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Abstract—Until recently, numerous feature selection techniques have been proposed and found wide applications in genomics and

proteomics. For instance, feature/gene selection has proven to be useful for biomarker discovery from microarray and mass

spectrometry data. While supervised feature selection has been explored extensively, there are only a few unsupervised methods that

can be applied to exploratory data analysis. In this paper, we address the problem of unsupervised feature selection. First, we extend

Laplacian linear discriminant analysis (LLDA) to unsupervised cases. Second, we propose a novel algorithm for computing LLDA,

which is efficient in the case of high dimensionality and small sample size as in microarray data. Finally, an unsupervised feature

selection method, called LLDA-based Recursive Feature Elimination (LLDA-RFE), is proposed. We apply LLDA-RFE to several public

data sets of cancer microarrays and compare its performance with those of Laplacian score and SVD-entropy, two state-of-the-art

unsupervised methods, and with that of Fisher score, a supervised filter method. Our results demonstrate that LLDA-RFE outperforms

Laplacian score and shows favorable performance against SVD-entropy. It performs even better than Fisher score for some of the data

sets, despite the fact that LLDA-RFE is fully unsupervised.

Index Terms—Unsupervised feature selection, linear discriminant analysis, graph Laplacian, microarray data analysis.

Ç

1 INTRODUCTION

IN recent years, feature/gene selection methods have been
widely used in genomics and proteomics to handle a

deluge of data produced by high-throughput technologies
such as microarray and mass spectrometry. In microarray
studies, for instance, a small fraction of genes typically
exhibit significant differential expression among tens of
thousands of genes whose expression levels are measured
simultaneously. Thus, it is of great importance to identify
genes relevant to a biological phenomenon of interest and to
characterize their expression profiles. Gene selection can be
useful for multiple purposes: to save computational costs of
subsequent analysis by reducing the number of genes, to
improve the prediction performance of classifiers by using
discriminative genes only, and to identify informative genes
for further investigation of their biological relevance.
Specifically, gene selection has proven to be useful for
biomarker discovery in cancer studies, i.e., searching for
potential marker genes contributing to classification of
cancer subtypes or prediction of clinical outcomes, which
leads to more reliable diagnosis and better treatments of
cancer.

To date, numerous techniques for feature selection have
been developed [12] and also applied successfully to the
analysis of biological data with many features. In contrast to
supervised feature selection, however, unsupervised fea-
ture selection has not yet been explored extensively. Indeed,

there have been only a few unsupervised methods
proposed until recently [7], [14], [15], [28], [30]. Unsuper-
vised feature selection is of great use in particular for class
discovery. For instance, clustering is usually performed to
find clusters in microarray samples on the basis of the
expression profiles of all genes, but the clusters so obtained
can be obscured by the large number of irrelevant genes.
Therefore, unsupervised feature selection is essential to the
exploratory analysis of biological data. Moreover, even
when class labels are provided by external knowledge, but
may be unreliable or mislabeled, overfitting can be
alleviated by performing feature selection in an unsuper-
vised manner. It is obviously more challenging to identify
features that reveal underlying cluster structures in the
samples than to find those exhibiting similar patterns across
all the samples.

To address this problem, we propose an unsupervised
feature selection method, called Laplacian linear discrimi-
nant analysis-based recursive feature elimination (LLDA-
RFE). LLDA-RFE is closely related to Laplacian score [15],
which is also based on graph Laplacian and can be applied
in an unsupervised manner. The major difference is that,
whereas Laplacian score is a univariate approach, LLDA-
RFE is multivariate, allowing for selecting features that
contribute to discrimination in combination with other
features. Recently, Wolf and Shashua [30] proposed the
Q� � algorithm, which takes advantage of the spectral
properties of the graph Laplacian of features. While the
Q� � algorithm has an interesting property that the
sparsity of features naturally emerges, it does not scale
well to the feature size. Also, the algorithm involves
iterative computations on a matrix of the feature size in a
least-squares optimization process to ensure a local
maximum solution. In contrast, our proposed algorithm
for LLDA-RFE is computationally tractable and has a
global maximum solution. It is shown that Laplacian linear
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discriminant analysis (LLDA) includes the maximum
margin criterion (MMC) [18] as a supervised case.
Although LLDA-RFE is a natural extension of MMC-RFE,
the proposed algorithm needs not reduce dimensionality
before applying LLDA, unlike the MMC-RFE algorithm
proposed previously [24].

We compare the performance of LLDA-RFE with those
of Laplacian score and SVD-entropy [28], two state-of-the-
art unsupervised feature selection methods, on seven public
data sets of cancer microarrays. The performances of these
methods are evaluated by their capability of identifying
discriminative genes without using class information. We
also compare the performance between LLDA-RFE and
Fisher score [8], [15], a supervised filter method. Experi-
mental results demonstrate that LLDA-RFE outperforms
Laplacian score and shows favorable performance against
SVD-entropy. Despite the fact that LLDA-RFE is fully
unsupervised, it performs even better than Fisher score for
some of the data sets.

The rest of this paper is organized as follows: In Section 2,
we give outlines of linear discriminant analysis (LDA) and
the MMC. We then introduce LLDA and extend it to
unsupervised cases in Section 3. An efficient algorithm for
computing LLDA is also proposed. We present the LLDA-
RFE algorithm for feature selection in Section 4. Section 5
describes related work on unsupervised feature selection.
Experimental results on seven microarray data sets are
presented and discussed in Section 6. Finally, we give
concluding remarks in Section 7.

2 LDA AND MMC

In this section, we outline LDA and the MMC as
preliminaries to the introduction of supervised LLDA,
which is then extended to unsupervised LLDA in Section 3.

LDA aims to find a set of projection vectors that
maximize the between-class scatter and simultaneously
minimize the within-class scatter, thereby achieving max-
imum discrimination [9].

Let XX 2 IRp�n be a sample matrix containing xxi 2 IRp,
i ¼ 1; . . . ; n as columns, where p is the number of features,
and n is the number of samples. The between-class scatter
matrix SSb and the within-class scatter matrix SSw are
defined as

SSb ¼
1

n

Xc
k¼1

nk mmðkÞ �mm
� �

mmðkÞ �mm
� �T

;

SSw ¼
1

n

Xc
k¼1

Xnk
j¼1

xx
ðkÞ
j �mmðkÞ

� �
xx
ðkÞ
j �mmðkÞ

� �T
;

where c is the number of classes, nk is the number of
samples in class k, xx

ðkÞ
j is the jth sample in class k, and mmðkÞ

and mm are the mean vector of class k and the total mean
vector, respectively. Then, classical LDA finds the projec-
tion matrix WW that maximizes the Fisher criterion

JLDAðWWÞ ¼ trace ðWWTSSwWW Þ�1ðWWTSSbWW Þ
� �

; ð1Þ

subject to, e.g., the orthogonality constraint on WW , i.e.,

WWTWW ¼ II. By solving a generalized eigenvalue problem, WW

can be found as the eigenvectors of SS�1
w SSb corresponding to

the largest eigenvalues. However, when the dimensionality

of samples is larger than the sample size, i.e., p > n, SSw
becomes singular and we cannot compute SS�1

w SSb, which is a

major drawback of classical LDA. This is known as the

singularity problem or the small sample size problem.
To overcome this problem, Li et al. [18] proposed to use

the MMC instead of (1) to find the projection vectors. The
MMC is defined as

JMMCðWW Þ ¼ trace WWT ðSSb � SSwÞWW
� �

: ð2Þ

In this case, the projection matrix WW that maximizes (2) can
be found as the eigenvectors of SSb � SSw corresponding to the
largest eigenvalues. Li et al. proposed an efficient algorithm
to compute the projection matrix of the MMC under the
constraint that WWTSStWW ¼ II, where SSt is the total scatter
matrix defined as

SSt ¼
1

n

Xn
i¼1

ðxxi �mmÞðxxi �mmÞT :

Li’s algorithm is found to be the same as the uncorrelated
LDA (ULDA) algorithm in [32]. Also, an efficient algorithm
for the MMC subject to the orthogonality constraint that
WWTWW ¼ II was presented in [24]. In both cases, we need not
compute the inverse of SSw; hence, the singularity problem
can be easily avoided.

It should be noted that the MMC is not equivalent to the
Fisher criterion. The discriminant vectors obtained by
maximizing (2) are not generally the same as those obtained
by maximizing (1) [21]. More precisely, although ULDA can
be considered as an extension of classical LDA to small
sample size cases [32], the MMC with the orthogonality
constraint does not necessarily yield projection vectors that
are optimal for discrimination. In practice, a better discrimi-
nation can be achieved by balancing the between-class and
within-class scatters using the following criterion as in [20]:

JMMCðWWÞ ¼ trace WWT ðSSb � �SSwÞWW
� �

; ð3Þ

where � is a nonnegative constant. It is clear that (2) is a
special case of (3). For simplicity, the present study focuses
on the MMC defined by (2) with the orthogonality
constraint.

3 UNSUPERVISED LLDA

3.1 Extension of LLDA to Unsupervised Cases

We can rewrite the total and within-class scatter matrices as
follows:

SSt ¼
1

n
XX II � 1

n
eeeeT

� �
XXT

¼ 1

n
XXðII �WWgÞXXT ;

SSw ¼
1

n
XX II �

Xc
k¼1

1

nk
eeðkÞeeðkÞ

T

 !
XXT

¼ 1

n
XXðII �WW‘ÞXXT ;

where II is the identity matrix, ee ¼ ð1; 1; . . . ; 1ÞT is an
n-dimensional vector, and eeðkÞ is an n-dimensional vector
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with e
ðkÞ
i ¼ 1 if xxi belongs to class k, and 0 otherwise. In

terms of graph Laplacians [6], II �WWg can be viewed as the
Laplacian of a global graph such that all vertices are
connected each other with a constant weight of 1=n, and
II �WW‘ as the Laplacian of a local graph such that a pair of
vertices are connected with a constant weight of 1=nk only
when both belong to the kth class. In the following, we refer
to the Laplacian of a globally connected graph as the global
Laplacian and the Laplacian of a locally connected graph as
the local Laplacian.

From relationship [9]

SSt ¼ SSb þ SSw;

it follows that

SSb � SSw ¼SSt � 2SSw

¼ 1

n
XX ðII �WWgÞ � 2ðII �WW‘Þ
� �

XXT :
ð4Þ

The MMC represented in this form is referred to as
LLDA in [26] and was applied to extract discriminant
features in supervised scenarios.

In this study, we extend (4) to unsupervised cases. We
first define the global similarity matrix KKg and the local
similarity matrix KK‘ as

½KKg�ij ¼
kðxxi; xxjÞ; if i 6¼ j;
0; otherwise;

�

½KK‘�ij ¼

kðxxi; xxjÞ; if xxi is among k‘ nearest neighbors

of xxj;

or xxj is among k‘ nearest neighbors

of xxi;

0; otherwise:

8>>>>>><
>>>>>>:

Here, kð�; �Þ represents the similarity between each pair of
samples, and the standard measures thereof include heat
kernel (Gaussian kernel), inner product, and euclidean
distance. Note that in supervised cases, prior class
information can be reflected to guide the graph construction
[31]. Let LLg and LL‘ be the normalized global and local
Laplacian matrices, respectively, as

LLg ¼ II �DD
�1

2
g KKgDD

�1
2

g ;

LL‘ ¼ II �DD
�1

2

‘ KK‘DD
�1

2

‘ ;

where DDg and DD‘ are diagonal matrices such that ½DDg�ii ¼P
j½KKg�ji and ½DD‘�ii ¼

P
j½KK‘�ji. Then, we seek to find the

projection matrix WW that maximizes the following criterion:

JLLDAðWWÞ ¼ trace WWT ðSSg � 2SS‘ÞWW
� �

; ð5Þ

where SSg and SS‘ are the global and local scatter matrices
defined as

SSg ¼
1

n
XXLLgXX

T ;

SS‘ ¼
1

n
XXLL‘XX

T :

Note that the reason for using the normalized graph
Laplacians is that the criterion (5) without normalization
may be affected by the scale of the similarity measure or by

the choice of the number of nearest neighbors, since (5) is
defined as the difference rather than the ratio of the global
scatter to the local scatter. Also, the use of normalized graph
Laplacian is known to be effective in spectral clustering
(e.g., [23]).

It is easy to check that, when we set ½KKg�ij ¼ 1=n for all i,
j; ½KK‘�ij ¼ 1=nk if xxi and xxj are both in the kth class, and 0
otherwise, LLg and LL‘, respectively, become II �WWg and
II �WW‘; hence, (5) includes the MMC (2) as a special case.

In general, (5) does not require class information, thus
can be used in an unsupervised manner. The construction
of the local scatter matrix is based on the assumption that, if
xxi and xxj are close, they are likely to belong to the same
cluster. Under the condition that class labels are unavail-
able, we cannot explicitly consider the separability of
different clusters, which is represented by the between-
class scatter in classical LDA and the MMC. In the objective
function (5), it is implicitly represented by the difference
between the global scatter and the local scatter. Therefore,
discriminative features can be extracted even in unsuper-
vised scenarios. In this paper, we refer to unsupervised
LLDA simply as LLDA.

3.2 Efficient Algorithm for LLDA

Similarly to the case of (2), the projection matrix WW that
maximizes (5) subject to the orthogonality constraint that
WWTWW ¼ II can be found as the eigenvectors of SSg � 2SS‘
corresponding to the largest eigenvalues. When p, the
number of features, is very large as in microarray data,
however, it is computationally demanding to directly
perform the eigenvalue decomposition (EVD) of SSg � 2SS‘,
which is of size p� p. In [26], two approaches for computing
LLDA have been presented. The first one directly computes
the eigenvalues and eigenvectors, hence demands expensive
computational costs. The other approach achieves this via
the spectral decomposition of Laplacian matrix, but it still
needs to compute the eigenvalues and eigenvectors of a p�
p matrix. Even worse, the eigenvectors corresponding to the
nonpositive eigenvalues are discarded in the process of
computing WW , thus it does not provide the exact solution to
the maximization problem and may result in losing
discriminatory information.

Here, we propose a novel algorithm for computing LLDA,
which is particularly efficient when the feature size is much
larger than the sample size, i.e., p� n, as is often the case
with microarray data. The proposed algorithm is based on
the following theorem (see Appendix A for the proof).

Theorem 1. Let PP�QQT be the reduced SVD [11] of XX 2 IRp�n,
where PP 2 IRp�n and QQ 2 IRn�n are orthonormal matrices
and � 2 IRn�n is a diagonal matrix. Further, let VV�VV T be the
EVD of a symmetric matrix �QQT ðLLg � 2LL‘ÞQQ�, where VV 2
IRn�n is an orthonormal matrix and � 2 IRn�n is a diagonal
matrix. Then, the projection matrix WW of LLDA is constituted
by the eigenvectors in PVPV corresponding to the largest
eigenvalues in �.

It is important to note that the main computation of the
algorithm consists of the SVD of a p� n matrix and the EVD
of an n� n matrix. Thus, it is very efficient in the case of
p� n (see also Appendix B for the computational complex-
ity). The previous study [24] first removed the null space of
the total scatter matrix via the SVD, thereby reducing the
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dimensionality of the data to n� 1, and then applied the
MMC in the reduced space, where the rank of the mean-
subtracted matrix of XX was implicitly assumed to be n� 1.
Although the computational complexity of the proposed
algorithm is the same as that of the previous MMC
algorithm, LLDA can be directly applied to multicollinear
data, while the previous MMC needs to estimate the rank of
the mean-subtracted matrix in such a degenerate case.

In this way, the graph Laplacian representation of the
MMC enables both the extension to unsupervised LLDA
and the efficiency of the algorithm.

4 LLDA-RFE: FEATURE SELECTION BASED

ON LLDA

The proposed algorithm for LLDA can be used in both
supervised and unsupervised cases to extract discriminant
features from high-dimensional data often encountered in,
e.g., face recognition [16], [18], [31], [32], text categorization
[5], [32], and microarray cancer classification [18], [32], [33].
In the context of microarray data analysis, the features so
extracted correspond to metagenes, linear combinations of
multiple genes, but we are rather interested in identifying
discriminative genes themselves.

To this end, the previous study [24] proposed to combine
the MMC with recursive feature elimination (RFE). The
MMC-RFE algorithm recursively removes features with the
smallest absolute values of the discriminant vectors of the
MMC. The RFE approach has recently proven to be effective
with regression [19], [34] as well as with support vector
machine (SVM) [13]. In the present study, we propose an
unsupervised recursive feature selection method using the
discriminant vectors of LLDA to identify features that
potentially reveal clusters in the samples. The proposed
LLDA-RFE algorithm has the same feature elimination
process as the MMC-RFE algorithm in [24], but LLDA-RFE
does not involve dimension reduction unlike MMC-RFE.
Another difference consists of the feature weighting scheme
as described below.

While the number of discriminant vectors extracted by
classical LDA is limited to at most c� 1, the MMC and
LLDA are capable of extracting more than c� 1 discrimi-
nant vectors. It can also be shown that the maximum value
of JLLDAðWWÞwith the obtained discriminant vectors is equal
to the sum of the corresponding eigenvalues. Because the
eigenvalues reflect the discrimination ability, we use only
the discriminant vectors corresponding to the positive
eigenvalues to calculate the weight of each feature. Let �1 �
�2 � . . . � �n be the eigenvalues in �. Then, we define the
weight of feature j as the sum of the absolute values of
d discriminant vectors in WW , i.e.,

Pd
i¼1

ffiffiffiffi
�i
p
j½WW �jij, where d is

the number of positive eigenvalues. Here, the discriminant
vectors are weighted by the magnitude of the correspond-
ing eigenvalues.

Our proposed algorithm, LLDA-RFE, can be summar-
ized as follows, and the computational complexity is given
in Appendix B.

Algorithm: LLDA-RFE

Input: sample matrix: XX 2 IRp�n

k‘: the number of nearest neighbors

Output: r top-ranked features

0. Set q p;
Repeat the following steps until q ¼ r
1. Construct the complete and k‘-nearest neighbor graphs

on XX and compute KKg, KK‘, LLg and LL‘;

2. Perform the SVD of XX as XX ¼ PP�QQT ;

3. Compute ZZ ¼ �QQT ðLLg � 2LL‘ÞQQ�;

4. Perform the EVD of ZZ as ZZ ¼ VV�VV T ;

5. Set WW to the eigenvectors in PPVV corresponding to the

positive eigenvalues in �;
6. Remove the jth feature with the smallest weight ofPd

i¼1

ffiffiffiffi
�i
p
j½WW �jij;

7. Set q q � 1, form XX and go to step 1.

5 RELATED WORK ON UNSUPERVISED FEATURE

SELECTION

Data variance is one of the most common criteria for
unsupervised feature selection, and often used as a baseline
method for comparison [15], [28]. Although variance ranking
can be useful for selecting features that show large variations
across all samples, it is not suited for selecting ones that
contribute to characterizing different clusters in the samples.
Hastie et al. [14] developed gene shaving to select informa-
tive genes from microarray data. Gene shaving iteratively
removes genes having the lowest correlation with the leading
principal component. Because the principal components are
found so that they capture the directions of maximum
variance in the data, gene shaving is also unsuitable for
identifying genes that reveal different clusters. The assump-
tion that discriminative genes exhibit large variance is not
necessarily valid particularly for noisy microarray data, due
to the large number of irrelevant genes. Indeed, recent
studies [28], [30] have shown that variance ranking, principal
component analysis, and gene shaving are not effective for
yielding distinctive patterns between different classes of
samples.

The latest and probably more effective unsupervised
methods are Laplacian score [15], the Q� � algorithm [30],
and SVD-entropy [28]. Among these, Laplacian score and
SVD-entropy are employed for comparison in this study. In
the following, we give a brief overview of the two methods.
The Q� � algorithm is not included here due to expensive
computational costs when applied to a data set with several
thousand features.

5.1 Laplacian Score

The idea of Laplacian score is to evaluate each feature by its
locality preserving power, showing similarity in spirit to
Locality Preserving Projection [16].

Let ffr ¼ ðfr1; . . . ; frnÞT , r ¼ 1; . . . ; p, denote the rth feature
for n samples. First, we construct a nearest neighbor graph
in the same way as for the LLDA-RFE algorithm. Then,
we compute the weight matrix KK, the diagonal
matrix ½DD�ii ¼

P
j½KK�ji, and the graph Laplacian matrix

LL ¼ DD�KK. Finally, the Laplacian score Lr of the rth feature
is computed as

Lr ¼
~ff
T

r LL
~ffr

~ffTr DD
~ffr
;
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where

~ffr ¼ ffr �
ffTr DDee

eeTDDee
ee:

According to the definition, a good feature should have a
small value of the Laplacian score (see [15] for the detail).
Thus, top-ranked features in this case are those with the
smallest values of Lr. It is worth noting that Fisher score can
be related to Laplacian score as shown in [15].

5.2 SVD-Entropy

Let us assume that p > n for a given sample matrix
XX 2 IRp�n. Denoting by sj the singular values of XX, an
SVD-based entropy is defined as [2]

E ¼ � 1

logðnrÞ
Xnr
j¼1

Vj logðVjÞ;

where

Vj ¼ s2
j

.Xnr
k¼1

s2
k:

Here, nr � n is the number of positive singular values,
which is equal to the rank of XX. Then, the contribution of
the ith feature to the entropy is defined as [28]

CEi ¼ E XX½p�n�
� �

� E XX½ðp�1Þ�n�
� �

;

where XX½ðp�1Þ�n� denotes the sample matrix with the
ith feature being removed.

Varshavsky et al. [28] have proposed three feature
selection strategies based on SVD-entropy: simple ranking
(SR), forward selection (FS), and backward elimination (BE).
Although SVD-entropy-based BE is somewhat similar to
LLDA-RFE in the feature elimination process, it has high
computational complexity in the case of a large number of
features, hence impractical to apply to microarray data sets.
This is due to the fact that CEi is calculated on a leave-one-
out basis. Indeed, Varshavsky et al. did not use BE in their
experiments on microarrays. Accordingly, we employ SR in
this study; top-ranked features are those with the largest
values of CEi.

6 EXPERIMENTAL RESULTS

6.1 Data Sets and Preprocessing

In the experiments, we used seven public data sets of cancer
microarrays. Since binary classification is a typical and
fundamental issue in diagnostic and prognostic prediction
of cancer, the different methods were compared primarily
using binary-class data sets: ALL versus AML for Leukemia
[10], normal versus tumor for Colon cancer [1], outcome
prediction on Medulloblastoma [25], Breast cancer [27], and
Lung adenocarcinoma [4]. In addition, we used multiclass
data sets on MLL [3] and SRBCT [17] to further assess their
performances. The characteristics of these data sets are
summarized in Table 1, and the details are given below:

. Leukemia [10]: This Affymetrix high-density oligo-
nucleotide array data set contains 38 samples from
two classes of leukemia: 27 acute lymphoblastic

leukemia (ALL) and 11 acute myeloid leukemia
(AML). The data set is publicly available at http://
www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

. Colon cancer [1]: This Affymetrix high-density
oligonucleotide array data set contains 62 samples
from two classes of colon-cancer patients: 40 normal
healthy samples and 22 tumor samples. The data set
is publicly available at http://microarray.princeton.
edu/oncology/affydata/index.html.

. Medulloblastoma data set [25]: This Affymetrix high-
density oligonucleotide array data set contains
60 samples from two classes on patient survival with
medulloblastoma: 21 treatment failures and 39 survi-
vors. The data set is publicly available at http://
www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

. Breast cancer [27]: This cDNA microarray data set
contains 76 samples from two classes on five-year
metastasis-free survival: 33 poor prognosis and
43 good prognosis. The data set is publicly available
at http://www.rii.com/publications/2002/vant
veer.html.

. Lung adenocarcinoma [4]: This Affymetrix high-
density oligonucleotide array data set contains
86 samples from two classes on survival: an event of
death for 34 and alive for 52. The data set is publicly
available at http://dot.ped.med.umich.edu:2000/
ourimage/pub/Lung/index.html.

. MLL [3]: This Affymetrix high-density oligonucleo-
tide array data set contains 57 samples from three
classes of leukemia: 20 acute lymphoblastic leuke-
mia (ALL), 17 mixed-lineage leukemia (MLL), and
20 acute myelogenous leukemia (AML). The data
set is publicly available at http://www.broad.mit.
edu/cgi-bin/cancer/datasets.cgi.

. SRBCT [17]: This cDNA microarray data set contains
63 samples from four classes of small round blue-cell
tumors of childhood (SRBCT): 23 Ewing family of
tumors, 20 rhabdomyosarcoma, 12 neuroblastoma,
and 8 non-Hodgkin lymphoma. The data set is
publicly available at http://research.nhgri.nih.gov/
microarray/Supplement/.

For the Leukemia, Medulloblastoma, Lung adenocarci-
noma, and MLL data sets, expression values were first
thresholded with a floor of 100 and a ceiling of 16,000,
followed by a base 10 logarithmic transform. Then, each
sample was standardized to zero mean and unit variance
across genes. For the Colon cancer data set, after a base
10 logarithmic transform, each sample was standardized. For
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the Breast cancer data set, after the filtering of genes
following [27], each sample was standardized. For the
SRBCT data set, the expression profiles already preprocessed
following [17] were used.

6.2 Performance Evaluation and Experimental
Settings

We compare the performance of LLDA-RFE with those of
Laplacian score and SVD-entropy, two state-of-the-art
unsupervised feature selection methods. The performances
of the unsupervised methods are evaluated by their
capability of identifying discriminative genes without using
class information. Varshavsky et al. [28] employed the
Jaccard score of clustering algorithms such as K-means,
showing how clusters can be discovered by using a smaller
number of genes selected from several thousand or more
genes in the same samples. Wolf and Shashua [30]
measured the performance by the classification accuracy
of a linear SVM classifier using leave-one-out cross-
validation; gene selection was performed in an unsuper-
vised setting, but classification in a supervised setting using
the selected genes only. Because we also compare the
performance between LLDA-RFE and Fisher score [8], [15],
a supervised gene selection method, we employ the nearest
mean classifier (NMC) and measure the performances by its
classification accuracy. It is known that NMC is highly
effective for cancer classification despite its simplicity [29].
Note that since Fisher score is supervised, it is generally
expected to perform better than unsupervised methods.

We assessed the performance of each gene selection
method with NMC by repeated random splitting as in [22];
the samples were partitioned randomly in a class propor-
tional manner into a training set consisting of two-thirds of

the whole samples and a test set consisting of the held-out
one-third of the samples. To avoid selection bias, gene
selection was performed using only the training set, and the
classification error rate of the learnt classifier was obtained
using the test set. This splitting was repeated 100 times. The
error rates averaged over the 100 runs and the correspond-
ing standard error rates are reported here.

To save computational time of RFE, we removed half of
the genes until less than 500, and then a single gene at a
time. For the computation of the weight matrix of Laplacian
score and the similarity matrices of LLDA-RFE, we used the
euclidean distance for nearest neighbor search and a simple
0-1 weighting as the similarity measure, i.e., kðxxi; xxjÞ ¼ 1 if
xxi and xxj are connected, and 0 otherwise.

6.3 Results and Discussion

6.3.1 Effect of k‘
We first compare the performance between LLDA-RFE and
Laplacian score by varying the number of nearest neigh-
bors, on the binary-class data sets: Leukemia, Colon cancer,
Medulloblastoma, Breast cancer, and Lung adenocarcino-
ma. Figs. 1 and 2 show the average error and standard error
rates of NMC for k‘ ¼ 1; 2; . . . ; 10. For LLDA-RFE, k‘ was
fixed to the same value during gene elimination. The
numbers of genes selected and used for classification were
50 and 100.

It is clear that LLDA-RFE consistently achieves better
performance than Laplacian score for all the data sets. This
can be attributed to the difference that while Laplacian
score is univariate, LLDA-RFE is multivariate and gene
subsets are refined by the recursive elimination.

It may be difficult to set an appropriate value of k‘ in
fully unsupervised settings because we cannot rely on
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Fig. 1. Comparison of error rates between Laplacian score and LLDA-RFE using different values of k‘ for Leukemia and Colon cancer. The error

rates are shown for (a) #genes ¼ 50 and (b) 100, respectively.
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cross-validation unless class labels are provided and the
value can also be largely dependent on the sample size of
each data set and on the potential number of clusters
therein. Although an adaptive setting of the value might be
preferable during gene elimination, our results suggest that
k‘ ¼ 1 to 3 is a reasonable choice when applying LLDA-RFE
to microarray data sets with small sample size.

6.3.2 Comparison on Binary-Class Data Sets

Table 2 shows the average and standard error rates of NMC
with four gene selection methods on the binary-class data
sets. Fig. 3 plots the average error rates as a function of the
number of genes from 1 to 100. The number of nearest
neighbors for Laplacian score was set as follows: k‘ ¼ 2 for
Leukemia, k‘ ¼ 6 for Colon cancer, k‘ ¼ 3 for Medulloblas-
toma and Breast cancer, and k‘ ¼ 1 for Lung adenocarcino-
ma. For LLDA-RFE, k‘ ¼ 3 was used for Leukemia and
k‘ ¼ 1 for the other data sets.

We can observe that LLDA-RFE outperforms Laplacian

score for a wide range of gene sizes. In comparison with

SVD-entropy, LLDA-RFE yields lower error rates for

Leukemia, Medulloblastoma, and Breast cancer. Although

SVD-entropy appears to be better for Colon cancer and

Lung adenocarcinoma, LLDA-RFE consistently shows

satisfactory performances for all the data sets. Also, note

that LLDA-RFE performs better than Fisher score for

Leukemia, Medulloblastoma, and Breast cancer, despite

the fact that LLDA-RFE is fully unsupervised. However,

this does not imply that unsupervised gene selection is

preferred to supervised one for these data sets. In fact,

Fisher score, which can be viewed as a supervised version

of Laplacian score, improves the performance of Laplacian

score by using class information. Likewise, we can expect

further improvement when using LLDA-RFE in a super-

vised manner.

6.3.3 Comparison on Multiclass Data Sets

Table 3 shows the average and standard error rates for the
MLL and SRBCT data sets. Fig. 4 plots the average error
rates as a function of the number of genes from 1 to 100. For
Laplacian score, k‘ ¼ 1 was used for both data sets, and for
LLDA-RFE, k‘ ¼ 4 and 3 were used for MLL and SRBCT,
respectively.

It can be seen that LLDA-RFE reaches smaller error rates
with a smaller number of genes, showing superior
performance to Laplacian score and SVD-entropy. Notably,
LLDA-RFE achieves even better performance than Fisher
score. These results indicate that LLDA-RFE can also be
useful for filtering genes from microarray samples poten-
tially comprising multiple clusters.

In summary, our comparison using several microarray
data sets has demonstrated that LLDA-RFE is effective for
identifying genes that contribute to characterizing different
clusters in the samples. Although we used 0-1 weighting as
the similarity measure, the performance could be improved
by using other data-dependent similarity measures. Also,
more discriminative features can be found by balancing the
global and local scatters as in (3).

7 CONCLUSIONS

In this paper, we have proposed an unsupervised feature
selection method based on LLDA. In particular, we have
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Fig. 2. Comparison of error rates between Laplacian score and LLDA-RFE using different values of k‘ for Medulloblastoma, Breast cancer, and Lung

adenocarcinoma. The error rates are shown for (a) #genes ¼ 50 and (b) 100, respectively.
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extended LLDA to unsupervised cases and proposed a novel

algorithm for computing LLDA, which is efficient for high-

dimensional and small sample size data. The LLDA-RFE

algorithm was then applied to several microarray data sets

to identify discriminative genes without using class labels.
Our comparison with other state-of-the-art unsupervised

feature selection methods and with a supervised method

has demonstrated the feasibility and effectiveness of the

proposed algorithm. LLDA-RFE is capable of identifying

discriminative features that contribute to revealing under-

lying class structures, providing a useful tool for the

exploratory analysis of biological data.
A possible application of interest is the use of LLDA-RFE

in semisupervised scenarios: When labels are partially
given, we construct a graph such that samples from the
same class are always connected, while those from different
classes disconnected, and those with no class labels are
adaptively connected or disconnected depending on the
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TABLE 2
Comparison of Error Rates (in Percentages)

on Binary-Class Data Sets

Best results in boldface.

Fig. 3. The average error rates for Fisher score, SVD-entropy, Laplacian score, and LLDA-RFE on binary-class data sets.

TABLE 3
Comparison of Error Rates (in Percentages)

on Multiclass Data Sets

Best results in boldface.
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nearest neighbors. We are currently exploring the applic-
ability of LLDA-RFE as a semisupervised learning method.

APPENDIX A

PROOF OF THEOREM 1

It is straightforward to verify that SSg � 2SS‘ can be
decomposed as follows:

SSg � 2SS‘ ¼
1

n
XXðLLg � 2LL‘ÞXXT

¼ 1

n
PP�QQT ðLLg � 2LL‘ÞðPP�QQT ÞT

¼ 1

n
PP�QQT ðLLg � 2LL‘ÞQQ�PPT

¼ 1

n
PPVV�VV TPPT

¼ 1

n
ðPPVV Þ�ðPPVV ÞT :

Further, from the orthonormality of PP and VV

ðPPVV ÞT ðPPVV Þ ¼ VV TPPTPPVV ¼ VV TVV ¼ II:

Thus, PPVV is the orthonormal matrix consisting of the
eigenvectors of SSg � 2SS‘. The projection matrix WW of LLDA
with the orthogonality constraint is constituted by the
eigenvectors of SSg � 2SS‘ corresponding to the largest
eigenvalues, hence the theorem holds. tu

APPENDIX B

COMPUTATIONAL COMPLEXITY OF THE

LLDA-RFE ALGORITHM

We analyze the time complexity of LLDA-RFE. The main

computation in step 1 consists of k‘-nearest neighbor search.

The time complexity depends on the search algorithm

employed, but when n is small, it does not affect the overall

time of LLDA-RFE, hence omitted from this analysis. Step 2

takes Oðpn2Þ time for the reduced SVD [11]. Steps 3 and 4

take Oðn3Þ time for the matrix multiplications and for the

EVD, respectively. Step 5 takes OðpndÞ time for computing

PVPV , where dð< nÞ is the number of positive eigenvalues.

Step 6 takesOðpdÞ time for calculating weights andOðpÞ time

for finding the smallest. Thus, in the case of p� n, the total

time complexity for a single iteration is Oðpn2Þ. Overall, the

LLDA-RFE algorithm takes Oððp2 � r2Þn2Þ time when

recursively eliminating one feature at each iteration until

the number of features reaches r. To alleviate the time

complexity of RFE in the case of large p, a subset of features

is often eliminated at a time.
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