局所粒子密度ゆらぎの $\omega^{-3/2}$ 則

京都大学理学研究科 武末 真二1

1 はじめに

非平衡の粒子輸送、例えば交通流や粉体の流れ等では、局所粒子密度ゆらぎのパワースペクト ルにベキ則 $\omega^{-\alpha}$ が現れることが知られている。交通流では、武者らによって、高速道路の1つの 地点を通過する車の局所密度のゆらぎが $\alpha = 1$ に近いスペクトル(いわゆる 1/f ゆらぎ)を示す ことが観測され、Burgers 方程式を用いた解析が行なわれた [1]。その後、いくつかのモデルによ る解析もある [2] が、 α の値は確定せず、またそういったベキ則を生み出すメカニズムについても 明らかにはされていない。鉛直なパイプ中を落下する粉体の場合には、 $\alpha = 4/3$ という値が観測 され [3]、理論も存在する [4]。

ASEP というモデルにはさまざまな応用が考えられるが、最も素朴に見れば、上で触れたよう な非平衡における粒子輸送を表すモデルである。ASEP は構造が非常に簡単なので、もし同じよ うなべキ則のパワースペクトルが観測されるならば、α の値も確定し、そのメカニズムも明らか になると期待される。実際、我々がシミュレーションを行なって調べてみたところ、相共存が起こ るときに ω^{-3/2} のスペクトルが観測された。さらに、このスペクトルは相境界 (ドメインウォー ル、以下 DW と略記)の拡散運動によるものであることがわかった [5]。同様の振る舞いが、ある 種のセルオートマトン (CA) でも観測される。それについて最後に触れる。

2 ASEPの相図

ASEP の相図について復習しておこう。単位時間に右に進む遷移確率を 1、左に進む遷移確率を q とする。また境界では、左端から α のレートで粒子が流入し、右端からは β のレートで出て行 くものとする。このとき、定常状態の系の振る舞いは、 $\tilde{\alpha} = \frac{\alpha}{1-q}, \tilde{\beta} = \frac{\beta}{1-q}$ の値により、図 1 に示 す 3 相に分かれる。

各相 A, B, C におけるバルクの粒子密度 *ρ* と流量 *J* は 以下のようになる。

- A. 低密度相: $\rho = \tilde{\alpha}, J = (1 q)\tilde{\alpha}(1 \tilde{\alpha})$
- B. 高密度相: $\rho = 1 \tilde{\beta}, J = (1 q)\tilde{\beta}(1 \tilde{\beta})$
- C. 最大流量相: $\rho = \frac{1}{2}, J = \frac{1-q}{4}$

¹E-mail: takesue@phys.h.kyoto-u.ac.jp

また、図の太線、すなわち $0 < \tilde{\alpha} = \tilde{\beta} < \frac{1}{2}$ は、低密度相と高密度相が共存する相共存線になって いる。すなわち、低密度相と高密度相の間の相転移は1次転移的である。

3 局所粒子密度ゆらぎのパワースペクトル

格子点 *i* の粒子の有無を表す変数を τ_i としよう。すなわち、格子点 *i* に粒子が存在するとき $\tau_i = 1$ 、存在しなければ $\tau_i = 0$ とする。さて、観測点 *y* における τ_y の時系列を

 $\{\tau_u(T_0), \tau_u(T_0+1), \ldots, \tau_u(T_0+T-1)\}$

とする。*T*₀は(定常に達した後の)適当な時刻、*T*は時系列の長さを表す。局所粒子密度のパワースペクトルは、この時系列のフーリエ変換を用いて

$$I(\omega_n) = \frac{1}{T} \left\langle \left| \sum_{t=0}^{T-1} \tau_y(T_0 + t) e^{-i\omega_n t} \right|^2 \right\rangle$$

(ただし、 $\omega_n = \frac{2\pi n}{T}, n = 0, 1, 2, ...$) で計算される。() は定常状態でのアンサンブル平均を表す。

そこで次のような数値計算を行なった。まず、q = 0 (TASEP) とし、系の大きさは L = 200 とした。観測点 y は系の中央の点に選び $T = 2^{20}$ の時系列のパワースペクトルを 256 個の初期値に対し求め、その平均をとった。その結果、図 2 に示すように、相共存線では $\omega^{-3/2}$ のベキ則が観測されるが、そこから外れるとベキ則は消えてしまうことがわかった。他のパラメータ領域ではパワースペクトルの変化はゆるやかであり、これほど顕著な振る舞いは見られない。

図 2: TASEP に対する局所密度ゆらぎのパワースペクトル *I*(ω)。直線は式 (6) を表す。

このスペクトルは、系のどのような特徴の反映だろうか?α = β = 0.2 の場合の系の実際の時間 発展を示したのが次の図 3 の一番左の絵である。この図から、低密度相と高密度相の境界 (DW) がランダムウォークしていることがわかる。

図 3: ランダムな初期条件からの時間発展。系の大きさは L = 200、境界のパラメータは $\alpha = \beta = 0.2$ 。 $\tau_i(t) = 1$ を点で、 $\tau_i(t) = 0$ を空白で表した。

4 DW theory

図 3 に見られるような DW のランダムウォークがパワースペクトルのベキ則の原因と考えら れる。そこで、ASEP のダイナミクスからそのような DW の運動を抽出する必要がある。これは Kolomeisky ら [6] によって行なわれ、DW theory と呼ばれている。彼らの議論は以下のようなも のである。今、Domain wall の左側の粒子密度を ρ_- 、流れを j_- 、Domain wall の右側の粒子密 度を ρ_+ 、流れを j_+ と表そう。このとき、密度が $\rho(x,t) = \rho(x - Vt)$ のように関数形を保ちなが ら運動しているとすれば、連続の式

$$\frac{d}{dt}\rho(x,t) = j_{x-1|x}(t) - j_{x|x+1}(t)$$

 $(j_{x|x+1}(t)$ は格子点xからxへの流量の時刻tでの値)より、DWの速度Vは

$$V = \frac{j_{+} - j_{-}}{\rho_{+} - \rho_{-}}$$

でなければならない。さらに、

$$D_+ = \frac{j_+}{\rho_+ - \rho_-}, \quad D_- = \frac{j_-}{\rho_+ - \rho_-}$$

と表すと、 D_{+}^{-1} は、 j_{+} の流れにより密度の差 $\rho_{+} - \rho_{-}$ が埋められて、DW が単位格子間隔だけ 左へ動く時間の平均と解釈できる。 D_{-} も同様。したがって、DW の運動は、単位時間に単位格 子間隔だけ左へ (右へ) 動く確率が D_{+} (D_{-})で与えられるポアッソン過程と見なすことができる。 こうして、DW の拡散係数

$$D = \frac{D_+ + D_-}{2} = \frac{j_+ + j_-}{2(\rho_+ - \rho_-)}$$

が得られる。

ASEP の場合、2節で与えたそれぞれの相での粒子数密度と流量の値を用いると、 $\tilde{\alpha} + \tilde{\beta} < 1$ で

$$V = \frac{(1-q)\left[\tilde{\beta}(1-\tilde{\beta}) - \tilde{\alpha}(1-\tilde{\alpha})\right]}{1-\tilde{\alpha} - \tilde{\beta}}, \quad D = \frac{(1-q)\left[\tilde{\alpha}(1-\tilde{\alpha}) + \tilde{\beta}(1-\tilde{\beta})\right]}{2(1-\tilde{\alpha} - \tilde{\beta})}$$

となる。特に共存線上 ($\tilde{\alpha} = \tilde{\beta}$) では

$$V = 0, \quad D = \frac{(1-q)\tilde{\alpha}(1-\tilde{\alpha})}{1-2\tilde{\alpha}}$$

である。

5 ω^{-3/2}則の導出

ドメインウォールの拡散過程が局所密度ゆらぎのパワースペクトルにベキ則 ω^{-3/2} をもたらす ことは以下のような簡単な計算によって示すことができる。ASEP を離れて、空間も連続にして、 次のような階段関数で表される場の量があり、ステップの位置がブラウン運動しているものとし よう。つまり、

$$\tau(x,t) = \theta(x - X(t)) = \begin{cases} 0 & \text{(if } x < X(t)) \\ 1 & \text{(if } x > X(t)) \end{cases}$$

で、X(t) は区間 [-L/2, L/2] におけるブラウン運動とする。すると X(t) の定常分布 $P_{st}(x)$ と遷移確率 $P(x, t|x_0, 0)$ は、どちらも反射境界条件

$$\left. \frac{\partial P}{\partial x} \right|_{x=\frac{L}{2}} = \left. \frac{\partial P}{\partial x} \right|_{x=-\frac{L}{2}} = 0$$

の下での拡散方程式

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2}$$

の解であり、定常分布は $P_{\rm st}(x) = L^{-1}$ 、遷移確率は、 $\lambda_n = n/(\pi L)$ として、

$$P(x,t|x_0,0) = \frac{1}{L} + \frac{2}{L} \sum_{n:\text{even}} e^{-D\lambda_n^2 t} \cos \lambda_n x_0 \cos \lambda_n x + \frac{2}{L} \sum_{n:\text{odd}} e^{-D\lambda_n^2 t} \sin \lambda_n x_0 \sin \lambda_n x \quad (1)$$

と求められる。これより、自己相関関数が

$$\langle \tau(y,t)\tau(y,0)\rangle = \frac{(L+2y)^2}{4L^2} + \sum_{n=1}^{\infty} \frac{e^{-D\lambda_n^2 t}}{L^2\lambda_n^2} \left[1 + (-1)^{n-1}\cos 2\lambda_n y\right]$$
(2)

と表され、Wiener-Khinchin の定理よりパワースペクトルが

$$I(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} \langle \tau(y,t)\tau(y,0) \rangle dt = \frac{\pi}{2} \delta(\omega) + \frac{2D}{L^2} \sum_{n=1}^{\infty} \frac{1 + (-1)^{n-1} \cos 2\lambda_n y}{D^2 \lambda_n^4 + \omega^2}$$
(3)

となることがわかる。

研究会報告

ここで、*L*が十分大きく、|y| があまり大きくなければ、振動項を無視し、さらに右辺の和を積 分で置き替えることができる。その結果、

$$\frac{2D}{L^2} \sum_{n=1}^{\infty} \frac{1 + (-1)^{n-1} \cos 2\lambda_n y}{D^2 \lambda_n^4 + \omega^2} \simeq \frac{2D}{\pi L} \int_0^\infty \frac{dx}{D^2 x^4 + \omega^2} = \frac{\sqrt{2D}}{2L} \omega^{-3/2} \tag{4}$$

のように $\omega^{-3/2}$ 則が導かれる。

ASEP の場合、

$$\tau_y(t) \simeq \tilde{\alpha} + (1 - 2\tilde{\alpha})\theta(y - X(t)) \tag{5}$$

のように、DWの左右の粒子密度の差が1-2~なので、

$$I(\omega) \simeq I_0 \omega^{-3/2}, \quad I_0 = \sqrt{\frac{(1-q)\tilde{\alpha}(1-\tilde{\alpha})(1-2\tilde{\alpha})^3}{2L^2}} \omega^{-3/2}$$
 (6)

となる。図 2 に与えた直線はこの式を表すが、シミュレーションの結果と非常に良い一致を示し ている。TASEP の場合だけでなく、一般の ASEP、例えば *q* = 0.8 でもベキ則はきれいに観測さ れ、上の式に一致する。実際、図 3 に示すように、*q* ≠ 0 であっても、境界がシャープではなくな るものの DW は存在している。

ここで得られた DW の拡散過程による局所粒子密度ゆらぎの $\omega^{-3/2}$ 則は、次のような特徴を持っ ている。まず、これは系の定常状態の性質である。湯川と菊池 [1] は、結合写像による交通流のモ デルを作り、局所密度ゆらぎのスペクトルのベキ則について議論しているが、彼らの得たベキ則 は非定常の性質であった。われわれの結果はこれと対照的である。次に、式 (6) に系の大きさ L が 含まれていることからわかるように、これは有限サイズ効果である。はじめから無限系を考える と定常に達しないので、定常状態の性質であることと有限サイズ効果であることは互いに関連し ている。また、式 (6) は観測点の位置 y を含んでいないが、実際 $I(\omega)$ は観測点の位置にあまり 依らない。もちろん、系の両端に近くなりすぎると振動項が無視できないようになり、有意なず れが現れる。最後にベキ則が成り立つ ω の範囲について考えよう。低周波側のカットオフは、式 (3) の右辺の和を積分で置き換えることが妥当でなくなる $\omega \sim \pi^2 D/L^2$ 、もしくは $y \neq 0$ の場合 には振動項との競合で決まる値で与えられる。また高周波側のカットオフは、DW の位置のゆら ぎと DW の関数形の周りのゆらぎとの競合で決まり、後者はあまり ω によらないので、 $\omega \sim L^{-1}$ となる。すなわち、ベキ則が成り立つ ω の範囲は $L^{-2} \sim L^{-1}$ であり、L を大きくすると、対数 スケールでその範囲は左にシフトしながら広がる。

6 CA

TASEP の決定論的極限として、次のルール 184 という CA がある。それは、0 または 1 の値を とる変数 x_{i}^{t} の組が、

$$\begin{aligned} x_i^{t+1} &= f(x_{i-1}^t, x_i^t, x_{i+1}^t) \\ &= x_i^t + x_{i-1}^t (1 - x_i^t) - x_i^t (1 - x_{i+1}^t) \end{aligned}$$

に従って時間発展するものである。このモデルが、ASEP と同様の相転移や ω^{-3/2} 則を示すかど うかについてシミュレーションを行なった。境界条件は ASEP に倣って

$$x_0 = \begin{cases} 0 & (\tilde{\mathbf{m}} \approx 1 - \alpha) \\ 1 & (\tilde{\mathbf{m}} \approx \alpha) \end{cases} \qquad x_N = \begin{cases} 0 & (\tilde{\mathbf{m}} \approx \beta) \\ 1 & (\tilde{\mathbf{m}} \approx 1 - \beta) \end{cases}$$
(7)

とした。シミュレーションの結果、やはり $\alpha = \beta$ で相共存が起こり、ある ω の範囲で $I(\omega) = I_0 \omega^{-3/2}$ となることが観測された。

図 4: ルール 184 の共存線でのパワースペクトル。 $\alpha = \beta = 0.2$ の場合と $\alpha = \beta = 0.8$ の場合。

ルール 184 でも DW が存在するので、DW theory が適用でき、パワースペクトルのベキ則は 式 (4) で与えられる。因子 I_0 を求めるためには、 ρ_-, ρ_+, j_-, j_+ が求められればよい。そこで、 クラスター近似によってこれらの量を求めることを試みる。

まず、DW の両側は一様定常状態で近似する。連続した n 個のサイトの状態が (x_0, \ldots, x_{n-1}) である確率 (n 体分布関数)を $p_n(x_0, \ldots, x_{n-1})$ と表すと、一様定常状態では

$$p_2(x_1, x_2) = \sum_{x'_0, x'_1, x'_2, x'_3} p_4(x'_0, x'_1, x'_2, x'_3) \delta_{x_1, f(x'_0, x'_1, x'_2)} \delta_{x_2, f(x'_1, x'_2, x'_3)}$$

が成り立つ。そこで、右辺の4体分布関数を

$$p_4(x_0', x_1', x_2', x_3') \simeq rac{p_2(x_0', x_1')p_2(x_1', x_2')p_2(x_2', x_3')}{p_1(x_1')p_1(x_2')}$$

と近似しよう。こうすると、 $\rho = p_1(1)$ の値によって異なる2体分布関数の近似解を得ることができる。すなわち、

I. $0 \le \rho \le 0.5$ の場合、

$$p_2(0,0) = 1 - 2
ho, \quad p_2(0,1) = p_2(1,0) =
ho, \quad p_2(1,1) = 0$$

II. $0.5 \le \rho \le 1$ の場合、

$$p_2(0,0) = 0, \quad p_2(0,1) = p_2(1,0) = 1 - \rho, \quad p_2(1,1) = 2\rho - 1$$

である。

次に、境界条件について考えよう。両端のサイト以外は一様定常状態が良い近似であるとすれ ば、左端で

$$p_1(x_1) = \sum_{x_0', x_1', x_2'} p_L(x_0') p_2(x_1', x_2') \delta_{x_1, f(x_0', x_1', x_2')}$$

(ただし、 $p_L(0) = 1 - \alpha, p_L(1) = \alpha$)、右端で

$$p(x_1) = \sum_{x'_0, x'_1, x'_2} p(x'_0, x'_1) p_R(x'_2) \delta_{x_1, f(x'_0, x'_1, x'_2)}$$

(ただし、 $p_R(0) = \beta$, $p_R(1) = 1 - \beta$) により、解をつなぐことができる。この境界条件を用いる と、DW の左側と右側の粒子密度と流量が

$$\rho_-=\frac{\alpha}{1+\alpha}\leq \frac{1}{2}, \quad j_-=\frac{\alpha}{1+\alpha}, \quad \rho_+=\frac{1}{1+\beta}\geq \frac{1}{2}, \quad j_+=\frac{\beta}{1+\beta}$$

と得られる。したがって、DW の速度と拡散係数は、DW theory より、

$$V = \frac{\beta - \alpha}{1 - \alpha \beta}, \quad D = \frac{\alpha + \beta + 2\alpha \beta}{2(1 - \alpha \beta)}$$

と決まる。よって、相共存条件 V = 0 から $\alpha = \beta$ が導かれ、そのときの拡散係数は $D = \frac{\alpha}{1 - \alpha}$ となる。

以上の結果を式 (4) に代入すると、ルール 184 に対するパワースペクトルの $\omega^{-3/2}$ 則が

$$I(\omega) \simeq (\rho_+ - \rho_-)^2 \frac{\sqrt{2D}}{2L} \omega^{-3/2} = \sqrt{\frac{\alpha(1-\alpha)^3}{2L(1+\alpha)^4}} \omega^{-3/2}$$

と求められる。図4に示した直線はこの式を表す。確かに、シミュレーションの結果とよく一致している。

以上の結果を振り返ってみると、ルール 184 が1の個数を保存するということが本質的に重要 であった。1の個数を保存するために、一様定常状態の分布関数が1の密度 ρの関数として求めら れ、境界とうまくつなぐことでその値が決まったのであった。したがって、保存量を持つような ルールであれば、他の CA でも同様の振る舞いが期待できる。ところで、CA の保存量については 次の定理が知られている。

Theorem (Hattori and Takesue)

 $E(x_0, x_1, \dots, x_{\alpha})$ は、次の式を満たすとき、時間発展 $x_i^{t+1} = f(x_{i-1}^t, x_i^t, x_{i+1}^t)$ の下で保存量密度 になる。

$$G(x_0, x_1, \dots, x_{\alpha+2}) - E(x_0, x_1, \dots, x_{\alpha})$$

$$= \sum_{i=0}^{\alpha+1} \{G(0, \dots, 0, x_1, \dots, x_{i+1}) - G(0, \dots, 0, x_0, \dots, x_i)\}$$

$$+ \sum_{i=1}^{\alpha} \{E(0, \dots, 0, x_0, \dots, x_{i-1}) - E(0, \dots, 0, x_1, \dots, x_i)\}$$

ただし、

 $G(x_0, x_1, \dots, x_{\alpha+2}) = E(f(x_0, x_1, x_2), \dots, f(x_\alpha, x_{\alpha+1}, x_{\alpha+2}))$

この定理に基き、Wolfram の elmentary CA と呼ばれるクラスの CA を調べてみると、ルール 14, 35, 43, 142, 56, 11 が候補として浮かび上がる。これらのルールは次の表に示すような保存量 を持ち、しかも $E(x_0, x_1, ..., x_{\alpha})$ 自体が局所的に保存するようなことはない。これらのルールは、 周期境界条件のもとでは密度分類と呼ばれる特徴的な振る舞いを示すことがわかっている [8]。そ れが、開いた境界条件の下でどうなるかというのがここでの問題である。

Rule	184	14	35	43	142	56	11
f(0, 0, 0)	0	0	1	1	0	0	1
f(0, 0, 1)	0	1	1	1	1	0	1
f(0, 1, 0)	0	1	0	0	1	0	0
f(0, 1, 1)	1	1	0	1	1	1	1
f(1, 0, 0)	1	0	0	0	0	1	0
f(1, 0, 1)	1	0	1	1	0	1	0
f(1, 1, 0)	0	0	0	0	0	0	0
f(1, 1, 1)	1	0	0	0	1	0	0
保存量	a	b	b	b	b	с	d

表 1: CA のルールと保存量。

表に a, b, c, d と記された保存量は具体的には以下の通りである。

a) $E(x_i) = x_i$, $f(x_i) = 1, E(0) = 0$,

b) $E(x_i, x_{i+1}) = x_i(1 - x_{i+1}) + (1 - x_i)x_{i+1}$, $\forall x \neq b$,

 $E(0,1) = E(1,0) = 1, \quad E(0,0) = E(1,1) = 0$

c) $E(x_i, x_{i+1}, x_{i+2}) = x_i + x_{i+1} + x_{i+2} - 3x_i x_{i+1} x_{i+2}$, fabs,

$$E(0,0,0) = E(1,1,1) = 0, E(0,0,1) = E(0,1,0) = E(1,0,0) = 1,$$

$$E(0, 1, 1) = E(1, 0, 1) = E(1, 1, 0) = 2.$$

d) $E(x_i, x_{i+1}, x_{i+2}, x_{i+3}) = x_i(1 - x_{i+1})(1 - x_{i+2} + x_{i+2}x_{i+3})$

$$E(1, 0, 1, 1) = E(1, 0, 0, 1) = E(1, 0, 0, 0) = 1, \quad E = 0$$
 (otherwise)

共通の保存量を持つルール 14, 35, 43, 142 の場合を考えよう。境界条件としては、ルール 184 の場合と同様の式 (7) の他に、保存量の値を確率的に選ぶ

$$x_0^{t+1} = \begin{cases} 1 - x_1^{t+1} & \text{with prob. } \alpha \\ x_1^{t+1} & \text{with prob. } 1 - \alpha \end{cases}, \quad x_N^{t+1} = \begin{cases} x_{N-1}^{t+1} & \text{with prob. } \beta \\ 1 - x_{N-1}^{t+1} & \text{with prob. } 1 - \beta \end{cases}$$

という方法も考えられる。また、パワースペクトルについても時系列 { x_i^t }_{1 ≤t ≤T} に対するパワー スペクトル $I(\omega)$ のほかに、{ $E(x_i^t, x_{i+1}^t)$ }_{1 ≤t ≤T} に対するパワースペクトル $I_E(\omega)$ も考えられる。 シミュレーションを行なうと、ルールによって詳細は異なるが、いずれも何らかの場合に ω -3/2 のベキ則が観測された。例えばルール 35 では、 $\alpha = \beta$ の場合、 $I_E(\omega)$ に $\omega^{-3/2}$ 則が現れるが、 $I(\omega)$ には見られない。ルール 43 で境界条件 (7) を採用した場合には、 $I(\omega)$ も $I_E(\omega)$ も ($\alpha = \beta$ のような線上ではなく) パラメータの広い範囲で $\omega^{-3/2}$ のベキ則が現れる。これらの興味深い結 果については、別の機会に報告したい。

7 結果

我々の結果をまとめると以下の通りである。

- ASEP の共存領域で、局所粒子密度のパワースペクトルが、ω^{-3/2}のベキ則を示すことを発見した。
- このベキ則は、反射壁にはさまれた有限領域内を相境界 (DW) が拡散運動することの反映で あることを明らかにした。
- 同様の振る舞いが開いた境界条件のもとでの CA でも観測される。

参考文献

- [1] T. Musha and H. Higuchi, Jpn. J. Appl. Phys. 15, 1271 (1976); ibid. 17, 811 (1978)
- [2] K. Nagel and M. Paczuski, Phys. Rev. E 51, 2909 (1995); X. Zhang and G. Hu, Phys. Rev. E 52, 4664 (1995); M.Y. Choi and H.Y. Lee, Phys. Rev. E 52, 5979 (1995); S. Yukawa and M. Kikuchi, J. Phys. Soc. Jpn. 64, 35 (1995); S. Tadaki, M. Kikuchi, Y. Sugiyama and S. Yukawa, J. Phys. Soc. Jpn. 67, 2270 (1998).
- [3] O. Moriyama, N. Kuroiwa, M. Matsushita, and H. Hayakawa, Phys. Rev. Lett. 80, 2833 (1998).
- [4] H. Hayakawa and K. Nakanishi, Prog. Theor. Phys. Suppl. 130, 57 (1998).
- [5] S. Takesue, T. Mitsudo, and H. Hayakawa, Phys. Rev. E 68, 015103(R) (2003).
- [6] A.B. Kolomeisky, G.M. Schütz, E.B. Kolomeisky, and J.P. Straley, J. Phys. A 26, 1493 (1993).
- [7] T. Hattori and S. Takesue, Physica D 49, 295 (1991).
- [8] 武末真二、セルオートマトンの保存量」、数理解析研究所講究録 1020, 103 (1997)