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We analyse new kinetic equation for systems with a multistep potential of interaction
proposed by us resently. This potential consists of the hard sphere part and a set of attractive
and repulsive walls. Such a model is the unification of many previous semi-phenomenological
kinetic theories of dense gases and fluids. For specific parameters of the multistep potential of
interaction the obtained results rearrange to those ones of previous kinetic theories by means
of the standard Chapman-Enskog method. As a demonstration that our approach allows an
accurate reproduction of experimental and MD data for transport coefficients in a wide density
temperature range, we present results of numerical computation for argon along a curve of
saturation and their comparison with experimental data available and MD simulations.

In present paper, we consider a new kinetic equation for systems with a multistep potential of interaction
(MSPI). This potential consists of the hard sphere part and of a system of attractive and repulsive walls. Such a
model is a generalization of SET (RET, MET) [1,2], DRS (RDRS) [3] and KMFT theories [4]. The H-theorem
for this equation has been proved in [5], a normal solution has been published in our recent paper [6]. For specific
parameters of model interaction potential in shape of the multistep function, the obtained results rearrange to
those of the SET (RET, MET), DRS (RDRS) or KMFT theories by means of the standard Chapman-Enskog
method [7]. In view of this, new theory can be considered as a generalized one which in some specific cases
arrives at the results of previous theories and in such a way displays the connection between of them.

Let us consider a system of N classical particles of mass m enclosed in volume V when N -t 00 and
V -t 00, provided N IV = const. Particles interact by means of a multistep potential of interaction (MSPI)
CPij == cp(lfi - fjJ) == cp(lfiil) == cp(rij) given in a form of a multistep function:

rij < uo,
< rij < Uk; k = I, ... ,N',
< rij'

(1)
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FIG. 1.

Here, N* is the total number of attractive and repulsive
walls except the hard sphere one. For our convenience,
we distinguish systems of attractive and repulsive walls,
Fig. 1.

Let one has n* repulsive walls, separated by the dis
tances Uri and having heights &ri > 0, i = 1, ... ,n*; and
m* attractive walls with the parameters Uaj and /:;.caj > 0,
j = 1, ... , m*, respectively. Uo is the location of the
hard sphere wall. It is obvious that n* + m' = N*,
/:;. cri = Cd - Cri+l, /:;. Caj = Caj+l - Caj. In such a
way the parameters uo, n°, Uri, /:;.cri, m*, Uaj, /:;.caj
define the multistep potential of interaction completely.
For MSPI the region n of binary interactions consists
of limt>r(k)-++o[uk- /:;.r(kl,uk+ /:;.r(k)j, {k = O, ... ,N'},
where /:;.r(Ol -t +0 due to the singular nature of the po
tential under consideration. This potential has the finite
range of action max{ud = UN' > 0. In geometrical
interpretation, for interaction area one has a set of con
centric spheres of radii Uk, k = 0, ... , N' and the MSPI
has then the following typical dimensions: /:;.ro= maxi/:;.
r(kl} -t +0, {k = O, ... ,N*}, /:;.u =min{uk -uk-d > 0,

{k = 1, ... , N* }, /:;. U max = max{ud = Ua=., {k = 0, ... , N*}, and the folloving typical times (corresponding
to those dimensions): TO =Mo/lgol -t +0 is the interaction time on each of the walls separately; /:;.7 =/:;.ullgol
is the time of motion between the two nearest neighboring walls; TtotaJ = umax/lgol is the time of motion of
the whole system of walls in MSPI for some pair of particles, where go is an average relative velocity (of two
particles). As far as interaction in areas between the walls (horizontal steps) is absent, one may introduce some
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average time of a free motion in a system Tf, which depends on the MSPI geometry and the particle density.
And because of TO -+ +0, !:!.T > 0, we see that the time Tf can be scaled to an arbitrary small value by virtue
of a geometrical changing of the potential shape and increasing the particle density. The following inequality
then holds: TO « Tf «!:!.T ~ Ttotal ~ Tm (condition of a time hierarhy). Similar inequality between different
time scales exists in the Boltzmann kinetic theory: Te « Tf « Tm , where Te is the interaction (collision) time,
Tm is the the characteristic scale of time for hydrodynamic (macroscopic) variables.

The well known operator of a pair interaction between two particles in the Boltzmann theory contains a limit
T -+ -00 which physically means consideration of an interaction dynamics during the time ITI far more longer
than interaction time Te , Le. ITIITe -+ 00. In such a way, the parameter TO appearing in the general structure
for the collision operator derived within the frame of non-equilibrium statistical operator method [5,8-10]

I eol1(Xl;t) = JdX2 L(I,2) .L.~OOeiL2Tg2(fl,iS;t)!I(Xl;t+T)!I(X2;t+T)
"0

(2)

may be identified with TO' and !:!.ro :=!:!.r(; = Toigol. In equation (2) we use notations as usual: x = {r,p} is
a set of phase space variables, g2 is a binary correlation function, 11 (x; t) is one-particle distribution function,
and L2 = L~O) + L(I, 2), where L~O) and L(1,2) are two-particle Liouville operators [8-10] of the free motion
and interaction, respectively. Taking into account that !I is continuous in arbitrary point of space and g2 is
continuous over r12 out of the region 0, and the evidence of the limit T -+ -0, we understand that the collision
integral for MSPI is split into several parts. Physically this means that during the time interval of order of
free motion Tf, two particles can interact only at one of the walls of the MSPI. Interaction of the same pair of
particles during this time interval in several subregions 0 is impossible. Moreover, if one considers a separate
pair of particles, it appears that in space of velocities their interaction at one of the walls does not depend on
interaction at the rest ones. It is caused by the fact that during the time of motion between neighboring walls,
the pair of particles interacts many times with the medium and velocity correlations weaken. So, during some
interaction of the pair of particles at a potential wall, this pair does not "remember" its velocities after the
previous "meeting". The great part of configurational correlations conserves and is taken into account by the
factor g2. However, the property of additivity for collision integral is broken, if the condition of a time hierarhy
is not fulfilled. In this case one should consider complex interference phenomena.

We see that all parts of the collision integral will have the same structure. In order to obtain analytical
expressions for them, it is necessary to consider the action of two-particle operator of evolution lim eiL2T at

T-t-O

the external r12 = ak + !:!.ro and internal r12 = ak - !:!.ro surfaces of the sphere of radius ak. Going similarly to
the derivation of the kinetic equation of the RET theory [1,2,11] and taking into account the system of attractive
and repulsive walls, one obtains the following kinetic equation:

(3)

where gi := gi (r1 , r21 n (t), P(t)) is defined in the usual way from the maximum of the entropy functional and

in its turn is the functional of local values of density n(fl; t) and inverse temperature P(fl; t) = II (kBT), kB is
the Boltzmann constant and T is the local temperature. In (3) T is an operator which describes interaction of
two particles in presence of MSPI:

n'" m*

T ='As + L Tri + L Taj , Ths = 0'5Jda o-g 8(ag){ <5 (rl - is + aat) Ba(a) - <5 (ri - is - aat)} . (4)
i==1 j==1

The last expression is nothing but the operator of hard spheres interaction [12], ais the unit vector directed from
the second particle to the first one, g= ih - VI is the relative velocity. B a (a) is the velocities shift operator as in
the classical mechanics of elastic collisions. Tri and Taj are interaction operators at the ith repulsive and at the
jth attractive walls [5,6], respectively. In the absence of attractive and repulsive walls (!:!.cri = 0, i = 1, ... , n*,
!:!.caj = 0, j = 1, ... ,m*) kinetic equation (3) transfers to that one of the RET theory [1,2]. In the presence
of only one finite attractive wall (!:!.cri = 0, i = 1, ... ,n*, !:!.caj = 0, j = 2, ... , m*, !:!.Cal =I- 0) one obtains the
kinetic equation of the RDRS theory [13]. Moreover, it can be shown, that in the third special case when the
set of walls is merged with some smooth potential cPt and !:!.ari = ari - ari-l -+ 0, i = 1, ... , n* - 1, !:!.cri -+ 0,
n* -+ 00; !:!.aaj = aaj+l - aaj -+ 0, j = 1, ... , m* - 1, !:!.caj -+ 0, m* -+ 00; and - !:!.crd !:!.ari -+ cP~ (ari),
!:!.caj !:!.aaj -+ cP~(aaj), the kinetic equation (3) transfers to one of the KMFT theory [4].

The normal solution to the kinetic equation (3), and its analytical properties were studied by us in [6]. Here
we present the results of numerical computation for transport coefficients. As far as we are working with the
MSPI, this problem is not so trivial. If we have any information about real (smooth) potential of interaction,
we should deal with a large number of definition parameters. However, when interaction potential is known,
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(5)

the number of independent master parameters is greatly reduced. The first question appearing then is how
to represent an initial smooth interaction potential by a multistep one. Let us consider one possible way of
definition in which all distances between walls of the same kind are equal, Le.: !::"Uri = const, i = 1, ... , n*,
!::,.uaj = const, j = 1, ... , m*. Then, to define the model interaction potential one needs to set the position of
the hard sphere wall Uo, the position of the most removed attractive wall Urnax (Urnax = uaTn"), the number of
short lengths dividing repulsive area [uo, urnean] np , and the number of short lengths dividing attractive area
[urnean ,urnax] mp , where Urnean is the minimum position of a real interaction potential. Now MSPI is built.
Numbers of repulsive n* and attractive m* walls are uniquely determined via numbers of dividing lengths n p

and m p . In this representation of a real interaction potential by MSPI, one realizes original entwining of model
potential around real one.

The second question is the problem of optimal dividing, i.e. how to define the parameters uo, Urnax , np , mp

so that fair results are obtained already in the first approximation. We tried to solve this problem numerically.
Numerical computations of transport coefficients were carried out for Argon with the Lennard-Jones potential

[(aLJ ) 12 (aLJ )6]
¢real ~ ¢LJ = 4cLJ -:;:- - -:;:- ,

where aLJ = 3.405 A, CLJ / kB = 119.8 K.
The starting point in numerical analysis of transport coefficients of our theory are expressions for transport

coefficients of bulk and shear viscosities with additional equation for binary equilibrium correlation function
g~q of a system with potential in a form of multistep function. In our calculation we used for g~q the following
approximation: g~q(r) = g~O) (r) exp{ -,Bcp(r)} , where g~O) (r) is the binary equilibrium correlation function of
hard spheres of diameter ao. Its analytical expression is well known [14].

TABLE J. Parameters for different theories and calculations for transport coefficient 'T/. Bottom part contains square
displacement of results of SET (RET), MET (BH), DRS (RDRS) theories and our theory denoted by GDRS (i.e.
generalized DRS) from MD simulation. The GDRS result is the closest to MD simulation. The same parameters were
used for calculation of other transport coefficients.

SET (RET)
MET (BH)
DRS (RDRS)
GDRS
MD
0.0

SIGMZO=1.047
O'o(T) = O'LJ [1.068 + 0.3837 (kBT!cLJ)]! [1.000 + 0.4293 (kBT!cLJ)]
SIGMZO=0.891, SIGMZM=1.342, EZDRS=0.929
SIGMZO=0.940, SIGMZM=1.960, np=3, mp=9, n*=2, m*=6
SET (RET) MET (BH) DRS (RDRS)
0.01250 0.00794 0.000217

GDRS
0.000206

First, one calculates the transport coefficients along the gas-liquid saturation curve. There were 5 points of
calculation (Pi = mni, Ti , i = 1, ... ,5) along the curve of saturation for which such a transport coefficient
as the shear viscosity 1} is known from the MD simulation [4]. MSPI parameters np , m p , SIGMZO=ao/aLJ,
SIGMZM=arnax/aO were defined from the minimum of square displacement of the theory from corresponding
MD results. Parameters of the DRS (RDRS) theory were defined in much the same way: SIGMZO=ao/uLJ,
SIGMZM=a/ao, EDRS=c/cLJ, as well as for SET (RET) theory: SIGMZO=ao/aLJ. Table I shows the results.
Calculation of transport coefficients by different theories, their comparison with experimental data and MD
simulations are presented in Fig. 2. It is clear to see that GDRS results practically coincide with the experimental
data in a wide range of densities and temperatures.
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FIG. 2. Transport coefficients for Argon. a) bulk viscosity", along the liquid-vapour curve. x-axis is in units of
p(g/cm3

), namely: 1.4327, 1.4180, 1.1621 and 0.8017 for 1, 2, 3 and 4, respectively. b) shear viscosity 1]. x-axis is in
units of (p(g/cm3 ),T(K)), namely: PI = 1.43, TI = 83.9, P2 = 1.28, T 2 = 104.5, P3 = 1.16, T3 = 119.56 and P4 = 0.802,
T 4 = 147.1. c) 1] = 1](T) at P = Per; d) 1] =1](p) at T = 139.7 K. Experimental data plotted in c) and d) are taken from
[15].
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