ooooboooao
5110 1984 O 223-241

INCORPORATING NAIVE NEGATION INTO PROLOG

K. Sakai and T, Mipachi
ik 2 st =S

Institute for New Generation Computer Technology (ICOT)
MEBEA a2 - 2EWMBATEE (100T)

ABSTRACT

This paper proposes an expanded version of the logic programming language Prolog, which
is called Pure Prolog with Negation (PPN) and permits writing negative information We
present query response forms for PPN and their semantics and propose an execution
algorithm. Furthermore, we discuss semantics and an execution algorithm for PPN as viewed
from the standpoint of intuitionistic logic. These execution algorithms are based on

existing Prolog systems and can be easily implemented.

1. Introduction

The resolution principle suggested by Robinson [Robinson 65] can be efficiently
implemented if limited to Horn clauses, and Prolog is known as a language which applies
the principle in this case [Battani73, Kowalski74, Warren77]. While Prolog programs have
the advanizge of being free from internal incomsistency because they are limited to
definite clauses, they have a drawback in that they do not permit writing negative
information. Unlike pure Prolog, actually implemented Prolog systems allow writing
negation since they have special predicates such as "cut”. But negation as written using
cut is different from negation as we intuitively conceive it, and means “unprovability™.
Besides, cut is a predicate which cannot be understood without knowing how Prolog systems
are controlied and explicitly introduces procedural interpretation into Prolog, thus
seriously affecting its linguistic characteristics as a logic language. At the same time,
it prevents Prolog from being interpreted independent of the processing syster

Since, Horn cluuses per se do not preclude writing negative information, Prolog can be
aaturally expanded to permit writing naive {or intuitive) negation if general Horn clauses
are aliowed in Prolog programs. This expansion is dealt with in Section 2. The expanded
language is called Pure Prolog with Negation (PPN). The incorporation of negation gives
rise 10 a need to check the comsistency of PPN since the language is not - unlike Prolog -

4

free from internal inconsistency, but this check is easily implementable on existing

Prolog systems.

Because PPN is a programming language, it is necessary to define clearly its execution and
the interpretation of the execution results. The execution of PPN, as with Prolog, can be
viewed as a mechanism for giving . responses to queries. Section 3 presents an algorithm

for this execution, together with query response forms and their interpretations

The interpretation of the results of PPN execution presented in Section 3 is indefinite in
some cases; There are cases in which "it is unknown which of the several possible
solutions given is the right solution, though it does exist among themw™ But if PPN is to

be used as a programming language, it is desired that answers from the system should be
generally definite. This desire stems from the standpoint that program execution is meaningless
unless it finds a definite solution This may be called a constructive or intuitionistic
standpoint Section 4 examines conditions for making solutions definite and presents an
intuitionistic execution algorithm deveioped by incorporating the conditions into the
algorithm described in Section 3,

2. Pure Prolog with Negation (PPN)

There are two types of Horn clauses
(1) Clauses consisting solely of negative literals (called negative clauses)
(2) Clauses containing only one affirmative literal (called definite clauses)

Example 1.
~a{X,Y) L. negative clause
-alb) v X - L negative clause

a(30 v -b(XY) v ~dY) ... definite clause

Programs in pure Prolog consist solely of definite clauses, but we expand pure Prolog to
allow negative clauses as well This Prolog is called Pure Prolog with Negation (PPN). A .
PPN program consists of two parts; the part composed solely of negative clauses is called
the negative part, while the part composed solely of definite clauses is called the -

affirmative part

2.1 PPN Syntax

The syntax of PPN is defined below. It assumes, howci'cr, that variables; constants,
terms, and atomic formulas are known In this paper, variables are all represented by a
character string beginning with an uppercase alphabetic character, and constants
(including function and predicate symbols) by a character string beginning with a

lowercase alphabetic character.
<Definition 1>. PPN syntax

(1) If and only if al, ..., an are atomic formulas,

2 -

CIND
20
it

al, ..., an is a negative clause.

(2) If and only if «al, ..., an, § are atomic formulas,
8 « al, ..., an is a definite clause
(3) If and only if »l, ..., »n are negative clauses,
vl .
va .

iIs a negative part.
(4) If and only if &1, ..., 4n are definite clauses
81 .

én .
is an affirmative part
(5) If and only if T is a negative part and A is an affirmative part,
[Ta]
is a PPN program

Adapting the above definition, Example 1 would be written;

< aXY) ...negative clause
« a(b), dX) ...negative clause
aAX) « X Y), Y) ...definite clause

w, n

That is, affirmative literals come to the left side of "+" and negative literals (rid of

the symbol -~), to the right side. Intuitionally, "«" may be interpreted as "if" and ",

which punctuates the right side of "«", as "and”, as in Prolog

In definitions (1), (2), {(3) and (4), n may be 0. In (1), however, if n=0, the negative
clause « representing contradiction is obtained, which means that the program with the

clause « in the negative part is inconsistent in the sense of 2.2

2.2 PPN Consistency

As stated in the Section 1, PPN programs may involve internal inconsistency. This
subsection describes the procedure for checking this inconsistency. Internal inconsistency
in a PPN program means that something negated in the negative part is proved from the

affirmative part Therefore, the following is a procedure for checking the inconsistency.

<{Procedure 1> PPN consistency
(1) An ordinary Prolog system is given the affirmative part (which has the same form as
of ordinary Prolog program) as a program and queried about the contents of the
negative part
(2) If one of the contents negated by the clauses in the negative part are proved, it
-3 -

can be said that the PPN program is incoasistent. That is, either the proved
negative clause or some of the affirmative clauses used for the proof are wrong

Example 2

« god(X), mortal(X). god(jupiter) «,

"God is not mortal™ “Jupiter is a god.”
god{parent{X)) « god(XD.
"god's parent is a god.”
mortal (parent {(jupiter)) «
"Jupiter's parent is mortal®

If the query

? - god(X), mortal(X).

is given to an ordinary Prolog system with the affirmative part as a program, the

system returns the answer
X = parent{jupiter).

because there is the following proof figure
« god(2Q), mortal(X) .
god(parent(X), mortal(parent{X)) god(parent{X))egod(X)
god (X), mortal{parent(X)}
god(jupiter), mortal(parent{jupiter)) god{jupiter)e
mortal{ parent(jupiter)) mortal{parent{jupiter))+

T

+

T

+

3. Execution of PPN as a Programming Language

Queries to pure Prolog { which may be interpreted as retrieval or program execution)
correspond to negative clauses, but PPN also allows queries corresponding to definite:

clauses, that is, queries containing only one negative literal

Procedure 2> PPN execution

(1) If a query is composed solely of affirmative literals, it is treated the same as in
pure Prolog. (In this case there is no need to use negative knowledge.)

(2) If a query contains a negative literal, it can be written as; ~«, I', (I' coasists
solely of affirmative literals) by ignoring the order of literals Then a « I’ is
added to the affirmative part (This process is called assertion)

(3) One of the clauses in the negative part is selected and queried about to the
affirmative part, which now contaios the clause asserted in (2). Each time the
asserted clause, o « I'" is used, the vaiue substitution to each of the variables
(which is called the unifier) is stored as a candidate for the answer to be

returned: If execution succeeds, an answer is given in the following form;

variable 1 = value 1, ..., variable n = value n ... First unifier

T

227

v variable 1 = value I, ..., variable n = value n' ...Second unifier

v variable 1 = value 1", ..., variable n = value n" ...Last unifier

If execution succeeds without using a « I' at all, the program is inconsistent.
The meaning of the answer is that “the list includes a unifier that satisfies
the query given, but existing knowledge cannot decide which one it is" (Refer to
Example 4.)

(4) If execution fails or if it succeeds but another answer is requested, step (3) is
repeatedly executed while backtracking. Needless to say, backtracking covers

selection of clauses in the negative part
Example 3.

Program:
+«mortal{apollo). mortal(3) « man(3). |
"Apollo is not mortal.” "man is mortal”
man({X) « man(parent(X)).
"child is a man if his parent is 2 man.”
Query: ?- ~man(X).
"What is not man?"

Assert man(X) « and query ?- mortal(apolio), then

mortal{X) « man(X)
+ mortal(apollo) mortal{apollo) « man({apollo) man(X) « (A)

+ man(apollo) man{apollo) +

-
is obtained and execution succeeds. The procedure stores the unifier in {A) and
returns the answer

X = apolla.
If requested other answers, backtracking occurs and the answers are returned in
sequence as follows

X = parent{apollo),

X = parent{parent{apollo)),

Example 4.

We explain why it is necessary to present a special meaning such as that given in

{3) of (Procedure 2.>. Let us consider the following theorem and proof.

Theorem : There exist irrational numbers X and Y such that XY is a

rational number.

Proof: 42 is an irrational number. On the other hand, we have
=2 L 42 X‘/’z . 2
(42) :— 2 =] 2 =2
o F ,‘/" ‘{21‘42 - 2 .

Therefore, (*2'%"“'Is a ratonal number. Now assume that¥'2 ~ is an
irrational number. Then, if x :J'ZIZ , Y =2, XY is a rational number.-
Assume that)f?,[?' is a rational number. Then, If X =42, Y =42, XY is
again a ratonal number. Therefore, in either case there are X and Y
satisfying the theorem (Q.E.D.).

=12 2
The only knowledge necessary for the above proof is that (¥2 7) is a ratonal

number and 4 2 ag irrational number. Then let us consider the following PPN

Program:
423
“ir (129 ir (V2) «
“(4272 Y72 is a rational number” “42 is a irrational number”

Y.
As a query, we give the above theorem, namely, 7- -ir (X), ir (X0, i{Y). If we
assert ir Q(YJ « ir (X0, ir (Y} to the affirmative part and put the guery
- ir (4272)2), then we have

G XN e (0. (N (A

c i @2 D) i (22, ik (2) rxh) cir oo kM @
- ir (2 ir @) ir (') « ir ¢, ir (1)
e ir (12), i(42), ir (D) i)

The above proof has two occurences of the asserted clause, whose unifier are
A X=7% Y=72 end
in(B) X=4% Y=72
These are just the ones corresponding to the two cases given in the earlier proof.
Besides, it is evident that whether ‘/_2{2 is aq irrational number or a rational
number cannot be decided from the knowledge in the program above. Therefore,

which is the correct answer cannot be decided

<Procedure 2> begins resolution with a negatve clause (negative part), in line with
ordinary Prolog systems, but application of the resolution principle can begin with any
two clauses Since, however, in Prolog a ucgati';'c clause irself is 2 query 1o, begianing
resolution with a negative clause means beglnning with a query and is, therefore,
efficient In PPN, by conatrast, queries may correspond to definite clauses (Le contain
a negatve literal). Beginning resoluton with a negative clause in such 2 case iIs
naturally expected to reduce execution efficiency. It is, therefore, important to

coasider an algorithm which begins resolusion with a query given. One such algorithm is

presented below.
<Procedure 3> Improvement of PPN program execution efficiency
(1) For queries which do not contain negation, the procedure is the same as for Prolog

{2) For a query containing aegation “?- ~a, I' " the negative part is searched for a literal

unifiable with a. If + B, ', A (a' is uaifiable with a) is fouad, the uaifier § which

1
[«
!

~J

229
unifies « and «' is stored as a candidate for the answer to be returned and asserts
a « I' to the affirmative part Subsequently, the procedure is the same as in <Procedure
2> with 7- #B, T, A) as the goal If the clause & « T' asserted is used later,
the unifier is added to the list of candidates for the answer.

(3) If (2) fails (that is, no literal unifiable with « exists in the negative part), the
affirmative part is searched for a literal in a body unifiable with «. If 8 « B, a', A
is found, the unifier stored as a candidate for the answer and the process {4) is
executed with 7- #(~8, B, T' ,A) as the goal

(4) The negative part s searched for a literal unifiable with #8). If one is found, the
procedure is the same as in (2), except that the unifier related to #8) is not added
to the list of candidates for the answer.

(5) If (4) fails, the affirmative part is searched for a literal in a body unifiable
with #(8). The subsequent procedure is the same as in (3), except that the unifier
relatsd to 8(8) is not added to the list of candidates for the answer.

(6) If the goal ends in success in the above process, the program outputs the candidates
for ‘the answer as in <Procedure 2>. If the goal ends in failure or another answer is

requested, the procedure backtracks

4. PPN and Intuitionistic Logic

The proof in Example 4 uses the law of excluded middle and is often cited as an example of
the unprovable in intuitionistic logic. So the PPN system seems beyond intuitionistic
logic. The relation between PPN and intuitionistic logic is discussed here.

The resolution principle as a theorem prover was originally an inference rule in classical
logic and has no direct relation with intuitionistic logic. In fact, application of the
resolution principle requires transforming logical formulas into Skolem standard form,
but intuitionistic logic does not allow such transformation
In Prolog or in PPN , however, Horn clauses, can also be interpreted in intuitionistic
logic as follows
(1) Negative clause + al,..., an means

¥X1 ... ¥vXm ~(al A ... A an)
(2) Definite clause 8 « «l, ... ,an means

¥X1... ¥YXm (al ... 2 an > §)

(X1, ... ,Xm represents all variables appearing in «l, ... , an, £.)

Under this interpretation, the resolution principle is a valid inference rule even in
intuitionistic logic (though unlike in classical logic, not complete). Especially, since
Prolog programs do not have (1), chaﬁging the interpretation of (2) to

(29 vXl.. ¥Xm(al >... >2an>8)
makes the resolution principle consistent with positive implicationistic logic, a subsystem

of intuitionistic logic. ((2) and (2') are equivalent formulas in the intuitionistic logic.)

The proof in Example 4, however, on the face of it, seems to signify that PPN cannot be
kept within the intuitionistic logic, but actually that is not the case. What PPN proves

in Example 4 is that the three expressions

- T -

-ir ((4‘2*?')[:’), HY2), YXVYGAX) A i () > ir (X 1)
result in contradiction. From this it follows that

(3) ~¥XY YO A i(Y) > i X D)

. 7\W2
is deducible from ir ((['ZQ) “) and ir &2). And in classical logic (3} is allowed to be

interpreted as
(3) IXTYC (X D) A id0) A iV

That is, PPN remains within the scope of intuidonistic logic if we regard what Example 4
proves as (3), not (3'), and goes beyond the scope of intuidonistic logic if we regard it

as{(3'). Therfore, the interpretation in <Procedure 2> is not Intuidonistic.

One reason for Prolog's success as a programming language is the fact that the existential
interpretadon like (39 s possible even under Intuidonism by confining it in the
framework of definite clauses as knowledge and negati\}c clauses as query, thus enablins it
to be viewed as mechanism for finding definite solutions. But the existential
Interpretation under intuitionism is possible also for PPN, if the clause asserted is used
only ounce in the proof, as in Exampie 3. In such a case, indefinite interpretation, as in

Examples 4, become unnecessary. The following is a generalization of this.

< Thecrem 1 >

Let H be a set of Hora clauses, and assume that contradiction is derived from
a + I' and H by the resolution principle. If all the occurences of substitution

to the clause in o « I' appearing 1o the proof arc unifiable, then
IX ... IXm (a A T) (X, ..., Xm represents all variables appearing ia «, T'.)
s provable from H in intuitionistic logic.

< Proof >

Let & be a unifier that unifies all occurences of substitution to « « . Let |
be the results of all necessary substitutions made to H in the proof. Then, from
Ha « I') and 9(H'), contradiction can be derived by the resolution principle without

substitution. From this it follows (the proof is shown later as <Lermma 1>) that

(1) &) 1s derived from 8(H') by the resolution principle and
(2) Contradiction is derived from &(H) and #a) by the resolution principle.

Since the resolution principle Is also valid in intuitionistic logic, it follows
from (2) that ~8(«) is derived from &) in intuitonistic logic. Therefore, from.

§(¥T) are derived 68(=a A) and, furthermore,

IX! . IXm {(ma A T

23

And obviously, H{H') is derived from H Therefore, 3X1 ... IXm{-a A T') is derived
from H Q.E.D.

From the above theorem, the following algorithm for PPN execution in intuitionistic logic
is obtained by modifying <Procedure 2> or <(Procedure .

<{Procedure 4> Intuitionistic PPN execution

(1) The process leading to discovery of an answer is the same as in <Procedure 2 > and
<{Procedure 3.

(2) If candidates for the answer are obtained, the program checks whether they are
unifiable.

(3) If they are unifiable, the program returns their most general unifier as the answer.

If they are not unifiable, the program backtracks

Example 5.
In Example 3, man(X) « asserted is used only once to derive each answer, as stated
earlier. Therefore, the answers in Example 3 may also be regarded as answers in

intuitionistic execution.

Example &
-~ , r. PR ’
X =427, Y =42 and X =72, Y = ¥2in Example 4 are not regarded as answers because

{272 and ¥7 substituted to X cannot be unified
Example 7.

« ruseX, X¢X
"Members of the set rus do not include themselves.™

To put the query 7- ~Y¢Z to this program, we assert Y¢Z « and query ?- r¢X.

Y¢Z « (A)
« Xerus, X¢X Xérus « Y¢Z « (B
« XeX XeX +

The substitution in (A) is Y= X, Z=rus, andin (B), Y= X, Z = X Since, however,
these can be unified, X = Y = Z = rus. Therefore, Y = rus, Z = rus is returned.

We demonstrate the truth of (1) and (2) in the proof of <(Theorem 1>
< Lemma ! >

Let H be a set of Horn clauses If contradiction can be derived from a « I" and H by the

resolution principle without substitution, then

-~ O o

Do
€ o)

(1) T is derived from H and by the resolution principle.
{2) Contradiction is derived from « « I' and H.

< Proof >

Since (2) is obvious, we prove (1). There are only two types of resolution from Horn

clauses:

A) Resolution from two definite clauses (d-resolution)
a« B I', A is derived from a« « B, 8, A and 8« T.
B) Resolution from a negative clause and a definite clause (n-resolution)

« B, I' A is derived from « B, 8, A4 and 8+« T.

A proof of contradiction from Horn clauses using the resolution principle can be
rewritten into a proof of contradiction by n-resolution only. The procedure for this
is as follows Contradiction, which is a special negative clause, cannot be proved
by d-resolution alone. Therefore, if a d-resolution exists in a proof, there exist

one which connects with an n-resolution, as illustrated below.

(B) (&)
(A) x«B 8 A g T d-resolution
« A a E a«B T A n-resolution
«A BT, A E
(D)

If that part is rewritten into two n-resolutions as follows, the number of

d-resolutions is reduced.

(A) (B)
« A a E a + B, 5, A n-resolution
« A, B B8, A E 8 « T n-resolution
«A B T,A E
(D)

This procedure is repeated until the number of d-resolutions is reduced to zera

The proof of contradiction from H and a « I' is rewritten into a proof of contradiction
from n-resolution alone. Then the prcof takes the form that definite clauses of H or
« « T' are applied sequentially to negative clauses. Let the part where & « I' is

applied last be

(B)
«B o A a+T
« BT,A
(A

The part (A) represents a proof of contradiction from « B, T, A and definite clauses

- 10 -

235

of H alone and has no substitution. It follows that « B, I', A is derived from
definite clauses of H alone by the following <Lemma 2>. Therefore, {1) holds QED.

< Lemma 2 >

If contradiction is proved from « I' and a set P of definite clauses by the resolution

principle without substitution, then I' is proved from P.
< Proof >

We use mathematical induction related to ‘the number of steps in the proof of

contradiction.

1) If the number of steps is zero, « I' is nothing other than «. In this case, T' is
empty and these is nothing to prove from P. Therefore, the lemma holds

2) Let us assume that the number of steps = n > 0 and the lemma holds for those
proofs whbse number of steps is less than o In this case I' is pot empty, and

the part where the resolution principle is first applied to « I" is of the form

(B
« T, a T2 a« A (T'=T1 « I'2)
« T1, 4, T2
(A)

Here the part (A) of the proof has fewer steps than n and represents a proof-of
contrddiction from « T'l, a, I'2 and P. Therefore, by the hypothesis of induction,
« I'l, a, T'2 is proved from P. On the other hand, the part (B) shows a proof of

a « A from P. Since A is known to be provable from P, « is also provable from P.
Therefore, T'1, a, I'2, namely, T’ is proved form P. QED.

Acknowledgements
The authors wish to express their thanks to K. Fuchi, director, T. Yokoi, and K.
Furukawa, laboratory chiefs, of the Iastitute for New Generation Computer Technology

(ICOT) for providing the opportunity to conduct this research. Thanks are also due to &
Kunifuji, K. Mukai, T. Kurokawa and M. Asoo of ICOT for their helpful suggestions

- 11 =

[References }

[Kowalski74] Kowalski, R.: “Predicate logic is a programming language,” ifip 74,
North-Holland, pp. 56%-574,1974.

[Battani73] Battani G. and Meloni, H.: “Interpreteur du langage de programmation
PROLOG," Groupe d'Intelligence Artificielle, U.E.R. de Luminy, Universite
d'Aix-Marseille, 1973

[Warren77] Warren, D.H.D.: “Implementing PROLOG - compiling predicate logic programs,”
Research Report 39 and 40, Dept of Artificial Intelligence, University of
Edinburgh, 1977.

[Robinson65] Robinson, J.A.: "A machine oriented logic based on the resolution
principle,” JACM 12, Na. 1, pp. 23-41, 1965,

NG
fohv
)

APPENDIX: PROLOG PROGRAM FOR PPH EXCECUTION

A1.1. progranm

:~ public solve_c/1. % inconsistency check

1~ node solve_c(+).

solve_c(DB) :~ 1,
solve_c_negative_clause_select(DB,DB,A),
nl, write(' '), write_or(&), nl.

c_negative clause_

ive_clause_select(]
copy_term{BR,Bb),
solve_c_body{2b,DB,[],4).

solve_c _negative_clause_select([_!L],DB,A):-
solve_c_negative clause SQlecf(L DB,A).

select(+,+,-).
(:=-BRYIL],DB,[(:~Bb) A

o)
—

:- mode solve_c_body(?,+,2,?).
solve_c_body([1,_,A,A).
solve_c_body ([o{BP} DB,AA,AY:
_uO ve_C_ tgr'al<;_),D__:,:).J,C, \
solve_c Doc,(LR DB,AA,C).

3
o
}_.J
—~~

:~ mode solve. c_

lite Py, 7,20,
solve_c_literal(B,[(HR:-BR)!L1,DB,8A,[(B:~Bb}14]):~
copy_term({HR:-BR),(Bh:~Bb)), unify{(5,Hn),
solve_c_body(Bb,DB,AA,A).
solve_c_literal(3,[_|L],DB,A4,4):~
solve_c_literal(B,L,DB,A4,R).

A1.2. execution example

csolve_c{[(:=[zod(X),mortal(X)]),
(god(jupiter):-[1),
(god(parent(X)):~-[god(X)1),
(mortal(parent(jupiter)):-[]1) 1).

I (:~[god{parent(jupiter)), ,mortal{parent(jupiter))])
! (god(parent(jupiter)):-[god(jupiter)])

i (god(jupiter):-[])

! (mortal(parent(jupiter)):-[1)

1~op(500,xfx,on).
?7-.solve_c(
[(:=[blue(X),green() 1),
(b ona :~[1),
(c onb :=[1),
green(e) := [1),
D

(blue(a) :~ [

1.

I 2- solve_c(
! [(:-[ir({root2#%%root2)%%#root2)]),
! (ir(root2):-[1)1).

no
(8

.,

42, Classical excution of PP
A2.17. progran

:- op(990,fx,”).

:- public solve/2.

1~ mode solve(+,+).

solve([~HIB],DB) :~ 1,
solve_nead_clau

solve_body_asser ,
nl, write{("' '), write([“Hhi{Bb]), write_or(4).
solve{B,DB):- copy_ter (B,Bb),solve_body_priginal_db(Bb
nl, write(! ’), write(Bb), nl.
:~ mode solve_head _clause_select(?,+,+,+,+,~).
sclve_head_clause_se cct(U [(HR:-BR)IL1,DB,Q,AA,4) ;=
copy_term {(HR -BR),{Eh:=-Bb)),
solve_head_affirmative(H,Hh,Bb,DB,0,A,4).
solveﬁheao_plause_pc*eot(H,[(~BRYIL],DB,0Q,4,B):~
copy_tern(BR,Bb),
solve_head_negative(H,Bb,DB,0,4,8).
solve_head_clause_select{H,[__ ‘L ,DBE,Q,A,B) =
solve_head_clause_se eo»(“,L,DE,Q,ﬁ,u).
:~ mode solve_head _nezative(?,?,+,+,+,~).
solve_head_negative(H,[Eh|BR],DB,Q,AL,A) = unify(H,Hh),
solve_body_asserted_db{(BR,DE,Q,A4,4).
solve_head_negative(H,[BIBR],DB,0,AA,4):~
solve_head_negative(H,BR,D5,0,AA, L),
solve literel_original_db(B,DB,DR).
:— mode solve_head_affirmative(?,?,2,+,+,+,~).
solve_head_affirmative(H,HR,[Hh!BR],DB,0,AA,A) = unify
solve_head_clause_select(HR,D3,DE,Q,A4,C),
solve_body_asserted_db(BR,DB,Q,C,A).
solve“head ufflrﬁat¢ve(1,HR,[BIBR],DB,Q,AA,A):~

»

o
e
o
2

copy_term((H:-B),(Eh:-3b
se_select s
ted_db(Bb, DB,\“u~9),[A,f}.

M
affirmatlve(H,HR,vR,

the negation symbol
classical PPH execution

solve(Query, PPIN_

)Y,
Hh,Du,DU (f}.-—B) E],A;‘LJ,

i~ wode solve_body_asse
solve bo¢3 —_asserted_db!
solve body_asserted_db(

solve literzl_a L

"
solve_body_asserted_db(BR,DB,Q,C,A).

o

1= mode solve literal asserted db(?,+,+,+,+,~).

solve_literal asserted_db(B,[(BR:-BR)IL],DB,Q,84,A):~
copy_term{(HR:=BR),{Bh:~Bb)), unify(B,Hh),
solve_body_asserted_db(Bb,DB,Q,AA,A).

solve_literal_asserted_db(B,{_IL1,DB,Q,A8,4):~
solve_literal_asserted_db(B,L,D3,0,A48,4).

solve_literal asserted_db(B,[]1,DB,(H:-BB),AL,[["BIBBbIIA]):-
copy_tera((H:-BB),(H¥h:-=BBb)), unify(B,Eh),
solve_body_zasserted_db(BRb,DB,(H:-BB),A4,4).

original db(? +) .

:~ node szclve_literal_or
solve_literal_originel_d
{
\

g _db(B, :-BR ,
copy_term{(HR:-BR),(Hh:~Bb)), unify(5,H5h),
1_db(Eb,DB).
solve_literal_ original_ B,[_JL],DB):—
L

"SO-
HU‘

&
(

)
solve_body_original_
(

solve_literzl origi
;- mode solve_body_original_db{?,+).
solve_body_original_db({]1,_).
solve_body_original db([EB{BR],DB):-
solve_literal_original_db{(E,DB,D3},
solve_body_original_db(BR,DR).

i~ node write_or{(+).
write_or({1):= nl.
write_or([Candidate]A]):~ nl, write('{ '), write{Candidate), write_or(Aa).

£2.2. execution example

7= :=0p(500,xfx,in).
?2- solve([~(X in ¥)1,[(:-[X in X, ¥ in russell)]).

[~ 434 in _A434]
V[~ 434 in russell

e e s 2 s S 0 WS e S T T Ve B a3 e 3 o e e T T an o b A3 SR e i T % e s = e e P D B o e e B 3 AR 0 s Qe o o SNl o o e B e e o S % M S e Al L s e et s e 1y

! 27— solve([~"man(X)],

! [(:-[mortal({apollo)]),

! (mortal(X):-[man(X)]),

H {man(¥):~[man(parent(X))1)1).

["man(apollo)]
{ “man(parent(apollo))]

["man(parent(parent(apollo)))]

?2- :-0p(100,xfy, #%).
?— solve([~ir(X®#Y) ir(X),ir(¥)],
[(:-[ir({root2%*#¥root2)*%root2)]),
(ir{root2):~[1)1).

“ir((root2%%root2)¥¥proot2),ir(root2%¥root2),ir{root2)]
~ir(root2%#proot2),ir(root2),ir(root2)]

~—

?- :-0p{500,xfx,0n).
?- zolve([~green(X),green(Y),¥ on ¥1,
[(:=[blue(X),green(X)]),

(b ona :-[1),

(c onb :=[1),
(green(c) := [1),
(blue(a) :- [1)

1.

[~green(a),green(b),b on al
{ [~green{(b),green(c),c on b]

- 16 -

A3. Intuitionistic execution of PPN

A3.1. progran

;- public solve_i/2. ¢ intuitionistic PPH executicn
1~ node solve_il+,+). 9 solve_i{Query, PPN_program)

solve i([~H|B1,DB):~ copy_term((H:~B),(Eh:-Bb)),
solve_i_head_clause_select(Hh,DB,DB,(Hh:-Bb)),
solve_i_body_asserted_db(Bb,DB,(Hh:-Bb)),
nl, write(' '), write([~Hh!Bb]), nl.

solve_i(B,DB):- copy_term(B,Bb),solve_i_body_original_db(Bb,DB),
nl, write(' '), write(Bb), nl.

1~ mode solve_i head_clause_select(?,+,+,7?).
solve_i_ head_clause_select(H,[(BR:-BR)!L],DB,0Q):~
copy_term((HR:-BR),(Eh:-Bb)),
solve_i_ head affirmative(H,Hh,Bb,DB,0Q).
solve_i_head_clause_select(H,[(:~BR)|LI,DB,Q):-
copy_ternm(BR,Bb),
solve_i_head_negative(H,Bb,DB,Q).
solve_i_head_clause_select(H,[_iL],DB,Q):~
solve_i_head_clause_select(H,L,DB,Q).

i~ mocde solve_i_head negative(?,?,+,7).

solve_i_head_negative{H,[HEh!BR]1,DB,Q):- unify(H,Hh),
solve_i_body_asserted_db(BR,DB,Q).

solve_i_head_negative(H,[B|BR],DB,Q):-
solve_i_head_negative(H,BR,D5,0),

solve_i_literel_original_db(B,DB,DE).

:~ mode solve_i_head affirmative(?,?,?,+,7).

solve_i_head_ affirmative(H,HR,[Hnh!BR],DB,Q):~ unify(H,Hh),
solve_i_head clause_select(HR,DB,DRE,Q),
solve_i_body_asserted_db(BR,DB, Q).

solve_i _head affirmative(H,HR,[B{BR],DB,Q):~
solve_i_head_affirmative(H,HR,BR,DB,Q),
solve_i_literal_ original_db(B,DB,DR).

:~ mode solve_i_body_asserted_db(?,+,?).
solve_i_body_asserted db([1,_,).
solve_i_body_asserted_db([B!BR],DB,Q):~
solve i_literal asserted_db(B,DB,DB,Q),
solve_i_body_asserted_db(BR,DB, Q).

1~ mode solve_1i_literal_asserted_db(?,+,+,?).
solve_i_literal_asserted_db{H,[(HR:-BR)|L1,DB,Q):-
copy_term((HR:-BR),(Bh:-Bb)), unify(H,Hnh),
solve i_body_asserted_db(Bb,DB,Q).
solve_i literal_asserted_db(H,[_{L],DBE,Q):~
: solve i _literal_ asserted_db(H,L,DB,Q).
solve_i_literal_asserted_db(H,[],DB,(Eh:~-B)):- unify(H,Hh),
solve_i_body_asserted_db(B,DB,(H:-B)).

- 17 -

244 - mode solve_i_literal original_db(?,+,+).
sclve_i_literal_original_ db(B,[(ER:-BR)|L1,DB) :-
copy_term((HR:-BR),(Bh:-Bb)), unify(B,Eh),
solve_i_body_original_db(Bb,DB).
solve_ i literal original_db(B,[_|L],DB):-
solve_i_literzl original_ db(B,L,DB).

1~ mode solve_i_body_original_db(?,+).

solve_i_body_original_db([1,_).

solve_i_body _original_db([B|BR],DB):~
solve_i_literzl_original_db(B3,DR,DB),
solve_i body_original_ db(BR,DB).

A43.2. execution exanple

:-0p(500,xfx,in).
?- solve_i([~{X in Y)], (:-[X in X, X in russell)l]).
? 1 ([~(X 1,0~ ¥, X 10D

[~(russel in russel)]

?- :-0op(100,xfy,®%),
?2- solve_ i([~ip(X®%¥),ir(X),ir(Y)],
[(:=[ir({root2#%root2)*#root2)]),

(ir(root2):-[1)1).

! 2= solve([{"man(X)],

! [(:=[mortal(apollo)l),

! {mortal(}):~[man(X)]),

! (man{¥):-[man(parent(X))1)1).
[“man{apollo)]
["man(parent(apollo))]
[~“man{parent(parent(apollec)))]

[~man(parent(parent(parent(apollo))))]

[“man(parent(parent(parent(parent(apollo)))))]

- 18 -

Do s 24%
AL, Utility progarms L
Al .1, create new term with renamed variable

:~ public copy_term/2.
1~ nmede copy_term(+, ?).
copy_term(0ld_instance, HWew_instance) :-

copy_term(Cld_instance, Hew_ instance, [], Varlist).

1~ mode copy_term(+, 2, +, =).
copy_term(0ld, New, Cur_Varlist, New_Varlist) :=-
var(0ld), !, copy_var(0ld, Hew, Cur_Varlist, New_ Varlist).
copy_term(0ld, New, Cur_Varlist, New_Varlist) :- 1!,
0ld =.. [F}{01d_1list],
copy_list(01ld_list, Hew list, Cur_Varlist, New_Varlist),
New =.. [Fliew llSE]

i~ mode copy_list(+, 2, +, ~).

copy_list([{1, [], Var_list, Var_ list) :- I.

copy_list([01d}01d_1list], [hew'New list], Cur_varlist, New_varlist) :~ 1,
copy_term(01d, New, Cur_varlist, Varlist),
copy_list(0ld_list, New_list, Varlist, New_varlist),

:- mode copy_var(+, 2?2, +, =).

copy_var(0ld, New, [], [(0ld,New)]) :- 1I.

copy_var(01ld, New, [(¥X, New)|Varlist], [(¥X, New)|Varlist]) :- 0ld == %,

copy_var(0ld, New, [Pairi{Cur_Varlist], [Pair|New_Varlist]) :- 1!,
copy_var(0ld, Wew, Cur_Varlist, HNew_ Varlist).

A4 .2, unification with occur check

:~ public unify 1/2.
i~ mode unify_1(?,7?).
unify_1([1,[1) :- !.
unify 1({XILI,[YIHM]) = YV, unify(X,Y), unify_1(L,H™).

:= public unify/2.

:~ mode unify(?,7?).

unify(X,¥) := ¥ == ¥, 1.

unify(X,Y) :- var(X), !, occur_check(X,Y), ¥
unify(¥X,Y) :- var(Y), !, occur_check(¥,X), X = Y.

unify(X,Y) = 1, X =.. [FIXA], Y =.. [FIYA], unify_1(XA,Y4).

V

1~ mode occur_check(+,+).

occur_check(X,¥) :~ X == Y, !, fail.
occur_check(X,Y) :- var(Y),

oceur_check(X,Y) := 1, Y =.. [F!A], occur_check 1(X,4a),.
:= mode occur_check{+,+).

occeur_cheek_ 1(X,[1) :- 1.
occur_check 1(X,[Y!A]) := 1, occur_check(X%,Y), occur_check_1(X,A).

- 19 -

