by thermal effects.) For the purpose to the extension from zero­
temperature case to finite-temperature one, we take TFD formalism [6].

Details of TFD formalism can be found in [6], and is not repeated here. The essence
of TFD is as follows : Each degree of freedom is doubled, an original operator called
"non-tilde" one, and a new operator called "tilde one". Then "thermal Bogoliubov trans­
formation" between non-tilde and tilde operators in the unperturbative formulation is
introduced, so that "thermal vacuum" is defined without ambiguity. Physical thermal
averages are given by the pure-state averages of non-tilde operators, sandwiched with the
thermal vacua. Let us explicitly show the unperturbative propagators below.

5.1 Thermal Propagator

We introduce another column notation with respect to tilde and non-tilde field operators
(Do not confuse this column notation with that in (37) and (38).);

{
cpl = cp , cp2 = cpt

<pl = cpt , <p2 = _cp .

In our present case, the zero-temperature propagators in (40) rv (43) form a 2x2­
matrix, so at finite-temperature, we have 4x4-matrix propagator. The resultant unper­
turbative propagators become

G I-tV ( I·t t ' ) - ~GI-tV ( I. t' ){3,ij X, X , ' - - L {3,ij,n x, X ,t - ,
n

(50)
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where the parameters in the thermal Bogoliubov transformation are

{

c((}n) = cosh((}n) = 1Vl-e- f3En

(() ) . h((} ) e-[3En /2
S n = SIn n = V

l-e- i3En

and G6~ij,n and G6~ij,n are, for example,

00

GIl ( f. t t') - '(}(t t') ~. C C () (') -fEn{t-t')O,ll,n X, x, - = -1. ,- L.., nl nmUl X U m X e .1

l,m=1
00

'(}(t' t) ~ S S (') () -l..E (t'_t)- 1. ,-- L.., nl nm'Ul X U m X e "It ,
l,m=l

00

G~~ll (x, x'; t - t') == i(}(t' - t) L CnlCnmUl(X )um(x')e-kEn{tl-t)
l,m=l

(52)

(53)

00

+ i(}(t - t') L SnlSnmUl(X)Um(x')e-~En{t-tl). (54)
l,m=l

5.2 Evaluation of Thermal Fluctuation to the GP eq.

The unperturbative thermal prop~gators were calculated. Then in~TFD the interaction

Hamiltonian is given by Hint - Hint, where Hint is in (10) and Hillt is obtained from
replacing all the non-tilde operators with the corresponding tilde ones.

From the Feynman diagram method in TFD, we can now evaluate the effect of thermal
fluctuation to the GP equation. The diagrams to be calculated is the same one in zero­
temperature, except that the number of diagrams becomes larger because of the indices
11, v. The result is

G~~j(x', x; t' - t) [GP term(x) + igG~~j(x, x) + 2igG~~i(X, x)] = O. (55)

Since x' is arbitrary, this implies

[- ;~ \7' + V(x) - Jl + gv'(x) + igG~~j(x, x) + 2igG~~i(X, X)] v(x) = o. (56)

Put thermal propagators into (56), one can get

Now we have the generalized GP eq. which contains quantum and thermal fluctuations,
and we will consider about this equation a little more. In Sec. 3.3, the behaviors of matrix
Cnm and Smn are studied by numerical calculation, and we confirmed the asymptotic
behavior of these matrices as

n,1H-->00 -

-----t onm
n,~oo 0
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We also see the asymptotic behavior of coth ( {3~n ):

tl (!3En) En~OO 1co 1 -2- ---+ . (59)

If there is the number n' which satisfies asymptotic behavior (58) and (59), i.e., Cn'n' ~ 1,
Sn'n' ~ 0 and coth(jJ~n') ~ 1, one can approximate (57) as

or

From relation (15),

[
1i2

- 2m\!2 + V(x) - J-L + gv2(x)

n' (!3En)+g];~ coth -2- (Cn1Cnm - CnlSmn + SnlSmn)Ul(X)'lLm(x)

+go3(a:)- 9 to un ( a: )un(a:)] v(a:) = 0.(62)

This equation is different from Hartree-Fock-Bogoliubov (HFB) approximated equa­
tion [10, 9] at the following points: First, the HFB approximation contains only (<pt (x )<p(x)),
(<p(x)<p(x)) terms, and doesn't have (<p(x)<pt(x)), (<pt(x)<pt(x)) terms. Second, (57) have
a delta function proportional to the coupling constant g as gb3 (x).

5.3 Numerical Evaluation of the Thermal Correction to the GP
Eq.

We solved (62) using the following parameters: m(87Rb) = 1.42 x 10-25kg, the frequency
of the spherical trap w = 21f x 200Hz, S-wave scattering length a = 5.77nm, the number
of atoms No=2000 and temperature T = 100nK (FIG. 1). These parameters are the same
ones, used in [9].
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Gross-Pitaevskii eq. ­
Generalized GP eq. -------

234 5
radial destance (harmonic oscillator length un~s)

6 7

FIG. 1. This figure contains plots of the solution of the GP
eq.(solid line) and generalized GP eq. (62)(dotted line).

6 Summary

We formulate a quantum field theory, at zero-temperature and finite-temperature for
the BEC systems. In zero-temperature case it is essential to introduce the generalized
Bogoliubov transformation.

In order to treat finite-temperature case, TFD formalism is applied.
For illustration, we performed necessary numerical calculations and obtained quan­

tum corrections to the Gross-Pitaevskii equation at zero-temperature, and quantum and
thermal corrections to it at finite-temperature.
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