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Abstract

We study the differential energy distribution of dark matter halos, carrying out cosmological N-body
simulation. We give an analytical formula of the differential energy distribution of dark matter in the
halos obtained by the numerical simulation. From the analytical formula we reconstruct the density
profile described by the Navarro, Frenk, & White (NFW) profile. The NFW profile is consistent with the
analytical formula of our fractional mass distribution. We find that a parameter in our analytical formula
of differential energy distribution which is related with the slope of inner cusp of dark halo. We obtain the
distribution function for the NFW profile which has sharp cut off at the high binding energy. We discuss
physical reason of form of the analytical formula.

1 Introduction

Tsallis’ non-extensive generalized statistics (Tsallis 1988) is paid attention in the area of statistics of a multi-
fractal system. In non-extensive system (long-range microscopy memory, long range forces, fractral space time)
the following generalized entropy has been proposed :
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where k is a positive constant. Optimization of Sy yields, for the canonical ensemble,
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and, when ¢ — 1, the Boltzmann-Gibbs result is recovered. In this statistics an expected value of any physical
variable is given by the Tsallis’ escort distribution :
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where {A;} are the eigenvalues of an arbitrary observable A.

Lavagno et al. (1998) have recently shown that fraction of peculiar velocity of cluster of galaxies (Bahcall
& Oh 1996) is well explained by the Tsallis escort integral,
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They obtained ¢ = 0.23 to fit the fraction of peculiar velocity of cluster of galaxies and is smaller than in our
case. There is a conjecture that ¢ of system approaches unity when the system proceeds relaxation (Tsallis
1999).

It is interesting that density profiles of galaxies and clusters of galaxies formed in cosmological, numerical
simulations have self-similar structure. Navarro, Frenk and White (1995, 1996, 1997; NFW) have shown in
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their N-body simulations of Cold Dark Matter (CDM) in the standard biased CDM and four power law spectra
with indices n = 0,—0.5, and —1, open CDM (£25 = 0.1) with power-law spectra (n = 0 and —1), and ACDM
cosmology that density profiles of dark halos have an universal profile described as

1
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Several investigators have shown that the formula provides a good fit to their numerical results (Cole and
Lacey 1996, Tormen, Bouchet & White 1997, Huss, Jain & Steinmmetz 1999, Thomas et al. 1998).

In this paper we give our recent study on the differential energy distribution of clusters in our numerical
results { Hanyu and Habe 2001). We find an analytical formula of the fractional mass distribution is fitted by
an analytical formula, which is similar to Tsallis escote distribution. Using the iteration method, we construct
the density profile from the analytical formula to show how the slope of the cusp of the density changes with
parameters in our analytical formula. We give some discussion on our results.

p(r) o (6)

2 Numerical simulation

We simulate SCDM model (e.g. Davis et al. 1985) (2 = 1, 05 = 0.67 , Hy = 100h km s™! Mpc~™!,and h = 0.5).

Numerical simulations are carried out using GRAPESPH code. GRAPE is a special purpose hardware
to calculate gravitation between N-body particles (Sugimoto et al. 1990). We combined Smoothed Particle
Hydrodynamics (SPH) (Monaghan, 1992) with GRAPE. We select massive halos of which mass is as large as
that of cluster of galaxies and calculate their density profile and the fractional mass distribution.

Mass of a CDM particle and a SPH particle are 5.89 x 101! M, and 3.10x 1019 M, respectively. Gravitational
softening length is 100 kpc. Both number of CDM and SPH particles are 29855, respectively. Size of the
simulation box is 80 Mpc.

3 Numerical results

3.1 Density distribution
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Figure 1 (left) shows a density profile (solid line) of our simulated typical rich cluster and the NFW profile
( dasshed line) with ¢ = 4.4 which fits well the numerical result. Density profiles of dark halos obtained by us

agree well with the NFW profile in the range from the gravitational softening length to raqq.

3.2 The differential energy distribution

We introduce the differential energy distribution, dM/de which gives the mass of dark matter in the dark halo

with binding energy between ¢ and ¢ + de, where ¢ is the specific binding energy,

and a relative potential, ¥ = —® + ®;. & is gravitational potential and we choose ®g to be such that a
distribution function, f,is f > 0 for ¢ > 0 and f = 0 for ¢ < 0. In our analysis,

e =V(r) - —v?
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GMoagg/7200. And we also introduce the fractional mass distribution as the differential energy distribution
divided by the total mass of the dark halo, N(¢) = dM/de/M.

Figure 1 (right) shows the fractional mass distribution (solid line) of the cluster. In figure 1 (right), we also
show N(e) (dashed line) given by

N(e) = N [1 —(1-q) (i)r/(qu) : (8)

€o

with ¢ = 0.667 and g = 1.47. Figure 1 (right) shows that equation (8) agrees well with our numerical results
in the range of 0.5 < € < 4. There is cut off near ¢ >~ 4. We find the fractional distribution N(g) can be fitted
by following formula, for ¢ ~ 0.6 — 0.7 and g >~ 1.2 — 1.5GMyqq/ 7200 for rich clusters in our numerical results.

We assume that phase-space distribution function f(x, v) depends €. At a radius r, velocity of a dark matter
particle of the binding energy, ¢, is v = /2(¥ — ¢). The density profile may be given as follows (Binney and
Tremaine 1987)

¥(r)
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where rg is the edge of the dark halo. From this equation, we may give f(e) as

1 d [ dp/d¥
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where €min = ¥(ry).
Equation (9) gives mass M as
M(r) = 1671‘2/ rdr
0
¥(r)
x/ F(E)[2(¥ — €)M 2de. (11)
0
From equation (11), the differential energy distribution is
dM(e)
") < sewato) (12)
where
rm(€)
g(e) = 16#2/ [2(¥ — €)]/?r%dr, (13)
0

and 7y, (g) is maximum radius that can reached by a particle of the binding energy «.
If we assume the density profile is the NFW profile, we get dM/de from the equations (10}, (12), and (13)
for the NFW profile.
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Figure 2 (left) shows the fractional mass distribution of NFW (solid line) obtained in this way and N(e)
(dashed line) given by equation (8). N(g) given by equation (8) is consistent with the NFW profile.
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4 The fractional mass distribution, density profile, and the distri-
bution function

We find that the NFW profile satisfies the fractional mass distribution given by equation (8) with ¢ ~ 0.6 -0.7.
We study how the density profile changes when we change the parameter ¢ and £; in equation (8). In this
study, we use an iteration method as shown in the next subsections.

4.1 The iteration method

Binney (1982, and see also Binney and Tremaine 1987) studied the phase space structure of galaxies of which
surface brightness is the de Vaucouleurs’ 7!/ law. We apply his method to our study of the phase space
structure of dark halo with the NFW profile. We obtain the density profile and the phase space distribution
which are consistent with equation (8), using the iteration method.

4.2 The density profile and the distribution function

Using the Binney’s iteration method, we reconstruct mass density profile . We confirm that dM(¢)/de char-
acterizes well the NFW profile.
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In figure 3 (left), we show density profiles for different ¢ but ¢ = 1.4. Smaller ¢ (e.g. ¢ = 0.5) results in
shallower core in the inner region. On the other hand, larger ¢ (¢ > 0.67) makes a cusp steeper than the NFW
profile, density profile approaches p o< =2 in the inner part, for ¢ — 1.

For various values of ¢p, the density profiles are similar to the NFW for ¢ = 0.6 . Absolute value of the
density depends on ey. Therefore, the slope of the cusp depends on only g, not &g.

Figure 3 (right) shows the distribution function, f, obtained by the iteration method for various values of ¢
. These curves show the same dependence on ¢ in 0 < € < 1. Peak values of f are different each other. We
also show the Boltzmannian distribution for comparison in figure 3 (right). For large ¢, peak value of f(¢) and
the maximum binding energy of the distribution become large. We have shown that the density profile with
large ¢ have the steep cusp. Therefore, sharp peak of f(¢) corresponds to the steep cusp.

5 Summary and Discussion

We analyze the universal density profile of dark halo proposed by NFW and its differential energy distribution.
Our main results are summarized as follows.

1. We study the fractional mass function N (¢) for dark halo obtained by our numerical simulation and find
its analytical formula which is the equation (8).

2. We show that the NFW profile is given by the equation (8).

3. We show that the slope of the cusp in the density profile changes with a value of the parameter ¢ in the
analytical formula.

We can regard that N(e) shows the statistical property of the NFW profile. If the NFW profile is universal,

g = 0.6 — 0.7 in equation (8). Different ¢ makes slope of a cusp different. Since ¢ plays an important role, we
should make clear what physical process determines ¢. Recent high resolution numerical simulation (Okamoto
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& Habe 1999, 2000) shows the steeper cusp, p < r~1% than the the NFW profile. This profile corresponds to
¢ =0.75 — 0.8. Isothermal profile, p « =2, corresponds to g = 1.

We study f(¢) for the NFW profile. The formula of this is not isothermal one nor the King formula
fx eflo’ — 1. f () for the NFW profile have the energy cut off at the high end of e. We should study
the reason why f(¢) has such a form. Lynden-Bell (1967) studied distribution function f(g) of a virialized
system. Maximizing the Boltzmann entropy of the system, resulting distribution is isothermal profile, p o< r=2.
In this case the system has infinite extend and infinite mass. This is not realistic for astronomical objects.
Cosmological simulations have shown that galaxies and clusters of galaxies formed in these simulations have
more rapid radial decline than isothermal in the outer part.

We note that the form of equations (8) is similar to the Tsallis’ escort distribution,

P(E,T")

£19/0-9)
POT) = [1— (1-:,)77,] : (14)

where T” is temperature parameter and ¢ is entropic index (Tsallis, Mendes, & Plastino, 1998).

We should study the reason why dark halo has the value of ¢ = 0.6 — 0.7 in the hierarchical clustering
scenarios. It is interesting to study the differential energy distribution of self-gravitational system formed in a
circumstance without hierarchical clustering to make clear mechanism what determines ¢ of the gravitational
system.

We would like to thank Sumiyoshi Abe, Masayuki Fujimoto, and Seiichi Yachi for helpful comments and
discussion.
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