ooooboooao

5110 1984 0O

120-143

120

Analysis and transformation of

concurrent processes connected by streams

Kazushi Kuse att &
Masataka Sassa R HE
Ikuo Nakata hlH FE

University of Tsukuba

1 Introduction

Networks of concurrent processes communicating with each
other are widely used in recent programming systems
[Hoa] [Kah] [0cc]. A network of concurrent processes connected by
streams is worth notice as a simple method for representing:
nontrivial problems by combining simple modules [Nak]. A stream
is a possibly infinite sequence of values and is receiving
attention in research on data flow languages [Den] [Arv],
functional programming ([Bur][Hen] and logic programming [éla] .
In this note, we analyze a stream-connected network based on the
theory of Petri nets [Pet]. The analysis will be based on the
framework of the language designed in [Nak], but the results can
be applied to more general networks connected using streams.

Problems analyzed are:

(1) Properties of the network system in itself, such as deadlock,
livelock, and proper execution.

(2) Decision of minimum buffer sizes for each stream, assuming a
limited resource for buffers. |

(3) Formal treatment of in-line expansion algorithms, which is
an interesting method of implementation realizing maximum run-
time effiéiency. In-line expansion is a transformaﬁion of

concurrent processes into a sequential process.

123

As a result of this analysis, general characteristic
features of networks connected by streams are shown. First, it
is shown that only a 1imited type of deadlock can occur in such a
network. Second, it is shown that no livelock (starvation)
occurs in such a network. These propefties seem to be a

consequence of the disciplined use of concurrency by streams.

2 Streams and networks of concurrent processes connected by

streams

A stream is a sequence of values of a certain fixed type.
For example

<1,4,9,16,25,...>
is of the type
stream of INTEGER.

As a simple example, let us consider the problem of

calculating
U = 12422432+, .4n2,

The structure of a program to calculate this can be best
expressed Dby means of a stream, as shown in Fig 1. The process
SQR produces the stream <l,4,9,l6,4.>, and the process SUM
consumes it and calculates the sum of its elements. The final
program is shown in Fig 2, Statements(2) and (4) put or get one
element to/from a stream. The language used is designed as an
extension of Pascal, and has been implemented. Multiple output
and input streams are allowed for each process, and a network of
concurrent processes connected by streams can be realized in
general.

Termination is one of the main problems of concurrent
processes communicating with each other. In [Nak], termination
is dealt with by exception handling, namely the 'on statement’.
When SQR terminates first, the status of the stream becomes ‘eos
(end of stream)'. On the other hand , when SUM terminates first,
its status becomes 'blocked'. When a get or put operation is

attempted on a stream with eos or blocked status, control is

P
D

passed to the corresponding 'on statement'. Statement(5) of
Fig 2 is an example of an exception handling statement.

For a detailed explanation, see [Nak].

SUM SQR

U <mm-m S — - K-—- n
<1,4,9,16,...>

Figure 1. Module structure for the computation of
u=12+4224324+,, ,+n2.

function SQR(N : INTEGER) S: stream of INTEGER; eesee(l)
var I: INTEGER;
begin
for I=:1 to N do
next S:=I*I {put I**I to a stream} ceees(2)
end;
function SUM(T: stream of INTEGER) R: INTEGER; ceeee(3)
var X: INTEGER;
begin
X:=0;
loop
X:=X+next T {get one element from the stream}..(4)
end;
on eos => R:=X {return X as the function value}...(5)
end; '
U:=SUM(SQR(1@)) ; {connect two processes by the stream}

Figure 2. A program for Figure 1.

The following assumption are made in our network of

processes connected by streams.

Assumptions

(1) There are no isolated processes, consequently all

processes must be connected by streams.

125

(2) Each stream has a single producer process and a single
consumer process, where a producer puts elements into the
stream and a consumer gets elements from it. Case(a) of Fig 3
is not allowed, but case(b) is allowed. Output of the same
-stream to many processes can be realized by case(b).

(3) The connection of a stream is static, and is not changed
at run-time.

(4) No recursive calles of processes is allowed.

(although the implementation of [Nak] allows recursive calls)

Py Py
Py Py

Py | Py
(a) not allowed (b) allowed

(:): process [:] : stream

Figure 3. Assumption(2) (processes connected by streams).

3 Modelling

3.1 Modelling by Petri Net

A network of processes is modelled as a Petri Net as
follows. '

(1) For each process, a Petri net is constructed by using
transitions to represent statements and places to represent
control points. More precisely, a sequence of general statements
(those which are not put/get operations of streams) possibly with
conditional branches or joins, but having one entry point and one
exit point, is represented by a transition. Each put/get
operation also is represented by a transition. A conditional
branch is represented by a special EOR (exclusive or) transition
[Bae]. (A token output from this EOR transition can only go
through an arc.) (Fig 4(a))

(2) Transitions for put and get operations on a stream are

p0
l Sk

connected by a place modelling a buffer between them. The place
may be with capacity k (for finite buffer) or without capacity
constraint (for infinite buffer). This place capacity does not
add essential modelling power to a Petri net, since a place of
finite capacity can be represented using only places of infinite
capacity for general Petri nets [Pet].(Fig 4(b))

(3) Eos and blocked exception handling are modelled as in Fig
4(c). For each buffer, places with capacity 1 for an eos flag
and a blocked flag are supplied. 1In order that eos/blocked
exception handling arises only when another process terminates,
transitions for put or get operations and places for buffers and
flags are connected using an inhibitor arcs. If the size of the
buffer is finite, the introduction of inhibitor arc does not add

new modelling power to the Petri net [Age].

place transition EOR transition
al+a2

control point statements conditional branch

(a) representation of each process

get . put ,
Operation buffer operation

(b) connection of put/get operation by a buffer

buffer buffer
get put
eos blocked
flag lag
eos blocked
eos blocked
handling handling

(c) representation of eos/blocked exception

(input streams) (outgut streams)
' eos flag blocked flag
end e .o
place

(d) connection of end place and flag places

Figure 4. Correspondence between programs and Petri nets.

e
)
W

(4) End places and flag places are connected in such a way that
when a process ends, a token is set in each place for eos flags
of the output streams of the process and in each place for

blocked flags of the input streams of the process. (Fig 4(d))

The part of the Petri net corresponding to each process
(including EOR transitions representing conditional branches) is
a State Transition Diagram .(STD) [Pet]. 1Its places are l-bounded
and only one token exists for each process.

The program of Fig 2 is modelled as the Petri net in Fig 5.
This Petri net is a reduced net of the original in that places
and transitions corresponding to dead code are omitted. For

example, the blocked flag place and its relevant transitions are

omitted.
SUM SOR
(@1 (@1
1 X:=0 6 I:=1
()2 (Y2
3get next buffer 7f " 31f I>N .
Xe:=X+T . 8 . :=I*I
. "4
cos flag 9 put next
()5
O 10 I:=T+1
4 3QF¥ on eos J
Ok ()6
5 R:=X 11

Os O
Figure 5. Petri net for the program of Figure 2.

Restriction of the firing rule

Put and get operations on the same stream buffer must be

mutually excluded. This can be modelled precisely using a Petri

P
PR
<D

net. However, since the purpose of this paper is not the
modelling of mutual exclusion, which is rather straightforward,
we have omitted its modelling and instead have imposed the
following ' »
Firing rule: Only one transition can fire at a time.
This rule reduces the complexity of the Petri net, while

maintaining the correctness of later analysis.

3.2 Marking graphs

After modelling a network of concurrent processes by a Petri
net, we make a variant of a marking graph and use it to make
analyses and transformations. Usually, a reachability tree [Pet]
is used for analysis, where each node represents a marking of the
Petri net. But often the same node may appear many times in a
reachability tree., In order to improve on this, we assign a
transition set.to each node, which is a set of transitions from
the root node of the reachability tree to that node. Then, a
marking graph is made by uniting two nodes ny,n, in a
reachability tree when the following conditions hold:

(1) the marking of n; and n, are the same,

(2) n; and n, are in the same level (distance from the root
node) in the reachability tree,

(3) nq and n, have the same transition set.

Condition(3) is for discriminating two nodes which pass
through different control flows before reaching a place
corresponding to a join of control (more on this in chapter 5)
Conditions(2) and (3) are additional restrictions to usual
marking graphs.

For simplicity, we made a simple encoding to represent nodes
of a marking graph. Each process has the property that it
contains a token in only one of its places. Then the marking of
places of a process is represented by the place number of the
place where the token resides, instead of representing the numbef

of tokens in all places. The marking of places for buffers and

flags is represented as usual by the number of tokens in these

places., Thus a marking is represented as follows.

(PyrecesrPprDysescecesbprefy,veeeief ,bE, ... DE)

where p; is the control point of process i

(the location of only one token), .

bj is the number of elements in buffer j (0..buffer size),
efj is the eos flag of buffer j (@ or 1),

bfj is the blocked flag of buffer j (0 or 1).

A marking graph may contain the following special type

nodes.

(1) root-node : a node where all processes are at their initial
state.

{2) end-node : a node where all processes are in the terminated
state.(final place)

(3) pre-node : a node n; such that there is another node n, of
the same marking in a lower level of the marking
graph and there exists at least one path passing
through n, from the root-node to nj.

(4) Jjoin-node : a node ny such that there is another node n, of
the same marking in a lower or equal level
(already processed) of the marking graph and with
no path passing through n, from the root-node to
nq.

(5) over-node : a node which is made by firing a node which is
not enabled due to the limitation of a buffer
size. The firing is made by forced increment of
the buffer size.

(6) dead-node : a node not enabled. (except for over-node)

The marking graph corresponding to the Petri net of Fig 5 is
shown in Fig 6.

Some transitions of the original Petri net may not appear in

ly'
125

the marking graph. Such transitions can be regarded as dead

codes. Since P;'s, efj's, and bf:'s are finite, the marking

J
graph becomes finite if all buffer bj's are finite.
(1,1,0,0)
1 6
{2,1,0,0) (1,2,0,0),
. (3 1 t
(2,2,0,0) (1,3,0,0)(1,6,0,1)
£ 1 1 8
(2,3,0,01(2,6,0,1) ~(1,4,0,0)
4 8 1 9
(4,6,0,0) (2,4,0,0) (1,5:1,0)
5 9 1 10
(5,6,0,0) (2,5,1,0) (1,2,1,0)
endnode
10 1 1 t

(3,5,0,0) (2,2,1,0) (1,3,1,00(1,6,1,1)

2rvr r&rdy
}/// \\\Q)b//’\\EE\QTP//i}>KiQ
(2,5,0,0) (3,2,0,0) (2,3,1,0)(2,6,1,1) (1,4,1,0)
10 3 WM g
(2,2,0,0) (3,3,0,0)(3,6,0,1))311:0)

~nodk
pre~node ’/;//’/,// 3)
2,3,0,0)(2,6,0,1 (3,4,0,0)
;()re—noée’(Join—n) L
(2, 4_gog) (3,5,1,0)
pre 3 10
(2'5L163) (3,2,1,0)
pre-node 3 > .
(2,2,1,0) (3,5,1,0)(3,6,1,1)
pre~-node
3 3
1 3,4,1,0
preduosd Gelalshe | 20
2,4,1,
(re—nog)

z/:transition of process SUM \&:transition of process SQR

Figure 6. Marking graph for the Petri net of Figure 5.

(buffer size=l)

4 Analysis
4.1 Analysis of deadlock

Definition
A process P; is said to be in deadlock at node n (except
when the control point of P; is at the end of Pj) of a
marking graph, if P;'s control point is always invariable at
all nodes reachable from n. The case is described as

deadlock(Pi,n).

).v
PN
L2

An example of deadlock is described in Fig 7.

(1,1,9,9)
1t 1f

(2,1,9,8)(3,1,0,0
deédinéde)e r1,0,8)

(5,1,1,9)
5
(5,2,9,9)
N
(5,3,0,1)
Petri net 5
6,3,0,08
(8531054l
Figure 7. An example of deadlock. marking graph

Using this definition, deadlockable and deadlock-free can be
defined as follows.
Definition
deadlockable(P;,n) <==> I n'€ n-reachable, deadlock(P;,n')
(There is a node n' reachable from n, such that Py is in
deadlock at n")

deadlock-free <==> Vi,j deadlockable(Pi,ng),

where ny is the root-node of the marking graph.

In general, a deadlock can be classified into two types,

according to how it appears in a marking graph. (Fig 8).
type 1. which occurs as a dead-node.
type 2. which has no dead-node, but occurs as a loop
where the control point of a process is

invariable while other processes are running.

An important property of a network of processes connected by.

19

130

streams, is that there is no deadlock of type 2.

dead-node pre-node
type 1 type 2
Figure 8. Two types of deadlock in a marking graph.

Theorem 1 :
There is no deadlock of type 2 for a network of processes
connected by streams, assuming that there is no infinite loop

without put/get operations of streams.

A proof is given in the Appendix. The property that there
are no isolated processes in the network (Assumption (1) of
section 2) plays an essential role to this theorem.

By the theorem, only a deadlock of type 1 , i.e. dead-node,

can occur, and it can be easily detected using a marking graph.

4,2 Livelock

Definition
A process P; is said tobe in livelock (starvation) at noden
(except when the control point of P; is at the end of P;) of
a marking graph, if the following two conditions hold.
(1) There is a loop reachable from n and containing a pre-
node in a marking graph, such that the control point of P; is
invariant on the loop, and the loop contains at least one

node where Py is not enabled.

11

(2) Not deadlock(Pi,n)

The reader is referred to [Kwo] for strict definition and
classification of livelock. Livelockable and livelock-free
properties are defined similarly to deadlock.

Possible situations of livelock are shown in Fig 9.

where
bold lines are enabled transitions,

dotted lines are unable transitions.

Figure 9. Livelock in a marking graph.

An important property of networks of processes connected by

streams is that there isno livelock of any type.
Theorem 2

There is no livelock of any type, for a network of processes
connected by streams, assuming that there are no infinite

loops without put/get operations of streams.,

A proof is given in the Appendix. The property that a stream
has a single producer and single consumer process (Assumption (2)
of section 2), which means that there is no competition on

resources, plays an essential role in the theorem.

4.3 Analysis of buffer size

Given a marking graph, necessary sizes of buffers for each

stream can be analyzed.

12

\._'A
(%)
.
Rty

We begin by the treatment of buffer size @. The situation
where a get operation on a stream is executed immediately after
the corresponding put operation, in other words, a value of the
stream is immediately transferred from a producer process to a
consumer process without buffefing, can be conceived of as buffer
size @ for that stream. The situation could be modelled in a
Petri net without buffer places. However, another method is used
to represent the situation in our model, based oh a useful
property for checking whether a local transition sequence using a

buffer of size >= 1 can be realized using a buffer of size 0.

Property

If the number of token in a buffer place is limited to @,

the get operation must occur immediately after the put operation.

(1,1,9,0)
1
(2,1,1,9)
2
(3,1,2,0)
petri net i//
(4,1,2,1)
4

(1,1,9,0) (1,1,2,9) (4,2,2,9)

1 1 5
(2,1,1,9) (2,1,1,0) (4,3,1,9)
over-node 2 6

(3,1,2,9) (4,4,0,0)
over-node end-node
size of buf 1 = 1
size of buf 2 = 7] /]

Figure 10. Analysis

marking graphs

of buffer size.

13

[
%
¢

The analysis of buffer sizes proceeds as follows

Let b;(i=1l,...,n) be buffers.

@. For all buffers, set SIZE of b; <- 0

1. If by overflows, i.e., bk corresponds to an over-node,
SIZE of bk {- SIZE of by + 1

2. Extend the marking graph and go to step 1.

For example in‘Fig 19, the size of the buffer 1 which cause

an over-node is incremented from g to 1 and eventually to 2.

4.4 Proper execution and Scheduling

Given a network of processes connected by streams and
(preferably short) buffer sizes (including buffer size @) for
each buffer, we can construct a marking graph. Owing to the
livelock~-freeness of the network, if the marking graph 1is
deadlock-free and has no over-node, the network can be properly
executed. In the case of single processor, it can be executed by
any fair scheduler, where fairness of a scheduler can be defined

strictly, for example as a 'valid' computation in [Kwol.

5 In-line eXpansion

A network of concurrent processes connected by streams is
sometimes derived as a result of representing nontrivial
problems by combining simple modules[Nak]. In this case, it is
desirable that the network can be transformed into a sequential
program, which can be executed efficiently.

If the marking graph of a network assures deadlock-freeness
(i.e., there are no dead-nodes) and if all buffer sizes are
limited, the network can be transformed into a sequential
program. This is called in-line expansion. The expanded in-line
code may need additional program variables for storing stream

values, but no other variables nor conditional branches are

14

jo—"
(A
e

introduced to prevent simulation of a scheduler in the expanded
code. I1f all buffer sizes are @, no program variables are
necessary.

Several methods for in-line expansion can be conceived. One
of them is the direct transformation method[Nak] [Hag]. This has
the lowest cost, but can not realize executable codes with
maximum space efficiency. In this paper, we présent a method
using a Petri net which realizes optimal in-line expanded -codes.
Although the cost of expansion is higher than other methods, all
movement of processes can be considered in advance.

We use two sets for each node i.e., a transition set(TS)
which is the set of transitions fired from the root-node to the
given node, and a node set(NS) which is the set of nodes that may
be crossed when going from the root-node to the given node.
These two sets can be computed during the construction of the
marking graph.

Using TS and NS, pre-nodes and join-nodes are defined
precisely as follows.

The marking graph is constructed level-wise. If a new node
ny has the same marking as another node n, in the already

. constructed marking graph, ny is processed as follows.

In the case leyelnl > level, 5,
if n, € NS,;, make ny a pre-node)
and mark n, as a pre -node,
if n, 2 NS,;, make nj a join-node X
and mark n, as a join -node,
In the case 1evelnl = level,,,
if TS, = TSpy, nO new node is made and n; is identified
with ny,
if TS,, # TSy, make n; a join-node and mark n, as a

join*—node.
where the check for a pre-node must precede that of a join-nods

Actually, in-line expansion is derived from the marking

15

graph by combining paths from the root-node to pre-nodes, join-

nodes and an end-node. We call this set of paths a path set. 1If

a path terminates at a pre-node, it must include the corresponding
pre*—node. If a path terminates at a join-node, some path in the

path set must include that join*—node. For any conditional

branch, the in-line expanded code (path set) must include both

the true and the false case of the branch.

We begin by the definition of a 'branch pair' for a condi-
tional branch. The two output arcs a; and a, in the EOR
transition of Fig 4(a) are called a branch pair. For example, in
the Petri net of SQR of Fig 5, the branch pair is two arcs from
the 7th transition to the 3rd place and to the 6th place.

@ (1,1,0,0)
1 6
(2,1,9,0) (1,2,0,0)
@12,2,0,0] (1,3,0,0)(1,6,0,1)

t 1 1 8

@ (2,3,0,0)(2,6,0,1) (1,4,0,0)

))<8 1
(4,6,0,0] (2,4,0,0)
o 9
@ s, 6:0,0) (2,5,1,0)
end —no e
2
(3I51010)
3 10
(2,5,0,0 (3,2,0,0)
~E T N
@27(2,2,0,0) (3,3,0,0)(3,6,0,1)
pre-node 3 3 8
~
@ (2,3,0,0/(2,6,0,1) (3,4,0,0)
pre~no e jom—no e 3
bold lines are 6th path set . @ (2,4,0,0)

pre-node

Figure 11. Marking graph for the Petri net of Figure 5.

(buffer size = ¢)

The algorithm of in-line expansion using a simple example

(SUM-SQR, Fig 5) can be explained as follows :

16

(1) For each path from the root-node to pre-, join-, or end-node
n of the marking graph, pick up only branch transitions in each
TS,, which we call a BS (branch sequence) of the path.

For example, the marking graph of Fig 11 (the part of Fig 5
realizable with buffer size=0) has one end-node(l3), three pre-
nodes(17,20,23), and one join-node(22). Their pre*— and join*—

nodes are 4, 7, 10, and 8, respectively.

path no. terminal BS (branch pre* join*
node no. sequence)

1 13 (end) (7t) {1 {}

2 17 (pre) (7£) {4} {}

3 20 (pre) (7£,7£) {7} {}

4 22 (join) (7£,7t) {1} {8}

5 23 (pre) (7€,7£) {10} {}

(2) Combine two paths if all of their BS (branch sequences)
except the last one are exactly the same and if the last branch
transitions in their BS constitute a branch pair. The combined
path is called a path set. The BS of the path set becomes the
sequence of the branch transitions excluding the last one.

In this example, three new path sets can be made, the 6th
path set from lst and 2nd, the 7th path set from 3rd and 4th, and
the 8th path set from 4th and 5th.

path set no. terminal BS pre* join*
node set
6 {13,17} () {4} {}
7 {29,22} (7£) {71} {8}
8 {22,23} (7£) {10} {8}

We can get further paths by combining lst and 7th, and by
combining 1lst and 8th, giving a path set whose BS is empty.

path set no. terminal BS pre* join*
node set
9 {13,20,22} () {7y {8}
10 {13,22,23} O {10} {8}

17

137

(3) For each path set with empty BS, select concrete paths.
Each concrete path must include its pre*—node if its terminal
node is a pre-node. The set of concrete paths must include

. : *
join - nodes.

path set no. terminal check of including join*- nodes
node set

9 {13,20,22} {8} € NSy13 U NSpg U NS O.K.

10 {13,22,23} {8} € NSj3 U NS U NS33 O.K.

(4) For each path set, calculate cost(code length). If costs of
all transitions are approximated by the same value, it can be
calculated by using the level information about each node. In
combining two path sets, the cost is computed by adding levels of
the terminal node of each path set and subtracting the level of

the node with the longest common part of the two path sets.

path set no. calculation of cost
set no.
6 levelj3 + leveljy - commonj3, 17
=5+8-2-=11
9 levelj3 + leveljg - commony3,og
+

levelysy - common(13,2g),22
5+ 9 -2+ 9 -7 =14

i

19 levely3z + leveljyp - commonjyjz 7o
levelys common (13,22),23
5+ 9 -2+ 19 -7 =15

The above is the space cost and corresponds to the textual

length of the expanded code.

(5) Select the path set wifh smallest cost. It is the optimal

in-line expansion.
In this example, since 11 < 14 < 15 , the 6th path set is

optimal (bold lines in Fig 11). The program made from the 6th
path set is shown in Fig 12.

18

).—. 5
[
(]

X := @;
I :=1;
L1 :if I > N then goto L2;
S :=1 * I;
T := S; {put/get operation}
X 1= X + T; '
I := 1+ 1;
goto L1;
L2 :R := X;

Figure 12. 1In-line expansion for the program of Figure 2.

Note that the time cost or the running time of the expanded
code is approximately the same for any path set satisfying step
(3) as given above, except for the possibly useless code
immediately before the exception handling. This can be easily
shown from the nature of the marking graph.

Note also that in some cases, the code length of expanded
code may become much larger than the sum of original code

lengthes. An example is the network of processes in Fig 13.

put get
get
jt ge(J

Figure 13. A network whose expanded code is long.

6 Concluding remarks

We have analyzed a network of concurrent processeé connected
by streams using a Petri net. In the absence of infinite loops
without put/get operations of streams, there is no livelock and
no deadlock of type 2. The result demonstrates an important

characteristic of networks connected by streams.

19

Other features of our analysis as compared with general
concurrent processes, are the handling of process termination
such as eos and blocked exception, and analysis of buffer size.

Our analysis does not consider program semantics, i.e., both
branches in each conditional branch are assumed to have the
possibility of being executed. Thus, some analysis, e.g.,
decision of deadlock and buffer size may give worse results than
what occurs in reality. This often indicates a need for an
infinite buffer size, even if this need can never arise in
practice. This is a limitation of analysis without program
semantics. But, in many cases the user will be able to get more
useful properties by adding other information concerning behavior
of the program.

In-line expansion using Petri nets presented in this note is
not of low cost, but by this strategy we can get an optimal in-
line expansion. The trade-off is the same as in optimizing
compilers. We believe that our method is an interesting one that
provides executable code with maximum efficiency.

These analysis and transformation can be realized

automatically.

References

[Age] Agerwala,T.: Comments on capabilities, limitations and
"correctness" of Petri nets, Proc. 1lst. Ann. Symp.
Computer Architecture, ACM, pp.81-86 (1973).

[Arv] Arvind,Streams and Managers,in Lecture Notes in Computer
Science,Vol.143,PP.452-465.

[Bae] Baer,J.L.: Techniques to exploit parallelism, in
Evans,D.J. (ed.),Parallel Processing Systems, pp.75-98.

[Bur] Burge,W.H: Recursive programming techhiques, Addison-
Wesley, 1975.

[Cla] Clark, K.L. and Gregory, S: A Relational Language for
Parallel Programming, Proc. of the 1981 Conf. on

Functional Programming Languages and Computer

20

144

Architecture,ppl71-178, (0Oct.1981).

[Den] Dennis, J.B. and Weng, K.K.-S.: An Abstract Implementation
for Concurrent Computation with Streams; Proc. 1979
Int.Conf.on Parallel Processing, pp.35-45,1979

[Hag] Hagino,T., Proofs of Communicating Sequential Processes,
Preprint of WG on Fundamental Theories of Software of
IPSJ, (in Japanese) (0ct.1982)

[Hen] Henderson,P.: Purely Functional Operating Systems ,in
Darlington et al.(eds.), Functional Programming and its
Applications ,Cambridge Univ. Press, (1982).

[Hoa] Hoare,C.A.R.: Communicating sequential processes,
Comm.ACM, Vol.21, No.8, pp.666-677 (Aug. 1978).

[Kah] Kahn,G. and MacQueen,D.B.: Coroutines and networks of
parallel processes, Information Processing 77, pp.993-998,
North-Holland, 1977.

[Kwo] Kwong,Y.S.: On the absence of livelocks in parallel
programs, 1in Lecture Notes in Computer Science
Vol.70,pp.172-190.

[Nak]l] Nakata,I. and Sassa,M.: Programming with streams, IBM
Research Reports RJ3751(43317) (Jan. 1983).

[0cc] OCCAM Programming manual, INMOS Limited (1982)

[Pet] Peterson,J.L.: Petri net theory and the modeling of
systems, Prentice-Hall, 1981, or, Peterson,Jd.L.: Petri
nets, Computing Surveys, Vol.9, No.3, pp.223-252
(Sep. 1977).

21

Appendix

Proof of theorem 1 and 2

(There is no type 2 deadlock or livelock.)
Assumption A

There is no infinite loop without a put/get operation. That
is, a loop must contain a put/get operation or it must be exited

at some time,

proof
We first note that type 2 deadlock or livelock arises as a
loop in a marking graph. A loop in a marking graph can be classi-

fied into three classes as follows.

(1) n

n (pre-node)

y/:transition of process P, \\: that of process P
Solid lines represent enabled transitions, and dotted lines
represent disabled (not enabled) transitions.

*
.

(2)

Y
“t12

l‘*}tli

n (pre-node)

Transitions of P, are disabled at all nodes.

P; is in deadlock of type 2.

22

(3)

n (pre-node)

There are some nodes where transitions of P1 are
disabled.

Py is in livelock.
The proof is made according to the above classification.

(1) This situation often appears in a marking graph. It has

no deadlock and no livelock.

(2) Py is in type 2 deadlock. 1In networks connected with
streams, a disabled transition occurs only at put/get operations

of streams as in the following two cases.

case (i) Transition ty of py is a get operation.
The t; is disabled because the associated buffer is
empty.

case (ii) Transition t; of Py is a put operation. This case
arises only if the size of the associated buffer is
finite. The t; is disabled because this buffer is
full,

In general, a type 2 deadlock may involve three or more
processes. But since the situation arose due to a put/get
operation on a stream, we can reduce it to the situation
involving only two processes without loss of generality. This
is made by letting P, be the process connected to P; by the.
relevant stream. The existence of the process Py is assured by
assumption(l) of section 2.

From assumption A , either of the following holds.

(A1) The infinite loop is exited at some time.

23

143

(A2) A get or put operation will be performed within
the loop.

In case (Al), no deadlock occurs. In case (A2), process Py
will make t; enabled as follows.

In case (i), P2's loop must include some put operation.
After the execution of this operation, the buffer has a token,
and the get transition of Py becomes enabled.

In case (ii) , Pz's loop must include some get operation.
After the execution of this operation , the buffer becomes not
full, and the put transition of P; becomes enabled.

In both cases, a transition of Py is enabled, which is not a
deadlock.

(3) Py is in livelock. A proof similar to type 2 deadlock can
be followed.

Especially, case(A2) is as follows.

In case(i), after a transition of Py becomes enabled, it is
always enabled wuntil it 1is executed. From assumption(2) of
section 2, no process except P, can get from the buffer.

Case(ii) is similar.

Thus, all arcs t;; ,...,t;; of P; become enabled, which

is the situation of class(l) without livelock.

Note

In [Nak], a class of streams called passive streams is
introduced as an extension to the usual stream connection.
Livelocks may occur in the presence of passive streams, since an

element’ in passive streams are subject to resource sharing.

24

