ooooboooao
5110 19840 74-96

71

Symposium on Software Science

and Engineering

in Kyoto Sep.1983

On Equivalence Transformations for
Term Rewriting Systems
Yoshihito TOYAMA
Ak FA
Musashino Electrical Communication Laboratory, N.T.T.
Midori-chou, Musashino-shi, 180 Japan

Abstract

This paper proposes some simple methods, based on the
Church-Rosser property, for testing equivalence on a limited
domain for two reduction systems. Using the Church-Rosser
property, Some equivalence conditions of abstract reduction
systems are first proved. It is then shown that these
conditions can be effectively applied to test equivalence of
term rewriting systems. Finally, the correctness of
transformation rules for term rewriting systems is

discussed.

-1
(W3]

1. Introduction

The equivalence of two term rewriting systems is
considered. Equivalence treated 1in this paper means that
the equational relation (or the reduction relation) generated
by one system is equal to that in another system on
some limited domain. This equivalence concept on a limited
domain plays an important role in transforming recursive
programs [2][12] and proving an equation on abstract data
types [3]1[5][6][9]. For example, consider a recursive
program computing the factorial function on natural numbers;

F(x)=IF equal(x,0) THEN 1 ELSE x*F(x-1).
By using the successor function S, we can also define the
factorial function by;

F(0)=1,

F(S(x))=S(x)*F(x).
Regarding equations as rewriting rules over terms, we can
obtain two term rewriting systems [4][5] from the above two
definitions. Then the second term rewriting system is
weaker than the first, since the reduction from "F(M)" to
"IF equal(M,0) THEN 1 ELSE M*F(M-1)" for any term M in the
first system can not be obtained in the second system by
only the rewriting rules, although, they give the same
function for natural numbers. Thus, the equivalence for
recursive programs must be regarded as the equivalence on a
limited domain such as natural numbers for term rewriting
systems.

The equivalence concept on a limited domain for term

7

N

O
rewriting systems first appeared implicitly in automated
theorem provers for abstract data types discussed by
Goguen{3], Huet and Hullot[6], and Musser[9]. In these
methods, an equation M=N whose proof usually requires
induction on some data types is proved by cleverly using the
Church-Rosser property, without explicit induction.

We shall here formalize and extend this idea,
introducing the concept of equivalence on a limited domain
for abstract reduction systems. Sufficient conditions for
the equivalence on a limited domain are given. It is shown
how one can formally validate the transformations for term
rewriting systems by using these conditions. Finally, we
discuss the problems related to rules for transforming
programs described by Burstall and Darlington [2], and

Scherlis {[12].

2., Reduction System

We explain notions of reduction systems and give
definitions for the following sections. These reduction
systems have only abstract structure, hence, they are called

abstract reduction systems [4][7]([11].

2.1. Definitions

A reduction system is a structure R=<A,—> > consisting
of some object set A and some binary relation — on A,
called a reduction relation. The identity of elements of A

(or syntactical equality) is denoted by =. = is the

7."

transitive reflexive closure, = is the reflexive closure
and = is the equivalence relation generated by — (i.e., the
transitive reflexive symmetric closure of —). If. xeA 1is
minimal with respect to —, i.e., =7yeA[x=>y], then we say
that x is a normal form, and let NF, or NF be the set of
normal forms. If x®yeNF then we say x has a normal form y

and y is a normal form of x.

R=<A,—> is strongly normalizing (denoted by SN(R) or
SN(—)) 'iff every reduction in R terminates, i.e., there is
no infinite sequence x,—x,—>X, ~>....

R is weakly normalizing (denoted by WN(R) or WN(—)) iff

any xeA has a normal form.

2.2, Church-Rosser
R=<A,=>> has the Church-Rosser property, or
Church-Rosser, (denoted by CR(R)) iff: ‘

Yx,V,2eA[xyaxI>z => Twed, yowazow], i.e.,

* 1
|
l
|
l*
* l
|
|
* |
g b ——— —— — ¥y

ot

The following properties are well known in [1]1[41[7].

2.3. Property
Let CR(R), then,
(l)V X, YEA[x=y = gwéA,xi>WAy3§w],
(2) ¥ x,yeNF[x=y =» x=yl,

(3) " xeA,VyeNF[x=y =5 x5y]
3. Basic Results

Let R1=<A,7¢ >r Rp=<A,—-> > be two abstract reduction
systems having the same object set A, and fﬁ » = and NFi be
the transitive closure, the equivalence relation and the set
of normal forms in Rj respectively (i=1,2). Let B, C be any

subset of object set A, We write = = (on B) for

2
VX,y&B[XTYAéé-Xfy], and it means that two equivalence
relations = and = are the same on the limited object set B.

We first consider sufficient conditions for = = (on B).

=
3.1. Lemma
Let R1, Rz have the following conditions:
(1) =c
(2)
(3) 7 xeB,3yeClx=y].

Ef

= = (on C),

Then = = {({on B).

2
(proof) _
Prove ”’x,yeBIXfy<=# x=yl. = is trivial from

condition(l), hence we show <. Assume x=y where x,y¢B. By

-
{J

using condition(3), there are some elements z,wéC such that
X=z and y=swe. Since x=2 and yzw are obtained from
condition(l) , zzw can be derived from ZEXSYSW. From

condition (2), z=w holds. Therefore x=y from X=ZTWSY . O

If Ry has the Church-Rosser property, we can modify

condition(2) in Lemma 3.1 to the following condition.

3.2, Theorem
Let's assume the conditions:
(1) =c3,
(2) CR(R2) and CCNF3,
(3) ¥ x€B,?yeClx=y].

Then = = (on B).

2
(proof)
Show condition(2) of Lemma 3.1, VX,YEC[X?Y‘## x;y], from
the above conditions. = is trivial from condition(l). We
prove <&=, By wusing property 2.3(2) and condition(2),

x=y => xzy. Therefore =Y. O

3.3. Corollary
Assume the conditions:
(1) =c=,
(2) WN(R1) and CR(R3),
(3) NF;=NFj.

Then === is obtained.

o

(proof)

Let B=A and NF1=NF3=C. By using Theorem 3.2, we can

(o]

easily prove the corollary. [

Next the equivalence for reduction relations is
considered. We write %9 = §§ (from B to C) for

VxeB,YyeClxy & x-Dyl.

3.4. Theorem
Assume the following conditions:
(1) ScS,
(2) CR(R2) and CCNFyp,
(3) ¥ xeB,7yeClx3y] .

Then = = f; (from B to C).

I
(proof)

It 1is sufficient to show that for any xeB,yeC,
x%%y = X%Sy. Let x%}y. Then, by condition(3), there is
some z€C such that x->»z. By condition(l), xf§z, hence, y=z
is obtained from property 2.3(2) and condition(2).

Therefore xSy. [

3.5. Corollary
Assume the conditions:
(1) =>cd,
(2) WN(R;) and CR(Rz),
(3) NF1=NFj.

Then %» = %? .

(proof)

This is obvious from Theorem 3.4. [J

g 3

&

4, Term Rewriting System

Next, we will explain term rewriting systems that are

reduction systems having term structure.

4.1, Term

Let V be a set of variable symbols denoted by x,Y,Z/ee
and let F be a set of function symbols denoted by f,g,h,...,
where FAV=¢. An arity function p is a mapping from F to
natural number N, and if P(f)=n then f is called an n-ary
function symbol. 1In particular, a O-ary function symbol is
called a constant.

The set T(FUV) of terms on a function symbol set F and a
variable symbol set V is inductively definded as follows:

(1) xeT(FUV) if xev,

(2) f€T(FUV) if feF and P(f) =0,

(3) £(M1,...Mp) €T(FUV) if £¢F, P(f)=n>0, and

M1 yeeerMpeT (FUV) .,

We may write MfN, i.e., infix notation, instead of
f(M,N). Let T(F) be the set of terms having no variable
symbols. T is used for T(FUV) when F and V are clear in the

context.

4,2, Substitution
A substitutionf is a mapping from a term set T to T
such that

(1) 6(£f)=f if f€F and P(f)=0,

(2) G(£(M1,...,Mn))ZE(Q(ML) yeo.rB(Mp))

}

(-4

¥

b g

if f(erco-’Mn)éTe
Thus, for term M, (M) is determined by its values on
the wvariable symbols occurring in M. Following common

usage, we write this as M@ instead of G(M).

4.3. Context

Consider an extra constant O called a hole and the set
T(FUVU{B }). Then CeT(FUVU{DO }) is called the context on F.
We use the notation C[,...,] for the context containing n
holes (n2>0), and if Nj,...,NpeT(FUV) then C[Nj,...,Np]
denotes the result of placing Nj,...,Np in the holes of
Cl seees] from left to right. 1In particular, C[] denotesb

a context containing precisely one hole.

4.4, Subterm
N is called a subterm of M=C[N]. Let N be a subterm

occurrence of M, then, write NcM, and if N#M then write NgM.

4.5. Rewriting rule

A rewriting rule on T is a binary relationt on T,
written as M)PMy for <Mjp,Mg>¢>, such that if MjpM, then any
variable in M, also occurs in‘Mle A ->redex, or redex, is a
term Mj;fp where MMy, and in this case M is called a
—>contractum, or contractum, of Mjf#. The rewriting ruleb> on
T defines a reduction relation —» on T as follows:

M~»N iff M=C[M;8], N=C[M H], and Mj> M,

for some My, My, C[1, and 4.

4.6. Term Rewriting System

A term rewriting system R on T is a reduction system
R=<T,—>> such that the reduction relation— is defined by a
rewriting rulet on T. If R has MjPM,, then we write
M1> Mr€R,

If every variable in term M occurs only once, then M is
called linear. We say that R is linear iff YM>P N€ER, M is

linear.

4,7. Critical Pair

Let MPN and P>Q be two rules in R. We jassume that we
have renamed variables appropriately, so that M and N share
no variables. Aséume S (S¢V) is a subterm occurrence in
M=C[S] such that S and P are unifiable, with minimal unifier
§. Then we say that the pair <C[Q]O, N > of terms is
critical in R [4][5]. We may choose MPN and P>Q to be the
same rule, but in this case we shall not consider the case
S= M, which gives trivial pairs <N,N>. If R has no critical
pair, then we say that R is non-overlapping [4][5]1[8][13].

The critical pair to two term rewriting systems can be
defined in the same way. Let MPN and P>Q be in Ry and R
respectively. Then we say that the above pair <C[Q]f, N@ >
is critical between R] and Rz. If there is no critical pair
between R} and Ry, then we say that R} and Ry are

non-overlapping between them [13].

4,8, Conditions for Church-Rosser

The following sufficient conditions for the

- 10 -

I'd

Cod

on

Church-Rosser property are well known [4][5][8]:
(1) Let SN(R). If for any critical pair <P,Q> in R, P
and Q have the same normal form, then CR(R).
(2) Let R be linear and non=-overlapping. Then CR(R).
The next condition is described in [13] by wusing the
commutativity between two term rewriting systems R} and Rj.
(3) Consider two linear term rewriting systems Rj, R3,
being non-overlapping between them and CR(Rj),

CR(R2). Let R=RjUR2, then CR(R).
5. Equivalence Transformation

In this sectidn, equivalence transformations for term
rewriting systems are considered. The basic results in
section 3 are effectively applied to test the equivalence on
some limited domain for two systems.

First, useful lemmas are given for showing condition{(3)
in Theorem 3.2 and Theorem 3.4 on term rewriting systeéms.
Let R be a term rewriting sysﬁem on T(FUV), and GC F.

5.1. Lemma

Let every term of form M=f(M;,...,M,), with f€F-G and
Mjys,.ee/Mp in T(G), have some term N in T(G) such that M=N.
Then? M € T(F) ,?N € T(G) [M=N].

(proof)

By structural induction on nesting 1levels of function
symbols in F-G occurring in terms, it is easy to show that
for any term M in T(F), there is some term N in T(G) such

that M=N. [0

&<}
it

5.2. Lemma

Let every term of form M=f(Mj,...,Mp), with £f£¢ F-G and
MiseeerMn in T(G), have some term N in T(G) such that Mf»N.
Then” M € T(F),”N € T(G) [M—N].
(proof) M

The Lemma can be proved in the same way as for

Lemma 5.1. []

5.3. Example
Let F={+,5,0} be a set of function symbols, where
P(+)=2, P(S)=1, P£(0)=0. We consider term rewriting systems

R1, R2, having the following rewriting rules:

Ry: {'x+0> Xy
x+S(y)> S(x+y),

and
Ro: x+0 > x,
O+x P> x,
x+S(y) > S(x+y).
We shall prove that = = = (on T(F)) by using Theorem 3.2.

2

It must be shown that R; and Ry hold condition(l), (2), (3)
in Theorem 3.2. Since Rj1C Rz, condition(l), =c=, is
obvious. From condition 4.8(1), CR(R2) is obtained. Let
G={S,0}, then T(G) € NF2, thus condition(2) holds. Finally,
we can prove condition(3), 7 MeT (F) ,” NeT(G) [M=N], by
Lemma 5.1, Therefore = = = (on T(F)).

‘It is also possible to prove Z> = 5 (from T(F) to

T(G)) by using Theorem 3.4. Hence we may say that R2 equals

Rl on T(F) for the equivalence relation and the reduction

-12 -

86

relation. Ry is, however, faster than R} for the following
computation:
Ri: 0+5(S(5(0))) >S(0+S(8(0))) ->S(5(0+5(0)))
—>5(5(S(0+0))) =>s(s(s(0))),
Ra: 0+5(S(S(0)))>S(s(s(0))).
Thus the number of reduction steps to obtain a normal form

can be improved by transforming Rj; to Rj.

5.4. Example

We show an other example of the equivalence
transformation improving the number of reduction steps to
obtain a normal form. >Let F={h,d,S,0} be a function symbol
set, where P(h)=pP(d)=£(S)=1, P(0)=0. Consider the following
R} and-R3:
Ry1: [h(O)D 0,
h(s(0))> 0,

_

h(s(s(x)))p x,
d(o)>o,

[d(S(x))P> s(s(d(x))),
and
R2=R)U {h(d(x))> x},
where h and d mean the 'half' function h(n)={n/2] and the
*double' function d(n)=2*n. Let G={S,0}. Then, by using
Theorem 3.2 and 3.4 in the same way as in Example 5.3, we
can obtain, .y
= = (on T(F)),

*

T
5 = —> (from T(F) to T(G)).

R2 improves the number of reduction steps, since n can be

- 13 =~

obtained from h(d(n)) with one step.

Looking at the examples in new 1light, the above
equivalence transformations can also be wused to prove
equation P=Q on term rewriting system Rj, Consider the
proof of some equation P=Q on T(F). First, let
Ro=Rj U {PP Q}. Second, Prove = = = (on T(f)) by using
Theogem 3.2. Then, since P=Q on T(F) from P> Q €Ryp, P?Q on
T(F) can be obtained. For instance, we attempt this method
for Example 5.4 to prove 7 NeT(F)[h(d(N))=N]. From

h(d(x))p x €Ra, VNeT(F)[h(d(N))iN]. Moreover, = =

‘ = (on

T(F)). Therefore, it can be said that VNGT(F)[h(d(N))TN}.
These ideas were first discussed by Musser [9], Goguen [3],
Huet and Hullot [6], in studies of proofs with induction on
some data types in equational systems. Huet and Hullot
showed that by using a simple extension of the Knuth-Bendix
completion algorithm [8], equations can be proved without
directly using induction. Their method has many
limitations, however. 1In particular, the requirement of the
strongly normalizing property 1limits its application, since
many recursive definitions , such as recursive programs, do
not satisfy these requirements. On the other hand, our
basic results in Section 3 do not require the strongly
normalizing property. We next show an example transforming

R} which does not have the strongly normalizing property.

5.5. Example

- 14 -~

88

Let F={if, eq, -, 4, S, true, false, 0} be a set of
function symbols, where pP(if)=3, P(eq)=P(-)=2, P(4)=p(S)=1,
and pP(true)=p(false)=P(0)=0. The following term rewriting
system is considered for computing the 'double' function d:
Ry: [d(x)> if (eq(x,0),0,5(S(d(x-5(0))))),
if(true,x,y)D> x,
if (false,x,y) > vy,

i eq(0,0)> true,
eq(S(x),0)> false,

X"'OI? X,

L S(x)-s(y) > x-y.
This term rewriting system does not have the strongly
normalizing property, since the first rewriting rule can be
applied infinitely to functionv symbol d. By using
Condition 4.8(2), The Church-Rosser property for Ry can be
easily shown. Let R2 have the following rules:
Rp: dao)» o,

{.d(S(X))P s(s(d(x))).
It is obvious that R has the strongly normalizing property.
Let H={d,S;0} and G={s,0}. It will be shown that the
function d of R2 equals R} on natural numbers, that Iis,
=== (on T(H)). For this purpose, Theorem 3.2 is used. We
show condition(l), (2), (3) in the Theorem 3.2. Since
d(O)TO and d(S(x))TS(S(d(x))), condition (1), ;C:f' is
obtained. Moreover condition(2), CR(Rj;) and “T(G)C NF3,
hold. By using Lemma 5.1, condition(3) is obtained, i.e.,

vMeT(H),gNeT(G)[MzN]. Therefore, = = = (on T(H)) holds.

2

- 15 -

(& &)
(e}

6. Transformation Rules y

In this section we consider the correctness of program
transformation rules discussed by Burstall and Darlington
[2], and Scherlis[12]. They showed in many examples that by
using their rules, a recursive program can be transformed to
an improved one computing the same function. Moreover,
formal proof of correctness was considered in [12]. This
problem can be seen as one of equivalence transformations
for term rewriting systeﬁs. In this section, an attempt is
made to give a formal proof, based on operational semantics,

for the correctness of transformation rules.

6.1. Rules

For program transformations, ©Scherlis suggested the
following rules: Abstraction, Composition, Application, aﬁd
Elimination. Using these rules, a recursive program,
described by a set of equations, can be transformed to an
improved one.

This transformation method can be considered from the

'standpoint of term rewriting systems. Let R} bé a term
rewriting system on T(FUV). Then, we use the following
three rules for transforming R] to new system R3:

(1) Definition: Add the new rewriting rule
g(X1s.eerXn)> Q to Ry, where g¢F is new function
symbol, g(Xj,...,%p) is 1linear, and Q€ T(FUV).
Thus, ‘

R2=R1U {g(XlseecerXn)> Q}.

- 16 -

& ¥

Hence R is on T(FU {g}Uu V).
(2) Addition: Add the new rule P> Q to R}, where PTQ°
Thus,
R2=R1U {PPQ}.
(3) Elimination: Remove the rule P> Q from Rj. Thus,

R2=Rl"'{P > Q} .

The above three rules include the transformation rules
suggested by Scherlis. Abstraction is represented by using
Definition, Addition, and Elimination. Composition is
represented by Addition, and Application by Addition and
Elimination. The main difference hetween his rules and the
rules presented here is that his rules preserve strong
equivalence of recursive programs, while our rules preserve
only the equivalence on some domain of term rewriting
systems.

RlﬁéRz shows that R} is transformed to R by< rule(i).
R} =3Ry shows that Ry is transformed to Ry by rule(l), (2),
or (3). leéRz and R1&R; are the transitive reflexive

closure of these two relations.

6.2. Theorem

Let R1=»Ry, where R} is a linear system on T(FUV) and
CR(R1). Let GCF ahd T(G) C NFj. Assume the following
property for Ry and R3: ~

Y MeT (F) ? NeT(G) [M=N] (i=1,2).

Then = = (on T(F)).

3]}

{proof)

- 17 -

By exchanging these rule application order, the above
transformation sequence can be réplaced by,

R} %Ra%Rb—*-;}Rz .
From Condition 4.8.(3), we easily obtain CR(Ry). Moreover,

T(G)C NF,. Therefore, by using Theorem 3.2, it can be

proved that 3 = (on T(F)).
It is trivial that =3 from the definition of rule(2).

Since iC.:, fc’i‘ Hence, using theorem 3.2 again, = = z (on

(R

T(F)).

Therefore = = (on T(F)) holds. O

1}

6.3. Theorem

Let R1%3R), where R} is a linear system on T(FUV) and
CR(R;1). Let Gc¢cF and T(G)C NFj. Assume the following
property for Ry and Rj:

7 MeT (F) T NET(G) [M4>N] (i=1,2).

*

Then <> = <% (from T(F) to T(G)).
(proof)

By using Theorem 6.2, we obtain = = g_(on T(F)). Let

"M eT(F)y, N,PET(G), and M-";—*rN, Mi‘z-)P. Then, by MzP, M=P can

be obtained, therefore, N=P. Since N,P & NF] and CR(Ry), N=P

holds. From this fact, it can be easily proved that

VM ET(F) Y N €T(G) [M5N & MDN]. [0

We will prove the correctness of transformation for the

following examples discussed in [2][12].

- 18 -

9z

6.4. Example (List reverse)

Let G={cons, nil}, where P (cons)=2 and f£(nil)=0. Then
we can see T(G) as List. The append function on List is
proposed by;

(1) append(nil,y)P y,

(2) append(cons(x,y),z)D> cons(x,append(y,z)).

The reverse function is given by the following rules:

(3) rev(nil) > nil,

(4) rev(cons(x,y)) > append(rev(y),cons(x,nil)).

Let R1={(1),(2),(3),(4)} and F=GU {append,rev}. We first
show that for M,N,PE€T(F),
append(append(M,N),P)fappend(M,append(N,P)), and
append(M,nil)fm; For this purpose two rules are added to
Ry:

(5) append(append(x,y) rz)> append(x,append(y,z)) .,

(6) append(x,nil) > x.

Let R2=R1 U {(5),(6)}. Note that Y M eT(F)* N€T(G) [M=N] and
T (G) C NF2. Using Condition 4.8.(1), it can be shown that
CR(R2). Hence ==3 (on T(F)) by Theorem 3.2.

Next we will transform R to an improved version by
using the transformation rules. Using Abstraction, we
introduce a new function £,

(7) £(x,y) > append(rev(x),y).

Let R3 be the union of Ry and the above rule. Then,
£(nil,y) sy, and, ~
f(cons(x,y),2)
§append(append(rev(y),cons(x,nil)),z)

=append(rev(y) ,append(cons(x,nil) ,2z))
3

- 19 -

95
;f(y,append(cons(x,nil),z)).
By using Addition, we obtain R4 which is the union of R3 and
the following:
(8) f£(nil,y)” y,
(9) f(cons(x,y),z)> f(y,append(cons(x,nil),z)).
Then, rev(cons(x,y))ff(y,cons(x,nil)) holds. Hence we
obtain Rs from R4, by adding:
(10) rev(cons(x,y)) > f£(y,cons(x,nil)).
Finally, removing unnecessary rules from R5, Rg is obtained
which is the union of {(1),(2)} and the rules:
(3) rev(nil)> nii,
(10) rev(cons(x,y))> f(y,cons(x,nil)),
(8) f(nil,y)> vy,
(9) f(cons(x,y),z)> £(y,append(cons(x,nil) ,z)).
By using Lemma 5.1, it can be proved that

Y MeT (F) @ NeT(G) [M=N]. Therefore, = == (on T(F)) is

5
obtained by Theorem 6.2.
Note that it is also possible to prove {é = %9 (from

T(F) to T(G)) by using Theorem 6.3.

6.5. Example (List reverse-append)

Let the set of function symbols G and the rewriting
rule(l) yo..,(6) be the same as in Example 6.4. Let
F=GU {append,rev,h} , where h is defined by the following
rule:

(7) h(x,y)E>append(rey(x),y).
Let R1={(1),(2),(3),(4),(7)} and R2=RjU {(5),(6)}. Note that

"MeT(F) T NeT(G)[M=NI. Then, === (on T(F)) can be

A

- 20 -

94

%

proved in the same way as in Example 6.4. Here we obtain
h(nil,y)=Y, and,

h(cons(x,y),z)

jappend(rev(cons(x,y),z)
;append(append(rev(y),cons(x,nil)),z)
;append(rev(y),append(cons(x,nil),z))
?append(rev(y),cons(x,z))

;h(y,cons(x,z))

Hence the following two rules can be added by using
Addition:

(8) h(nil,y)> y,

(9) h(cons(x,y),z)> h(y,cons(x,2z)).

Since rev(x)§h(x,nil), using Addition, we can add rule(l0):
(10) rev(x) > h(x,nil).

Finally, using Elimination, we can obtain R3 which is the
union of {(1),(2)} and,

(10) rev(x)® h(x,nil),

(8) h(nil,y)> vy,

(9) h(cons(x,y),z)> h(y,cons(x,2)).

By using Lemma 5.1, it is possible to obtain

Y M€ T(F) ? N € T(G) [MgN]. Therefore = = = (on T(F)) holds

3
for Theorem 6.2.

~

Acknowledgments
The author is grateful to Hirofumi - Katsuno and other
members of the first research section for their suggestions.

The author also wishes to thank Taisuke Sato for his helpful

- 21 -

comments,

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Barendrect,H.P.:" The lambda calculus, its syntax and

semantics", North-Holland (1981).

Burstall,R.M. and Darlington,J.:" A transformation
system for developing recursive programs", J.ACM, Vol.24
(1977) , pp.44-67.

Goguen,J.A.:" How to prove algebraic inductive
hypotheses without induction, with applications to the
correctness of data type implementation", Proc. 5th

Conf. Automated deduction, Les Arcs (1980).

Huet,G.:" Confluent reductions: abstract properties and
applications to term rewriting systems", J.ACM, Vol.27

(1980) , pp.797-821.

'Huet,G. and Oppen,D.C.:" Equations and rewrite rules:

a survey", Formal languages: perspectives and open

problems, Ed.Book,R., Academic Press (1980), pp.349-393.

Huet, G. and Hullot,J.M.:" Proofs by induction in
equational theories with constructors",
J. Comput. and Syst.Sci., Vol.25 (1982), pp.239-266.

Klop,J.W.:" Combinatory reduction systems",

- 22 -

Lo
3

Dissertation, Univ. of Utrecht (1980).

[8] Knuth,D.E. and Bendix,P.G.:" Simple word problems in
universal algebras", Computational problems in abstract
algebra, Ed.Leech,J., Pergamon Press (1970), pp.263-297.

[9] Musser,D.R.:"™ On proving inductive properties of
abstract data types", Proc. 7th ACM Sympo. Principles

of programming languages (1980), pp.154-162.

[10] O'Donnell,M.:" Computing in systems described by
equations", Lecture Notes in Comput. Sci. Vol.58,

Springer-Verlag (1977).

[11] Rosen,B.K.:" Tree-manipulating systems and
Church-Rosser theorems", J.ACM, Vol 20 (1973),

pp.160-187.
[12] Scherlis,W.L.:" Expression procedures and program
derivation", Ph.D.thesis, Stanford Computer Science

Report STAN-CS-80-818 (1980).

[13] Toyama,Y.:" On commutativity of term rewriting systems

", to appear (1983), in Japanese.

- 23 -

