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Fig. 1: Relaxation of the staggered magnetization
of a 6x6 system with U=4, T' = 0.05 and 120 slices
for two different test wave functions (circles: plane
waves, stars: anti-ferromagnetic test function).

fI = -t L(ctCj +CtCi ) + ULTtirTti!,
i~u i

1. Introduction
10°In the canonical Hubbard Hamiltonian, ..,..------.-----.-----.-------,

Ct, (Ciq) denotes the electron creators (an­
nihilators), electron densities are writ­
ten Ttir,ni!, and the hopping parameter
and the strength of the on-site Coulomb­
repulsion are denoted by t and U, re­
spectively. There is a general agreement
that at half-filling, the Hubbard model
should exhibit anti-ferromagnetic order in
the strong coupling limit. There is never­
theless no clear value given in the litera­
ture for which the system can be reliably
considered to be in the strong-coupling
range. In this paper, we focus on the de­
termination of bounds for the strong coupling limit for finite systems using the nonequilib­
rium relaxation (NER) method. The NER-method has in the meantime been successfully
applied to classical systems[l]' quantum spin systems[2] and fermionic systems[3].

2. Algorithm
We perform the NER-analysis of quantum
Monte Carlo simulations using the auxiliary
field ground state algorithm. This "projector
formalism" allows to filter the ground-state 10)
from a given trial state IT) via the exponential
of the system's Hamiltonian,
e-OHIT) = e-OH L (niT) . In) =

n

e-OEo ((OIT) . 10) + L e-O(En-Eo) (niT) . In)) .
n>O

The excited states Ei , i > 0 are exponentially
suppressed with respect to the ground-state en­
ergy Eo. Though the projection formalism looks
very much like a finite time Greens function, the
projection parameter () cannot be interpreted as
a temperature. As can be seen from Fig. 1, the
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Fig. 2: Relaxation of the staggered mag­
netization of a 4 x 4 x 4 system with U =
15, T' = 0.05 and 160 slices, sampled with

(stars) and without sign (circles). The error­
bars are of the size of the symbols.
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Relaxation, 6 x 6, U=8
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Fig. 3: Relaxation of the Energy (upper graph),

transition probability (middle) and staggered mag­
netization (lower graph) for a 6 x 6 system with

U=8.

trial wave function has practically no influence on the speed of the relaxation, where
both plane waves and anti-ferromagnetic states show the same decay of the staggered
magnetization.
In the quantum Monte Carlo (QMC) formalism, the projector is first decomposed using the
Suzuki Trotter decomposition[5], and then the Hubbard-Stratonovich transformation[6] is
applied to obtain a description of the problem in terms of auxiliary fields variables with
a smaller Matrix size than that of the original Hamiltonian.
We have found in previous studies using large Hubbard-,U, it is necessary to use a multi­
spin update for the Hubbard Stratonovich configuration. For the single-spin update
scheme, the values for the ground-state were consistently off the values for numeric diag­
onalization results. As the single-spin update scheme imposes a certain time ordering in
which the Trotter-slices are updated, this leads to a computationally efficient algorithm,
but due to the ordering, the ergodicity is strongly in question.
For the grand-canonical "Hirsch-Algorithm" for finite temperature, it is possible to show
that the sign of the half-filled Hubbard Model with nearest-neighbor hopping is strictly
positive definite[4]. The proof used the cyclic permutation of the trace, which is not possi­
ble for the projector-formalism. As cyclic permutation is not possible for the trace of the
ground-state expectation value, the transition probability is not strictly positive. As we
had confirmed for other Hubbard systems for the ground-state energy[7] and supercon­
ducting correlations functions [8] , within the statistical fluctuations observables computed
from equal-time Greens functions are the same for sampling with and without sign.

3. NER in Classical and Quan-
tum Systems >.

There are some aspects of the NER which ~-0.4

are different for the Hubbard system than an -0.6L_'-:'~~b:~~~~~~~
for many classical models. One aspect
is that for quantum Monte Carlo simula­
tions, the Trotter direction adds an addi­
tional dimension to the system.
The projection parameter (), which does
not exist for classical systems, has to be
chosen large enough, so that the contribu­
tion of the excited states are effectively
suppressed. We chose () = 4 for the
left and the right side, so that the ex­
ponential operator computed in total was
exp(-8H.) The Trotter time-step, which
does not exist for classical simulations, is
not a free parameter, but determines the
accuracy of the breakup. When we scan a
regime of interactions U, one must keep in mind that the accuracy is lowest for the largest
interaction. Due to the the Suzuki Trotter decomposition, the fluctuations will become
largest for the largest U, so that bad statistics compensates for the computer time saved
in using less Trotter slices. As it turned out that the transitions occurred at rather large
U, an additional constraint on the Trotter step became the numerical stabilization after
each slice. If the stabilization comes too late (too many or, too large Trotter slice),
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Fig. 5: Local exponent analysis for for a 6 x 6
system at U=30.
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Fig. 4: NER of the two-dimensional half-filled
Hubbard-model for a 6 x 6 system at U=17 and

U=30.

the result of the simulation is numerically contaminated and therefore meaningless. We
verified the parameters (Trotter-time-step and projection parameter) for equilibrium runs
of half-filled 4 x 4 systems for U = 20 with numerical diagonalization results.
In classical systems, it is possible to run
the NER-method even for a dynamics
which does not necessarily guarantee that
the equilibrium can be reached. However,
it turned out that is was not feasible to
obtain faster reliable algorithms by using Ol

to
smaller projection parameters for the non- :E
equilibrium runs than those in the equilib- t
rium simulations. W

A curious result of the simulation can be
seen in Fig. 3. In a classical spin system,
the energy determines the transition prob­
ability, and, as in a nearest-neighbor inter-
action system, there is only a single time-
scale, the energy behaves monotonically.
In the Hubbard system, the relaxations of
the interaction energy and the kinetic en­
ergy occurs on different time-scales, and
for the parameters shown in Fig. 3, a relative minimum in the relaxation occurs. In
contrast, the transition probability, which is computed from the Fermion determinant,
behaves monotonically. The spatial system size has a rather strong influence on the ob­
servables in computer simulations of classical systems at the critical point. For a quantum
system, the Trotter-dimension contributes .---__......-__---. ~---.0.08
the quantum character of the simula-
tion, and additionally increases the num-
ber of the degrees of freedom. Whereas

15in a classical two-dimensional system with c:

6 x 6 spins, only 36 spins have to be 8-
~

flipped to "invert" a configuration, in a -_~

Hubbard system of 6 x 6 sites and 400 <5

Trotter slices, there number of Hubbard­
Stratonovich spins is 14400, correspond-
ing to the number of spins in a classical
120 x 120. Therefore, in a situation with
two "stable" magnetizations, the simula­
tion will hardly ever visit the "down"­
state if it was initialized in the up-state.

4. Results and Conclusion
For the 6x6, reliable saturation of the staggered magnetization could be only achieved for a
Hubbard interaction of U = 30, see Fig. 4. For up to U = 20, the staggered magnetization
decayed monotonically for system sizes between 4 x 4 and 8 x 8 (not shown). Currently, we
try to narrow the interaction regime for which the system shows ferromagnetic ordering.
The current data allow the NER-Local exponent analysis for U = 30, which shows that

- 824-



for large times (small inverse times), the local exponent within error bars is zero,s~e Fig.
5, and the saturation of the magnetization could be confirmed.
We have presented NER data for the fermionic Hubbard model, which to our knowledge
is the first case in the literature. It turned out that the NER-analysis is also applicable to
the fermionic quantum Monte Carlo algorithms, and auxiliary quantities like projection
parameter, Thotter-stepsize and trial wave functions, which are absent in classical simu­
lations, pose no fundamental obstacle for the application of the method. It turned out
that the anti-ferromagnetic transition of the two-dimensional Hubbard model occurs at a
surprising high ~nteraction strength.

Acknowledgements
We are grateful to the ISSP Tokyo for being granted a substantial amount of computer
time. One of us (H.-G. M.) was financially supported by the Inoue foundation, Japan.

References

[1] N.Ito, Physica A192 (1993) 604; N.Ito, Physica A196 (1993) 591; N.Ito, T.Matsuhisa
and H.Kitatani, J. Phys. Soc. Jpn. 61 (1998) 1188; Y.Ozeki and N.Ito, J. Phys A31
(1998) 5451; N.Ito, K.Hukushima, K.Ogawa and Y.Ozeki, J. Phys. Soc. Jpn. 69 (2000)
1931; Y.Ozeki, N.Ito and K.Ogawa, Activity Report 1999 of the Supercomputer Center
of Instutute for Solid State Physics, University of Tokyo (2000) 37.

[2] Y.Nonomura, J. Phys. A31 (1998) 7939.; Y.Nonomura, J. Phys. Soc. Jpn. 61 (1998)
5.

[3] Y. Motome, N. Furukawa, J. Phys. Soc. Jpn. 10 (2001) 2802.

[4] J.E.Hirsch, Phys.Rev. B., 31:4403, 1985.

[5] M.Suzuki, Comm. Math. Phys. 51 (1976) 183; ibid. 51 (1977) 193; Prog. Theor. Phys.
58 (1977) 1377.

[6] J.E.Hirsch, Discrete Hubbard-Stratonovitch transformation for fermion lattice models.
Phys.Rev. B, 28:4049, 1983.

[7] H.-G. Matuttis and N. Ito, J. Phys. Soc. Jpn., 70(6):401-404, 2001.

[8] H.-G. Matuttis and N. Ito, Advances in the investigation of the minus sign problem for
the fermionic case. In D. P. Landau, S. P. Lewis, and H. B. Schuettler, editors, Com­
puter Simulation Studies in Condensed-Matter Physics XIV: Recent Developments,
pages 194-199. Springer, 2002.

- 825-


