タイトル
Simulations of financial markets in spin models

著者
Takaishi, Tetsuya

引用
物性研究 (2004), 81(4): 516-517

発行日
2004-01-20

URL
http://hdl.handle.net/2433/97730

種類
Departmental Bulletin Paper

版元
publisher

京都大学
Simulations of financial markets in spin models

Tetsuya Takaishi
Hiroshima University of Economics
Hiroshima 731-0192 Japan

Abstract

Bornholdt [1] proposed a simple spin model based on the Ising model. The model includes two interactions: the nearest neighbor one which exists in the Ising model and the global one which couples to the magnetization. He demonstrated that the model exhibits interesting behavior similar to the real economic markets. The model has been further studied by others [2, 3].

Let us consider an \(L \times L \) square lattice. Each spin \(S_i(t) \) is assigned to a site of the lattice. The spins \(S_i(t) \) have two states \(\pm 1 \) and are updated according to the following probability \(p \).

\[
S_i(t+1) = 1 \quad \text{with} \quad p = \frac{1}{1 + \exp(-2\beta h_i(t))} \\
S_i(t+1) = -1 \quad \text{with} \quad 1 - p
\]

where

\[
h_i(t) = \sum_{j=1}^{N} J_{ij} S_j - \alpha S_i |M(t)|
\]

and

\[
M(t) = \frac{1}{N} \sum_{i=1}^{N} S_i(t).
\]

Bornholdt [1] set to one. We can see intermittent phases similar to the ones observed also in the real financial markets.

Figure 2 shows the histograms of return for different lattice sizes. We see that the fat tail becomes more dominant for a small lattice.

Figure 3 compares histograms for \(\alpha = 5 \) and 30. We tried to fit the histogram by the q-Gaussian function [4]

\[
\varepsilon_q^{-a_q x^2} = \frac{1}{[1 + (q-1)\sigma_q x^2]^{1/q}}
\]

which is derived from the nonextensive statistical
「経済物理学 —社会・経済への物理学的アプローチ」

図2: Histograms of return for $L = 71, 100$ and 141.

図3: Histograms of return for $\alpha = 5$ and 30. The lines are the results fitted to the q-Gaussian function $e_q^{-a q^2}$ defined by eq. (5).

図4: Autocorrelation of the absolute return $|r(t)|$. The lines correspond to $\alpha = 5$ to 30 from top to bottom.

図5: Autocorrelation of the return $r(t)$. Here we show the results for $\alpha = 5$ and 30. But we observed similar results for other parameters we studied ($5 < \alpha < 30$).

mechanics[5] and can be considered to generalize the Gaussian function. For $q > 1$ this function shows the fat tail. We obtained $q = 1.55(1.63)$ for $\alpha = 5(30)$.

Figure 4 shows the autocorrelation function $C(t)$ of the absolute return $|r(t)|$. We find that the autocorrelation shows the long correlation. The correlation increases as α decreases. We also calculated the autocorrelation for different lattice sizes. The correlation increases as the lattice size increases.

Figure 5 shows the autocorrelation of the return itself for $\alpha = 5$ and 30. Contrast to the autocorrelation of the absolute return, that of the return itself shows no long correlation but short negative correlation, which is actually observed in the real economic markets. We calculated the autocorrelation for other α and found the similar results.

参考文献