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We give a new interpretation of scars of short periodic orbits observed in quantum systems

with chaotic classical limit. The enhancement of density is shown to be caused by the mutual

interference between two specific paths on the periodic orbit.
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1 Introduction

Since the discovery by McDonald and Kaufman[l] in their numerical work, scars, phenom

ena of enhancement of density probability along short unstable periodic orbits of classically

chaotic systems, has gained a growing attention both theoretically and numerically. It provides

a clear example to the inaccuracy of random matrix theory (RMT) , according to which, the

wave function of classically ergodic systems must be evenly distributed over phase-space, up to

quantum fluctuations. Apparently, the semiclassical approach is indispensable to understand

this phenomena. The first theoretical explanation was given by Heller[2] based on semiclassical

evolution of a Gaussian wave packet near a periodic orbit. Later works by Bogomolny[3] and

Berry[4] involved semiclassical calculations in coordinate representation and Wigner represen

tation, respectively. We should note that, in last two works[3, 4], besides its regorousness, scars

appears as a mathematical consequence and thereby covers its physical origin.

In this present work, scars will be extracted from the dynamic of the system. In this sense, our

approach is in the same spirit as the work by Heller[2]. The role of the initial wave packet will be

considered from the beginning. However, in contrast to his, we shall give an explicit periodic orbit

formula for the enhancement of density probality which shares similar essential properties as the

one derived by Bogomolny in ref. [3]. During the derivation, we shall emphasize the physical

origin of this beautifull phenomena. It will be shown later that, in semiclassical regime, the
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enhancement is a natural consequence of interference phenomena between two specific classical

trajectories on the periodic orbit under consideration.

2 Extracting an Eigenstate

In this section, a brief review on how to extract an eigenstate from the time developed wave

packet is discussed. Let us suppose a bounded system with a Hamiltonian H which satisfies the

following eigenvalue equation HI¢n) = Enl¢n), where I¢n) and En denote the energy eigenfunc

tion and eigenvalue respectively. The time developed wave packet can then be written as

Icp(t)) = e-iHt/1i lcp(O)) = Lene-iEnt/1iI¢n), en = (¢n/CP(O)),
n

(1)

where Icp(O)) is the initial state. Applying Fourier transform to both side, one obtains the

following identity

(2)

(3)

where the Green's function representation for a delta function has been applied and G+ and G

denote the retarded and the advanced Green's function respectively. In position representation,

a single eigenstate ¢n(q) weighted by en can therefore be obtained as

1 1 lEn+<;/2 J A Aen¢n(q) = --.- dE dq' (G+(q,q';E) -C-(q,q';E)) cp(q';O),
2m ~ En -<;/2

where ~ is taken to be sufficiently small but finite. It will later be shown that the presence of ~

will guarantee the convergence of the formula we are going to derive.

The probability density of an eigenstate of mode "n" in position space, weighted by the

probability that the initial state is to be found in mode "n" is then obtained by taking the

absolute square of the above equation, c;l¢n(q) 12 . One then finds that it is given by combinations

of the retarded and the advanced Green's functions. It turns out that, semiclassically, only terms

which involve the products of advanced Green's function with its complex conjugate, and the

product of the retarded Green's with its complex conjugate will give non-vanishing contributions.

Using the relation C-(q',q;E) = [C+(q,q'jE)]* and writing the retarded Green's function C+

as C, one finally obtains

where we have defined ( C(q, q'; E) )= t J:::;/22 C(q, q'j E)dE. Evaluating this averaging

procedure one finds straightforwardly that as 'Ii ~ 0, only trajectories that satisfy the following

inequality, contribute to the Green's function: Ts < h/~, where Ts is the time needed by the

trajectory s starting from q' to reach q.
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q
(b)

(5)

~ I: (a) A pair of identical trajectories and (b) a pair of non-identical trajectories that satisfy

the stationary phase condition.

3 Scars, An Interference Phenomena

Our semiclassical consideration begin, firstly, by choosing a sufficiently narrow Gaussian as

the initial wave packet

II1(q' 0) _ 1 e-q2 / 2')'li
't' , - (,v0Ji)d/2 '

with width b. == ,v'h in the configuration space. This choice of initial wave packet is plausible

since a quantum-classical correspondence can only be done consistently using coherent state, and

that any wave packet can be expanded in a superposition of coherent states. To be able to discuss

the quantum-classical correspondence, b., should be taken to be sufficiently small compared to

the typical length scale of the system under consideration. Yet, to preserve the wave nature of

the Gaussian, it should be much larger than the Planck's length. In the semiclassical limit, these

two conditions are naturally satisfied by our choice of Gaussian initial state of Eq. (5). This

can easily be verified since, as b. rv .../fi, by taking the limit h ~ 0, b. will also decrease smaller

and smaller, yet, we still have b. » h. In this regime, the following approximate identity holds

1.{J*(q; 0; ')I.{J(q'; 0; ,) = (,~)de(q-ql)2/(2')'2li)e-qql /b2
1i)

~ 2d/ 2l5(q _ q')e-q ·q' /b2li).

(6)

(7)

(8)

(9)

The main contribution to the integral, thus, clearly comes from pairs of paths that start from

the same point at q' and end at the same point at q. The semiclassical approximation can then

proceed by replacing the Green's function by its semiclassical version and evaluating the above

integral using the stationary phase approximation. The non trivial part of the semiclassical

Green's function is given as follows

s' 1 1 I s 1
1

/
2 is -i1r.m

GsAq, q ; E) = ih(2i1rh)(d-l)/2 Iqq'1 1/ 2 II D.l II e7i
8 2 8,
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, fJ2S (q ~"E) 1 ..where Di(q, q; E) = 8
s 8;;' =:::IT, M s = (m)~ is the stability matrix of the trajectory
qJ... 1.. rns

s. Performing the stationary phase approximation, one finds that the main contribution is given

by pairs of trajectories sand t that satisfy the following stationary phase conditions

8St I = -' , = 0
8q' q'=q: Ps + Pt . (10)

Namely, both trajectories have the same initial momentum at the same initial point q' = q~.

Two immediate implications can easily be drawn. First, if q is semiclassically quite far from

any periodic orbits, then the above conditions can only be satisfied by two identicdal trajectories:

s = t (See Fig. 1 (a)), for which the phase will cancel out each other. The contribution from this

diagonal term therefore gives the non-interesting part which is independent of q for sufficiently

chaotic system. Second, if q is lying on a periodic orbits po, then besides pairs of identical

trajectories, the stationary phase conditions are also satisfied by pairs of different trajectories

s i=- t that are both part of a periodic orbit that passes through the point under consideration

q, as illustrated in Fig. 1 (b). Then sand t can differ by an integer number n = 1,2, ... of

period of the primitive periodic orbit po. The superposition of both of the trajectories results

in a total action that is equal to the integer n multiplication of the action of the periodic

orbit po. The density probability at point on a periodic orbit can therefore be written as

Pn(q) = p:!iag(q) +p~car(q), where the first and the second term denote the contribution from

the diagonal and the off diagonal term respectively. Evaluating the integral, the enhancement

can be written as

pscar() 2
d

/
2
~~ J2 1 r po ( (SpO n ))

n q = 2n2 L..J L..J 1/2T-.5/2 I'. I !( 21)r. / - r cos r h - O"po2 ' (11)
po r n It qpo y mpo y TrM po - 2

which shares similar properties as Bogomolny's[3], except that ours is weighted by r po

Jg'PO dt e_~lq(t)12, which contains the information on the initial wave packet.
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