<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>統計的金融学と非線形システムの関連についての研究</td>
</tr>
<tr>
<td>著者</td>
<td>TAKAHASHI, Hisanao</td>
</tr>
<tr>
<td>引用文献</td>
<td>物性研究 有機半導体の検定と解析 (2004), 81(4): 559-562</td>
</tr>
<tr>
<td>発行日</td>
<td>2004-01-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/97716</td>
</tr>
<tr>
<td>機関</td>
<td>部門情報提供服务</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>文献種類</td>
<td>出版者</td>
</tr>
</tbody>
</table>

Kyoto University
Link between Financial and Nonlinear Systems
Hisanao TAKAHASHI*

Abstract

Changes (returns) in stock index prices and exchange rates for currencies are argued, based on empirical data, to obey a stable distribution with characteristic exponent $\alpha < 2$ for short sampling intervals and a Gaussian distribution for long sampling intervals. In order to explain this phenomenon, an Ehrenfest model with large jumps (ELJ) is introduced to explain the empirical density function of price changes for both short and long sampling intervals.

We also introduced another urn model that is a majority orienting model with a feedback from price. It explains the oscillation of the price in a stock market. Using a deterministic approximation of the proposed model, we showed that the model is connected with the van der Pol equation which is known as a nonlinear equation.

1 Introduction

Changes (returns) in stock index prices and exchange rates for currencies are argued, based on empirical data, to obey a stable distribution with characteristic exponent $\alpha < 2$ for short sampling intervals and a Gaussian distribution for long sampling intervals. In order to explain this phenomenon, an Ehrenfest model with large jumps (ELJ) is introduced to explain the empirical density function of price changes for both short and long sampling intervals.

We also introduced another urn model that is a majority orienting model with a feedback from price. It explains the oscillation of the price in a stock market. Using a deterministic approximation of the proposed model, we showed that the model is connected with the van der Pol equation which is known as a nonlinear equation.

2 Ehrenfest model with large jumps

The Ehrenfest model [1] envisages two boxes $+$ and $-$, with $2R$ particles distributed in these boxes. A particle is chosen at random and moved from one box to the other and the same procedure is repeated.

We consider a generalized Ehrenfest model in which ab^j steps of the Ehrenfest model take place with probability C/Q^j at each step, where $a, b > 0$, $Q > 1$, $j = 0, 1, 2, ...$ and C is a normalization constant defined by $C = 1 - 1/Q$. For simplicity, a is fixed to be 1 in the following discussion. This generalized model becomes identical to the original Ehrenfest model in the limit $Q \to \infty$. The time series of the ELJ is interpreted as a time series chosen randomly from that of the original Ehrenfest model.

The proposed model well describes the changes in the stock indices such as the S&P500, TOPIX and currency exchange rates. Let each particle in the box $+$ represent a buy stance dealer and each particle in the box $-$ represent a sell stance dealer. These dealers will get a lot of information and their view will be changed from buy to sell or from sell to buy on the basis of such information. These changes will generate a change in the stock price or the exchange rate. We assume that a change in the dealer’s mind directly causes a change in the price so that the particle number in the box $+$ is interpreted as the price.

As the information is spatially and temporally distributed, and any piece of information may have a different impact on the dealers, the price will sometimes change drastically within minutes, or sometimes only slightly over hours. The difference between the progress of time in the ELJ and in the original Ehrenfest model describes this phenomenon. The parameters b and Q might thus represent the dealers’ (price change) sensitivity and frequency of information.

We denote the particle number in the box $+$ after s steps as $M(s)$, and define the changes as $Z_{\Delta s}(s) = M(s) - M(s - \Delta s)$, where Δs denotes the step interval. Using this $Z_{\Delta s}(s)$, we define

*The Institute of Statistical Mathematics. 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan.
E-mail: hisanao@ism.ac.jp
the empirical density $P_{\Delta s}(z)$ as:

$$\sum_{z_1<z<z_2} P_{\Delta s}(z) = \sum_{z_1<z<z_2} \sum_s \delta_{z, Z_{\Delta s}(s)} / s_{\text{last}},$$

where $s = 1, 2, 3, \ldots, s_{\text{last}}$ and $\delta_{i,k}$ denotes the Kronecker delta.

Using the diffusion approximation, the probability density function of the ELJ is approximated as:

$$P^{\text{ELJ}}_{\Delta s}(z) = \sum_{i_1, \ldots, i_{\Delta s}} \frac{G^{\Delta s}}{Q_1^{i_1} \cdots Q_{\Delta s}^{i_{\Delta s}}} \sqrt{4\pi D(1 - \exp(-\gamma (b^{i_1} + \cdots + b^{i_{\Delta s}})))} \exp \left(-\frac{\gamma}{4D} \frac{z^2}{1 - \exp(-\gamma (b^{i_1} + \cdots + b^{i_{\Delta s}}))} \right).$$

Consider a density function given by a combination of an infinite number of Gaussian density functions:

$$P^G(x) = \frac{Q}{Q} \sum_j \frac{1}{Q^j} \sqrt{\frac{1}{2\pi \Delta^2 b'}} \exp \left(-\frac{x^2}{2\Delta^2 b'} \right).$$

It is easy to confirm from the knowledge of domains of attraction that the density function of the above equation belongs to the domain of attraction of the symmetrical Lévy stable density with characteristic exponent given by:

$$\alpha = \frac{2 \log Q}{\log b}.$$
number of the particles is \(N = N_+ + N_- \), and every particle is numbered from 1 to \(N \). The following step of three substeps i), ii) and iii) are successively applied to particles in the two boxes in a step.

i). One particle is chosen at random and it moves from its box into the other box with probability \(r \) and does not move with probability \(1 - r \), \(0 \leq r \leq 1 \).

ii). *Majority rule*: We take three particles at random at each step. If two of the particles taken are in the box plus and one is in the box minus, the one in the box minus is moved to the box plus and the price \(S \) is increased by 1, while, if two of the particles are in the box minus and one is in the box plus, the one in the plus is moved to the minus and the price \(S \) is decreased by 1. If the three particles taken are in the box plus, no change occurs for the particles and the price \(S \) is increased by 3, while, if the three particles taken are in the box minus, no change occurs for the particles and the price \(S \) is decreased by 3.

iii). *Feedback*: We change the number of the particles in the box plus \(N_+ \) (so in the box minus \(N_- \)) with the probability which is proportional to the price \(S \). That is, if \(S \) is a positive
number, N_+ is decreased by 1 with probability S/N, while, if S is negative, N_+ is increased by 1 with probability $-S/N$.

Let each particle in the box + represent a buy position dealer, and each particle in the box - represent a sell position dealer. The i) models that the position of a dealer changes randomly and it correspond to mutation in population genetics. The ii) models the change of a dealers' position from sell to buy or buy to sell considering the behaviour of the other dealers. The iii) models that the change of dealers' position under the influence of the price in the market. If the price goes to high, the buy-position dealers usually change their position to sell, whereas if the price goes to low, the sell-position dealers maybe change their position to buy.

Let us represent N_+ and S at s step as $N_+(s)$ and $S(s)$ respectively. We assume the step interval as τ. Then, on condition that the values of $N_+(s), N_-(s)$ and $S(s)$ are given, our model is described as:

$$E \left[\frac{N_+(s+1) - N_+(s)}{\tau N} \right] = \tau \left\{ - \frac{N_+(s)}{N} + \frac{N_-(s)}{N} \right\} + \frac{N_+(s) N_-(s)(N_-(s) - 1)}{N(N - 1)(N - 2)} - \frac{N_+(s) N_-(s)(N_+(s) - 1)}{N(N - 1)(N - 2)},$$

$$E \left[\frac{S(s+1) - S(s)}{\tau N} \right] = 3 \frac{N_+(s)(N_+(s) - 1)(N_+(s) - 2)}{N(N - 1)(N - 2)} + \frac{N_+(s)(N_+(s) - 1)N_-(s)}{N(N - 1)(N - 2)} - \frac{N_-(s)(N_+(s) - 1)}{N(N - 1)(N - 2)} - 3 \frac{N_-(s)(N_-(s) - 1)(N_-(s) - 2)}{N(N - 1)(N - 2)},$$

where E represent the expectation. λ is a parameter which we introduce for convenience of analysis of our model and $\lambda = 1$ in our case.

For sufficiently small τ and large N, approximating $\frac{N_+(s) - N/2}{N}$ by $x(t)$ and $\frac{S(s)}{N}$ by $y(t)$, we have the following system of ordinary differential equation as a deterministic approximation:

$$\frac{d}{dt} x = -2r x + 6 x \left(\frac{1}{2} + x \right) \left(\frac{1}{2} - x \right) - \lambda y,$$

$$\frac{d}{dt} y = 6 x,$$

where $-1/2 \leq x \leq 1/2$.

The following van der Pol equation is obtained from Eq. (5)

$$\frac{d^2}{dt^2} x - 6 \left(\frac{3 - 4r}{12} - 3x^2 \right) \frac{d}{dt} x + 6\lambda x = 0,$$

when $r < 3/4 \approx (0.75)$. The van der Pol equation has the limit cycle, therefore the price oscillates.

References

[4] Data were purchased from Olsen & Associate.