
Application of density functional theory to impurity spectra in
liquid helium
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1 Spectroscopy in liquid helium

Spectroscopic measurements of impurity atoms and molecules in superfluid helium have been
attracting considerable interest in recent years [1, 2]. The repulsive force between an impurity
and helium atoms induces a bubble around the impurity. This leads to a weak perturbation of
helium atoms on the spectra of impurities. The line shifts and spectral shapes induced by the
helium perturbation provide information on the properties of the bubble in the quantum liquid
as well as the excited states of the impurity. Since the perturbation is weak, this method also
provides a unique tool for spectroscopic measurements of atomic clusters at low temperature
[2].

Because of its simplicity, perturbations on alkali-atom lines have been studied extensively
[1, 3, 4]. For cesium (Cs) atoms, there are two 8-tO-P transitions, the D1 (81/2 -+ P1/2) and D2

(81/2 -+ P3/2) lines, both of which are blue-shifted and acquire widths in a helium bath. The
shifts and widths of the two lines are different, and the D2 line has a skewed shape suggesting a
double-peak structure. These features were first analyzed with a collective vibration model of
the helium bubble [3, 4]. That model reproduced average peak shifts, but gave line widths less
than a half of observed ones. A more sophisticated analysis has been made treating the liquid
helium environment by the Path-Integral Monte-Carlo method [5]. However, the method is
very costly in computer resources and is difficult to apply to more complex systems. We will
show that a density functional theory (DFT) together with a statistical treatment of helium
configurations provides a simple and quantitative description for the helium perturbations.

2 Formalism

DFT-plus-statistical description of liquid helium

The energy of liquid helium in the DFT is assumed to have the form, E = Jdr1-lo(r) ,
where we adopt the Orsay-Paris functional [6],

Here, m is the mass of a helium atom and Pr is a coarse-grained density, and VLJ is a screened
Lennard-Jones potential.
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The effect of the impurity was treated by including in Eq. (1) a potential interaction,
vr(r), between the helium atoms and the impurity,

1i(r) = 1io(r) + vr(r)p(r). (2)

We approximate the vr(r) as a contact interaction,

27fa
vr(r) = -Pe(r),

me
(3)

where me is the electron mass and Pe(r) is the electron density of the impurity which is
calculated with the electronic DFT in Sec. 2. The scattering length, a, is determined from the
observed low-energy electron-helium cross section.

Utilizing the energy functional, E[p] = Jdr1i(r) , we calculate the density profile of liquid
helium, putting the impurity atom at the origin. Minimizing the grand potential at zero
temperature, n == E[p(r)] - p,N, leads to a Hartree-type equation

(4)

The equation is solved with the boundary condition that the density go to the bulk density
Po at large r. Results indicate a sharp rise in the helium density at r ~ 6 A. This corresponds
to the bubble radius.

We use the p(r) computed above to generate an ensemble of configurations of helium atoms
as follows. Take a large volume surrounding the alkali atom and denote it as V. This volume
includes N helium atoms on average, where N is given by Jv drp(r) = N. We randomly
sample N helium positions in V according to the density distribution p(r). This sampling
procedure gives probability distribution, w(r1,'" ,rN) = II~l(p(ri)/N).

Helium perturbation on spectra
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Orbital wave functions of valence elec
trons in impurity, 'l/J(r), are calculated us
ing DFT with Dirac wave functions and
kinetic energy operator. We need accurate
wave functions at large distances from the
atom, which cannot be achieved with the
traditional LDA functional due to the in
correct orbital eigenvalues and the incor
rect asymptotic behavior of the potential.
As is well known, these problems are di-
minished with the generalized gradient ap- 800 850 900 750 800

proximation (GGA), which was designed i..[nm) I..[nm]

to produce the correct asymptotic behav- Fig. 1 Cs D 1 and D2 excitation spectrum at dif-
ior of the potential. ferent helium pressure; P = 0, 10, and 20 atm.

We use first-order perturbation theory to evaluate the orbital shifts in the ensemble of
helium configurations T = (r1,' .. ,rN). The same helium configuration is used for the ground
state 81/2 and excited states P1/2 and P3/2, following the Frank-Condon principle. For 81/2

and P1/2 states, the energy shifts of the valence electron is then calculated as ~E(k) (T) =
(27fa/me ) I:i I'l/J(k) (ri) 1

2
, where k stands for orbital quantum numbers (fj) and either m state
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may be taken. For P3/2 states, the matrix elements depend on m and we have to diagonalize
a 4 x 4 matrix to get the energy shifts. We then obtain two eigenenergies, each of which is
doubly degenerate.

Each helium configuration produces an energy shift and possible splitting but the tran
sitions remain sharp. The line broadening comes from the ensemble average over helium
configurations. The line shape of the D 1 (Sl/2 --t P1/2) transition is given by

(5)

where E is a shift from the energy position of the free atom. For the D2 (Sl/2 --t P3/2)
transition, we have a similar expression but need to add the two eigenmodes.

To calculate line shapes of the Cs D transitions in liquid helium, we evaluated Eq. (5)
by sampling 100 000 helium configurations, generated according to the DFT density profiles.
The calculated energy shifts are added to the observed D lines of free Cs atom (.\ = 894.9 nm
for D 1 and 852.7 nm for D2 ). Then, the intensity is estimated by counting number of events
in bins of wavelength .6..\ = 0.1 nm. The obtained intensity spectra are shown in Fig. 1. The
D 1 line can be well approximated by a single Gaussian, while the D2 line has a double-peaked
structure. The calculated line shifts and shapes agree with experimental observations [3, 4].

3 Conclusion

We have developed a simple model to describe atomic spectra of impurities embedded in
the superfluid helium..Various features in the atomic spectrum of Cs, including line shifts,
broadening, and skewness, are nicely reproduced in our calculation without any adjustable
parameters. The model is simple enough to apply to more complex chromophores such as
molecules and clusters. Detailed analysis is found in our recent paper [7].
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