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FROM QUANTUM INFORMATION TO QUANTUM
TELEPORTATION

MASANORI OHYA

1. INTRODUCTION

After Shannon, great development has been made in communica-
tion of information. Shannon’s information theory is now linked to
several different fields such as mathematics, physics, economics, life
science. In the same vein, the information theory on quantum me-
chanics, so-called quantum information theory, is an indiespensable
foundation in recent science and technology, in particular, to study
optical communication, quantum computer and quantum chaos[23,
27, 25].

In this report, we discuss the fundamentals of quantum information|[1,
17, 19, 27] and apply them to study the chaos of quantum dynamical
systems[25, 13| and quantum computer[31, 6, 26, 29].

We first review the fundamentals of quantum information, and we
explain how to apply them to construct a ”chaos degree” measur-
ing the chaos of dynamics[21, 25]. Further we discuss the quantum
teleportation process|2, 14, 9, 10] in a mathematical vein of quantum
channel.

2. FUNDAMENTALS IN QUANTUM INFORMATION

Fundamental mathematical concepts in quantum information the-
ory are quantum entropy describing the amount of information and
quantum channel describing the dynamics associated with informa-
tion communication.

The concept of channel is not only useful in information theory but
also a convenient mathematical tool to treat several physical dynamics
in a unified way[17].

In classical systems, an input (or initial) system is described by the
set of all random variables A = M () and its state space & = P ()
and an output (or final) system is by M () and P (Q).

A quantum input system is described by the set A =B (H) of all
bounded linear operators on H and & is the set T'(H) of all density
operators on H . An output system is A = B (’ﬁ) and G=T (ﬁ) .
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More general quantum system is described by a C*-algebra A and its
state space G . .

In any case, a channel is a mapping from & to &. Almost all
physical transformations are described by this mapping.

DEFINITION 2.1. :Let A* be a channel from & to 6.

(1) A* is linear if A*(Ap+ (1= X)) = A*@o+ (1 — A\)A*Y holds for
all o, € & and any X € [0, 1].

(2) A* is completely positive (C.P.) if A* is linear and its dual A :
A — A satisfies

> AINATA)A; >0

i,j=1

for any n € N and any {A;} C A4, {A;} C A.

Most of channels appeared in physical processes are the C.P. channels[19].
For instance, the open system dynamics can be written as follows: If a
system ¥; interacts with an external system ¥, described by another
Hilbert space K and the initial states of ¥; and X, are p and o, re-
spectively, then the combined state 6; of ¥; and ¥, at time ¢ after the
interaction between two systems is given by 6; = U;(p ® o)U},where
U; = exp(—itH) with the total Hamiltonian H of ¥; and X;. A
channel is obtained by taking the partial trace w.r.t. K such as
p — Afp = tricb,.

The quantum entropy was introduced and developed to study some
physical problems such as irreversible behavior, symmetry breaking,
and it is an expression of the amount of information carried by a
state. Here we review three fundamental quantum entropies which
are important to study the information transmission processes.

Consider an quantum system described by a density operator on
a Hilbert space H. The entropy of a state p was introduced by von
Neumann [16, 27| as

S(p) = —trplogp.

The second entropy is the relative emtropy for two states p, o € SG(H),
which is defined by

9

_ [ trp(logp—logo) (p< o)
S(p,0) = { +00 (otherwise)

where p < 0 means that trcA = 0 = trpA =0 for any A > 0 [32].
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Let A* : §(H) — &(H) be a channel and define the compound state
by 0 = Y, e Ex ® A*Ey with a Schatten decomposition > e PxEx of
p, which expresses the correlation between the initial state p and the
final state A*p [17, 19]. Another useful entropy is the mutual entropy
[17] for a state p € §(H) and a channel A* , which is given by

I(p;A*) = sup{S(0e,p® A"p); E = {Ey}}

= sup {Zka(A*Ek,A*P); E= {Ek}} :
P

where the supremum is taken over all Schatten decompositions. The

mutual entropy expresses the amount of information trasmitted from
the initial state p to the final state A*p, so that it satisfies the funda-

mental inequality of Shannon type [30, 17]:

0 < I(p; A*) < min{S(p), S(A"p)}.

In Shannon’s communication theory in classical systems, p is a
probability distribution p = (px) and A* is a transition probability
(ti;) , so that the Schatten decomposition of p is unique and the com-
pound state of p and its output p (= p = (p;)) is the joint distribution
r = (r;;) with r;; = t;;p;. Then the above entropies become the
Shannon entropy and mutual entropy, respectively;

S(p Zpklogpk, (p; A*) = Emlogpp
J i

Such quantum entropies have been used to define the capacity of
channel [24, 28]and to study quantum communication processes [19].

3. CHAOS DEGREE

In the context of information dynamics, a chaos degree associated
with a dynamics in classical systems was introduced in [22]. It has
been applied to several dynamical maps such logistic map, Baker’s
transformation and Tinkerbel map with succesful explainations of
their chaotic characters[23, 13]. This chaos degree has several merits
compared with usual measures such as Lyapunov exponent.

Here we discuss the quantum version of the classical chaos degree,
which is defined by quantum entropies in Section 2, and we call the
quantum chaos degree the entropic quantum chaos degree. In order
to contain both classical and quantum cases, we define the entropic
chaos degree in C*-algebraic terninology. This setting will not be

— 891 —



WrF &

used in the sequel application, but for mathematical completeness we
first discuss the C*-algebraic setting.

Let (A, &) be an input C* system and (A4, &) be an output C*
system; namely, A is a C* algebra with unit I and & is the set of all
states on \A. We assume A = A for simplicity. For a weak* compact
convex subset S (called the reference space) of G, take a state ¢ from

the set S and let
p = / wdii,
S

be an extremal orthogonal decomposition of ¢ in S, which describes
the degree of mixture of ¢ in the reference space S. The measure y,,
is not uniquely determined unless S is the Schoque simplex, so that
the set of all such measures is denoted by M, (S) . The entropic chaos
degree with respect to ¢ € S and a channel A* is defined by

D* (i) = int{ [ 85 (0p) dugin, € M (S)} (31

where S5 (A*p) is the mixing entropy of a state ¢ in the reference
space S [24]. When S =6, DS (p; A*) is simply written asD (p; A*).
This DS (p; A*) contains the classical chaos degree and the quantum
one.

The classical entropic chaos degree is the case that A is abelian and
¢ is the probability disribution of an orbit generated by a dynamics
(channel) A% ¢ = >, prbi, where §j is the delta measure such as

o (J) = { (1) 8: ; ;; . Then the claasical entropic chaos degree is

D.(p;A%) = prS(A™6y).
k

We explain the entropic chaos degree of a quantum system de-
scribed by a density operator. Let F* be a channel sending a state to
a state and p(™) be an intial state. After time ng, the state is F*"p("),
whose Schatten decomposition is denoted by 3=, A E{™). Then we
define a channel A}, on ®T"H by

Aoc=F0c® - -®F™0, cd € 6(H),

from which the entropic chaos degree (3.1) for the channels F* and
A}, are written as
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D, (p™); F*) = inf {Z S (FrEP); {E,‘J“’)}} ,
k
D, (p™);A;,) = inf{—,f;;xi’m)s (A;E,E”"));{E,E”")}},

where the infimum is taken over all Schatten decompositions of F*™0p.
We can judge whether the dynamics F* causes a chaos or not by
the value of D as

D > 0 and not constant <= chaotic,
D = constant <= quasi-chaotic,
D = 0 <= stable.

The classical version of this degree was applied to study the chaotic
behaviors of several nonlinear dynamics [13, 20]. The quantum en-
tropic chaos degree is applied to the analysis of quantum spin system[12]
and quantum Baker’s type transformation[15], and we could measure
the chaos of these systems. The information theoretical meaning of
this degree was explained in [22, 23].

4. QUANTUM CHAOS DEGREE

In this section, we apply it to study the appearance of chaos in
quantum spin systems[12]. The chaos degree defined in the previous
section has following properties.

THEOREM 4.1. For any p = Y _, \Er € 6(H), F* : 6(H) —
S(H) , and A}, : G (QTH) — G (®TH), the following statements
hold.

(1) Let U; be a unitary operator satisfying U; = exp (itH) for any
teR.

If F*p = AdU; (p) = UspUy; , then D, (p; F*) = D, (p; A,) = 0.

(2) Let o be a fixed state on H. If F*p = o, then D, (p; F*) =
Dy (p; Ar,) = S (o).

(3) Let A be a fixed positive real number. If F*p = e *p+(1 — e™*) 0,
then limy oDy (p; F*) = limy—eo Dy (p; A},) = S (0) .

(4) Let { P} be the positive operated measure and F*p = ), PipP.
Then D, (p; F*) = D, (p;Ak,) = constant for any j,m € N,
that is, F* is quasi-chaotic. If [Py, p] = 0, then D, (p; F*) =
D, (p; Ay,) = 0, that is, F* is stable.
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The proof of this theorem is given in [12]. We will apply the quan-
tum entropic chaos degree to spin 1/2 system. See [12] again for the
details.

Let X = (1,2, z3) be a vector in R satisfying H)?H =,/33 12

=11
< 1 and I be the identity 2 x 2 matrlx Any state p in a spin 1/2
system is expressed as

p—5(1+a X)

where & = (01, 02,03) is the Pauli spin matrix vector;

01 0 —i 10
G1=\10/)%2T\ i 0 )07\ 0 -1 )

Let f be a non-linear map from R3 to R3 satisfying ” f (X: ) “ <1
for any X € R? with ”)? H < 1. A channel F* is defined by

for any state p.

We now define Baker’s type map and see whether this map produces
the chaos. For any vector X = (z1,T2,73) on R3, we consider the
following map f: R3 - R3 :

<0)

fl (mlax2a$3) _% I
1
<m< )

f($1,$2,.’1?3) =
f2 (%1, 2,23) (O

where,

fl ($17$27$3) = (2(1 (.’131 + _1") - i) %CL ($2 + \_}3) - %70)

1

2
fo(z1,22,23) = (2a (:vl + —) —v2a — \/Lﬁ, %a (.’L’z + \2) + \}ia, — ok

The entropic chaos degree D (p(™); F*)and D (p™); A%,) can be
computed [12], and the result of D (p(™); A¥,) is shown in Fig. 4.1 for
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an initial value X = (0.3,0.3,0.3). We took 740 different a’s between
0 and 1 with m = 1000, ny = 2000.

D,(p:A,)

06

05

04

03

02

04

Jl
0 L 1 1 o 1 — 1 L 1

]
00 041 02 03 04 05 08 07 02 09 a

Figure 4.1: The change of D(p(”);A:,,) wrt. a

The result shows that the quantum dynamica constructed by Bak-
er’s type transformation is stable in 0 < a < 0.5 and chaotic in 0.5
< a < 1.0. Though there are several approaches to study chaotic
behaviors of quantum systems, we used a new quantity to measure
the degree of chaos for a quantum system. Our chaos degree has the
following merits:(1) once the channel A*, describing the dynamics of
a quantum system, is given, it is easy to compute this degree numer-
ically; (2) the argorithm computing the degree is easily set for any
quantum state.

5. QUANTUM TELEPORTATION

Quantum teleportation has been introduced by Benett et al. [3] and
discussed by a number of authors in the framework of the singlet state
[4]. Recently, a rigorous formulation of the teleportation problem of
arbitrary quantum states by means of quantum channel was given
in [13] based on the general channel theoretical formulation of the
quantum information theory. Here we report some results by rigrous
studies of the teleportation processes in [2, 9, 10].

The following is a generalization of the channel theoretical approach
to the teleportation problem proposed by [13]:

Step 0:: A girl named Alice has an unknown quantum state p
on (a N-dimensional) Hilbert space H; and she was asked to
teleport it to a boy named Bob.
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Step 1:: For this purpose, we need two other Hilbert spaces Hy
and Hs, H, is attached to Alice and Hj is attached to Bob. Pre-
arrange a so-called entangled state o on ‘Hy; ® H3 having certain
correlations and prepare an ensemble of the combined system in
the state p® o on H; ® Ha ® Hs.

Step 2:: One then fixes a family of mutually orthogonal projec-
tions (Fym)y,,—; on the Hilbert space H; ® H; corresponding to
an observable F' := Y 2z mFnm, and for a fixed one pair of in-

n,m

dices n, m, Alice performs a first kind incomplete measurement,
involving only the H; ® H, part of the system in the state p®o,
which filters the value z,,,, that is, after measurement on the
given ensemble p ® o of identically prepared systems, only those
where F' shows the value z,,, are allowed to pass. According
to the von Neumann rule, after Alice’s measurement, the state
becomes

p(123) — (an X l)p ® U(an ® 1)
e tl’123(an ® 1)p ® U(an X 1)

where tryo3 is the full trace on the Hilbert space H; ® Hs ® Hs.

Step 3:: Bob is informed which measurement was done by Alice.
This is equivalent to transmit the information that the eigenvalue
znm Was detected. This information is transmitted from Alice to
Bob without disturbance and by means of classical tools.

Step 4:: Making only partial measurements on the third part on
the system in the state pﬁ,ﬁm means that Bob will control a state
Anm(p) on Hs given by the partial trace on H; ® Hs of the state

(123) .
pnm ~ (after Alice’s measurement)
Awm(p) = tri 95113?)

(an®1)p®0(an® 1)

t"1'123(1'7"rz.‘rn ® 1)P ® U(an X 1)
Thus the whole teleportation scheme given by the family (Fn)
and the entangled state o can be characterized by the family

(Anm) of channels from the set of states on H; into the set of
states on H3 and the family (p,m) given by

an(P) = tr123(F'nm ® l)p X O'(an X 1)

of the probabilities that Alice’s measurement according to the
observable F' will show the value znm.

= {trys

The teleportation scheme works perfectly with respect to a certain
class G of states p on H; if the following conditions are fulfilled.
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(E1): For each n, m there exists a unitary operator uy,, : H; — Hs
such that

Anm(p) = Unm P u:r,m (P € 6)
(E2):

anm(.o) =1 (p€ )

nm

: (E1) means that Bob can reconstruct the original state p by uni-
tary keys {unm} provided to him.

: (E2) means that Bob will succeed to find a proper key with cer-
tainty.

Such a teleportation process can be classified into two cases [2],
where we discussed to find the solutions of the teleportation in each
case and the conditions of the uniqueness of unitary key. Along the
paper [2], we here report the results constructing more realistic tele-
portation models.

In the papers [3, 4], the authors used EPR spin pair to construct a
teleportation model. In order to have a more handy model, we here
use coherent states to construct a model. One of the main points for
such a construction is how to prepare the entangled state. The EPR
entangled state used in [3] can be identified with the splitting of a
one particle state, so that the teleportation model of Bennett et al.
can be described in terms of Fock spaces and splittings, which makes
us possible to work the whole teleportation process in general beam
splitting scheme. Moreover to work with beams having a fixed num-
ber of particles seems to be not realistic, especially in the case of large
distance between Alice and Bob, because we have to take into account
that the beams will lose particles (or energy). For that reason one
should use a class of beams being insensitive to this loss of particles.
That and other arguments lead to superpositions of coherent beams.

In this report, we discuss the construction, given in [9], of a telepor-
tation model being perfect in the sense of conditions (E1) and (E2),
where we take the Boson Fock space I'(L*(G)) := H; = H2 = H3
with a certain class p of states on this Fock space. Then we con-
sider a teleportation model where the entangled state o is given by
the splitting of a superposition of certain coherent states. Unfortu-
nately this model doesn’t work perfectly, that is, neither (E2) nor (E1)
hold. However this model is more realistic than the perfect model,
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and we show that this model provides a nice approximation to be per-
fect. To estimate the difference between the perfect teleportation and
non-perfect teleportation, we add a further step in the teleportation
scheme:

Step 5:: Bob will perform a measurement on his part of the sys-
tem according to the projection

F, :=1—|exp(0) >< exp(0)|
where |exp(0) >< exp(0)| denotes the vacuum state (the coher-
ent state with density 0).

Then our new teleportation channels (we denote it again by Anm)
have the form

(an®F+)p®U(an®F+)
tI‘123(1:;'nm &® F+)p ® O'(an & F+)
and the corresponding probabilities are
Pram(p) = tr12s(Fm ® F}) p Q@ 0(Frm ® F)
For this teleportation scheme, (E1) is fulfilled. Furthermore we get

;pnm(p) = 1 4(-1(.7—\_/'{51;6“1 (—-> 1 (d — +OO))

Anm(p) = t1'12

Here N denotes the dimension of the Hilbert space and d is the expec-
tation value of the total number of particles (or energy) of the beam,
so that in the case of high density (or energy) “d — +00” of the beam
the model works perfectly. Mathematical details of the above results
are given in [9]. ‘
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