<table>
<thead>
<tr>
<th>Title</th>
<th>P16 Rhombohedral structure observed in the computer simulations of block-copolymer melts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Saeki, A.; Yonezawa, F.</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (2002), 79(2): 250-250</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-11-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/97327</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Rhombohedral structure observed in the computer simulations of block-copolymer melts

A. Saeki (1), F. Yonezawa (2)
(1) Comp. Sci & Eng. Dept., Nagoya Univ., Japan
(2) Dep. Phys., Keio Univ., Japan

Diblock copolymer melts show various ordered structures, such as cylinders(C), lamellae(L), and a gyroid structure(G), depending on the temperature and the constitution ratio of two different homopolymers, each consisting of A or B monomers alone. A gyroid structure has a three-dimensional bicontinuous network with \(I_{h3d} \) symmetry and negative Gauss curvature.

We carry out computer simulations of diblock copolymer melts, from which we discover a gyroid-like structure between the cylinder phase and the lamellar phase. Our computer simulation of diblock copolymer melts is based on the scheme, the extended Cahn-Hilliard equations which enables systems to reach to the most stable state rather easily.

\[
\frac{\partial}{\partial t} \phi(r) = \Delta \left(-A\psi + \psi^3 - D\Delta \psi \right) - B\psi, \quad \frac{\partial}{\partial t} \psi(r) = \phi(r),
\]

in which we have introduced the momentum of the field \(\phi \) as a new term in addition to the ordinary terms in the CH equation.

The results of simulations are shown in Figs. 1-3 in which the illustrations of the surface of a constant \(\phi \) value are presented from three different angles.

![Fig.1](Fig1.png) ![Fig.2](Fig2.png) ![Fig.3](Fig3.png) ![Fig.4](Fig4.png)

The unit cell of this gyroid-like structure is rhombohedral as shown in Fig.4. There are two ways to define the unit cell of rhombohedral-type, i.e., a way in which the a- and b-axis are respectively orthogonal to c-axis, and the other way in which the each length of a- and b- and c-axis is taken to be the same. Here the former way is adopted. In Fig.4, both a- and b-axis are orthogonal to c-axis. The angle between the a-axis and the b-axis is \(\pi/3 \). The length in the a-direction of a unit cell is the same as that in the b-direction. The ratio of the length in the a-direction (or b-direction) to the length in the c-direction is \(1/2.1 \); in other words, \(a : c = 1 : 2.1 \), which is found from our computer simulations. From analyzing Fig.4, we can decide the space group symmetry of this gyroid-like structure to belong to \(R3c \), where the index \(R \) represents rhombohedral, and \(3 \) represents a three-fold rotoinversion symmetry, while \(c \) means a glide reflection symmetry as to the c-axis.

From the recent studies of scattering experiments by Imai et al., it has been shown that there exists a structure with \(R3c \) symmetry which appears in the process of L-to-G transition in the nonionic surfactant/water system.