
Games as dynamical systems
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Formalization of games and description of players

The main topic of this paper is to discuss formalization of temporal structures in games,

which become essential especially when we consider the formation and the development of

rules among players through learning or evolution.

As is known well, Neumann and Morgenstern, in their book "Theory of Games and

Economic Behavior (1944)", introduced the theory of games, a powerful framework to deal

with the situation of multiple conflicting decision-makers. In this book, they referred to the

structural and conceptual difference between the problems a participant in a social exchange

economy meets and ordinary optimization problems (those that a isolated person, such as

Robinson Crusoe, meets). They discussed the mathematical structure for the participants in a

social exchange economy: "If two or more persons exchange goods with each other, then the

result for each one will depend in general not merely upon his own actions but on those of the

others as well." And in this case, "all maxima are desired at once." Every individual "can

determine the variables which describe his own actions but not those of the others, " while, in

addition, "those alien variables cannot, from his point ofview, be described by statistical

assumptions. "

In game theory, algebraic payoff matrices or game trees are adopted for the

formalization of game-like interactions, in which the above "alien variables" are called

strategies (complete plans). At this point, we should note that there is no description for

decision-making mechanisms of players in game theory, which allows us to center on the

investigation of the relation between decision makers. Most works on game theoretical

models investigate the solution of games on the assumption that players are rational. Rational

players are supposed to have informational and computational power unlimitedly, and assume

that others are also rational [Simon 1957]. And then, the rational solution of games are

supposed to be Nash Equilibria, in which every player cannot make his profit higher by

changing his strategy.

- 693-



Solution concept vs. description of players and games

Solution concept cannot be discussed without the description or assumption of players. As

players in the real world cannot be rational, if economics is the one for the real economies, an

important question is how real agents behave in game-like situations. Another important

question is whether bounded rational players can reach Nash equilibria ultimately by learning

or evolution.

Discussions for the first question are given in the next section. If the answer for the

second question is positive, we can safely say Nash equilibrium is a good estimation of the

limit of mutual learning process. Actually, the answer should vary according to what kind of

game structure we are supposed to deal with. (1) If there are (strong) pure Nash equilibria in a

game, what is the result of learning process? According to [Hofbauer 1988] and etc., we can

say they are basins of attraction of mutualleaming process within Nash equilibria. (2) What if

there are only mixed Nash equilibria? Unfortunately, we do not have clear answer for this

question at this point, but the conjecture of [Sato 2001] indicates that either chaotic behaviors

or Nash equilibria are the only possibility.

Bounded rationality.

Regarding the first question about the behavior of bounded-rational agents, there are two

issues to be investigated, which is also discussed in [Arthur 1994]; (1) our informational /

computational abilities, and (2) our inherent way of reasoning. For example, there exists a

theoretical solution for the game of chess from the viewpoint of game theory. Game theory

can derive this conclusion on the assumption that both players consider all the possible cases

caused by all the combinations of both players' actions deductively, and that players can

choose the complete, best plan of this game. However, possible moves in chess are said to be

10012°, which is impractical to trace. In the first place, this kind of deductive approach does

not always seem to be our daily decision-making process.
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How humans in the real world reason has been discussed in psychological studies [De

Groot 1965][Clark 1993]. According to these studies, we are moderately good at deductive

logic, and superb at seeing or recognizing or matching patterns -- behaviors that confer

obvious evolutionary benefits. When we encounter complicated problems, we look for some

patterns; simplify the problem by using patterns to construct temporary internal models or

hypotheses to work with. And then we carry out localized deductions based on our current

hypotheses and act on them. Through the feedback from the environment, we strengthen or

weaken our beliefs in our current hypotheses, discard ones that do not work anymore, and

replace them with new ones. This is rather inductive than deductive.

Recently, there have been a lot of attempts to create new economics based on players

with inductive reasoning. However, because bounded rationality has arbitrary level in

boundedness, there often exists a fear that a model using such agents may become ad hoc one.

One of the most successful frameworks based on non-rational agents is the Evolutionary

Game by Maynard Smith [Smith 1973]. In a sense, Evolutionary Game is an extreme

framework where inductive reasoning process completely dominates deductive one. It has

been developed up to now by many researchers both in economics and in biology (e.g.

[Kandori 1995]).

Formalization of players and games

As attempts of formalization of games, there have been two directions of researches

developed these days. One direction is to describe players' decision-making process by logic

[M. Kaneko 1996], which enables us to discuss players' deductive / inductive reasoning

process from a viewpoint of multi-modal logical process. The other direction is to describe

games as dynamical systems, in which players are also dynamical systems that autonomously

learn or evolve. Games / players as dynamical systems are first considered in [Rapoport 1947]

and [Rashevsky 1947], and recently have been developed in [Ikegami 1999], [Rossler 1994]

and [Akiyama 2000], where players' decision-making process are given by dynamical
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systems, and players' decisions affect the dynamics in game environment, which will affect

the players decision making.

Dynamical systems game

In [Akiyama 2000], K. Kaneko and I introduced "dynamical systems CDS) game framework"

to investigate games. A merit of the use of DS game framework is that it can naturally deal

with space-time structures that should exist in the real games. Another merit is that DS game

enables us to investigate, from viewpoints of dynamical systems, the developmental process

of social phenomena, which exist everywhere in our world but whose mathematical structure

has not been investigated well.

For example, fishers of Valenca a village in Brazil shared a single fishery early in this

century_ They gradually made rules to divide their estuary into various areas and allocated

those areas through mutual communications. They succeeded in avoiding tragedy by

improving the rules they used. Another example involves farmers of rice paddies in Miyawaki

in Japan. For hundreds of years, the farmers have succeeded in developing their rules to

allocate water. Under the rules, dozens of farmers change their own rice paddies every 10

years. In both cases, people used the information on the physical environment, and succeeded

in forming and maintaining cooperative states by time and area arrangement of their roles.

For games in our real world the space time structure, such as the geography of the

estuary, the rise and fall of the water, the growth of the pasture, and so on, is also important.

And we sometimes base cooperation on strategies involving space-time arrangements, for

example allocating the divided areas to fishermen, or using the common resources alternately,

and so on.
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Example of DS game

In [Akiyama 2002], K. Kaneko and I discussed the formation and the development of rules in

communities under social dilemma, by introducing an example of DS games, which we call

the "Lumberjacks' Dilemma, or LD, game."

Its schematic story is the following. There is a wooded hill where several lumberjacks

live. The lumberjacks can maximize their collective profit if they cooperate by waiting until

the trees are grown fully before felling them and sharing the profits. However, the lumberjack

who fells a given tree earlier than the others takes the entire profit for that tree. Thus each

lumberjack can maximize his personal profit by cutting trees earlier, and theoretically this is

the rational behavior. If all the lumberjacks do this, however, the hill will go bare, and there

will eventually be no profit. These circumstances inevitably bring about a dilemma.

Evolutionary simulations of this LD game, where game environment is described by a

certain dynamical system and players are described by evolving dynamical systems, showed

that there can be several types of cooperation rules to manage the dynamics of the tree.

Presented in Fig. 1 is the transition among such cooperation rules. As is seen in the fitness

chart of the LD game, which is placed at upper left, the fitness value of the generation begins

to rise step-by-step. At each epoch A, B, C and D with stepped plateaus, one type of game

dynamics specific to each epoch arises. We name these game dynamics as type A, B, C and

D, respectively. In these diagrams, the horizontal axis shows the round (time). The white tile

represents the action of "cutting," while the black tile represents "waiting." As is shown in the

lower-left figure of epoch A, the players assume an action cycle with a period of 5 - "wait,

cut, wait, cut and wait." The lumberjacks collect the lumber while allowing the tree to grow

appropriately. As generations pass, the dominant action dynamics shift to type B and to type

C, and then to type D, as shown in this figure to develop the rule to cooperate in a community.

These rules of cooperation are formed and shift with generations in spite of the dilemma

underlying our LD game. Stability of the dynamics of games formed by certain cooperation
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rules can be analyzed by the introduction of a kind of bifurcation diagram as seen in Fig. 2,

whose control parameters are players' strategies that change through mutual interactions.

Why dynamical systems approach?

If we try to obtain a certain amount of resources without fail, we actually need to manage the

dynamics of the resources. In this case, it is necessary to have a certain agreement for

cooperation. As a result, we will begin to take actions such as "raising the resources jointly

and then consuming them together" or "raising the resources and consuming them

alternately." In many real cases, it is essential to consider the space-time structure in the

environment, to avoid tragedy within social dilemmas.

One merit of the introduction of the dynamical-systems approach into the analysis of

games (and players) is that we can definitely describe the nature of dynamics and can cope

with the issues that are relevant to the management of dynamical resources. In the traditional

game theory, however, we cannot discuss such cooperation in the form of dynamics, let alone

explain the stability of the cooperative state. In the first place, it neither can describe, in

principle, the temporal change in resources nor can it show the effect of the dynamics of the

game environment.

As long as our world includes space-time structure by nature, there must be cases

where the dynamical systems approach for games becomes a powerful theoretical tool to

study various types of problems produced by multiple decision-makers.
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Fig. 2: Bifurcation diagram with players' strategies as control parameters
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