Rhombohedral structure observed in the computer simulations of block－copolymer melts

A．Saeki（1），F．Yonezawa（2）
（1）Comp．Sci \＆Eng．Dept．，Nagoya Univ．，Japan
（2）Dep．Phys．，Keio Univ．，Japan
Diblock copolymer melts show various ordered structures，such as cylinders（C），lamellae（L），and a gyroid structure（G），depending on the temperature and the constitution ratio of two different homopoly－ mers，each consisting of A or B monomers alone．A gyroid structure has a three－dimensional bicontinuous network with $I_{a 3 d}$ symmetry and negative Gauss curvature．

We carry out computer simulations of diblock copolymer melts，from which we discover a gyroid－ like structure between the cylinder phase and the lamellar phase．Our computer simulation of diblock copolymer melts is based on the scheme，the extended Cahn－Hilliard equations which enables systems to reach to the most stable state rather easily．

$$
\frac{\partial}{\partial t} \phi(\mathbf{r})=\triangle\left(-A \psi+u \psi^{3}-\mathcal{D} \triangle \psi\right)-B \psi, \quad \frac{\partial}{\partial t} \psi(\mathbf{r})=\phi(\mathbf{r})
$$

in which we have introduced the momentum of the field ϕ as a new term in addition to the ordinary terms in the CH equation．

The results of simulations are shown in Figs．1－3 in which the illustrations of the surface of a constant ψ value are presented from three different angles．

The unit cell of this gyroid－like structure is rhombohedral as shown in Fig．4．There are two ways to define the unit cell of rhombohedral－type，i．e．，a way in which the a－and b－axis are respectively orthogonal to c－axis，and the other way in which the each length of a －and b －and c －axis is taken to be the same． Here the former way is adopted．In Fig．4，both a－and b－axis are orthogonal to c－axis．The angle between the a －axis and the b －axis is $\pi / 3$ ．The length in the a－direction of a unit cell is the same as that in the b －direction．The ratio of the length in the a－direction（or b －direction）to the length in the c－direction is $1 / 2.1$ ；in other words，$a: c=1: 2.1$ ，which is found from our computer simulations．From analyzing Fig．4，we can decide the space group symmetry of this gyroid－like structure to belong to $R \overline{3} c$ ，where the index R represents rhombohedral，and $\overline{3}$ represents a three－fold rotoinvertion symmetry，while c means a glide reflection symmetry as to the c－axis．

From the recent studies of scattering experiments by Imai et al．，it has been shown that there exists a structure with $R \overline{3} c$ symmetry which appears in the process of L－to－G transition in the nonionic surfac－ tant／water system．
［1］M．Shick，Physica A 251 （1998） 1
［2］M．Bahiana and Y．Oono，Phys．Rev．A41（1990） 6763
［3］S．Qi and Z．Wang，Phys．Rev．E55（1997） 1682
［4］T．Teramoto et al．，，JPSJ 69 （2000） 679
［5］M．Imai et al．，Phys．Rev．E62（2000） 6865

