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Evaluating graph representations with active nodes
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A method for evaluating a lambda expression 1s presented.

our system, a lambda expression 1is represented as a graph

where nodes correspond to processes and arcs to channels.

graph evaluates itself as processes fork or terminate.

method of evaluating 1lambda expressions 1is applicable to
distributed systems of computer networks. Also our system has

an ability to process structured data although it has no

shared memories.

1.Introduction

As is well known, the functional programming languages are quite

useful particularly in parallel machines since a value of an expression

is independent of other expressions. Many methods to

functional programming languages in parallel machines are proposed [Mago
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1979, Keller, Lindstrom and Patil 1979, Darlington and Reeve 1981].

The programming methods which are useful in distributed systems are
also proposed [Hoare 1978, Morrison 1978]. They have models which has
many processes communicating one another. We propose a method to
evaluate functional programs in such models. In our method, functional
programs are expressed in graphs of processes which evaluate themselves.
A method which evaluates the combinator graphs in such a manner was
proposed [Kennaway and Sleep 1982]. Compared with other methods, our

method has the following features.

(a) The programs need not be transformed into combinators.
lambda expressions which involve variables and list structures
are directly evaluated.

(b) Processes are never transferred in communication. Only

data are exchanged. This feature cuts down communication cost.

HY)

Copy and reduction of graphs with active nodes

In our system, programs are stored in the form of graphs. Nodes of
these graphs correspond to the processes and arcs correspond to
communication channels., In the first evaluating step, the input reader“
transforms source texts into these graphs of processes. These processes
communicate with one another and the graphs change their forms. The

following two operations are primitives of graph transformation.

(a) The termination of processes of deleting nodes and
connecting two of their neighbors.

(b) The forking of processes for the copy of nodes and arcs.
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Figure 1 illustrates these two operations.

An example of reduction of graphs is shown in Figure 2. The car
process sends a 'CAR' to a cons process and the processes terminate.
The cons process connects the parent with the car-part of the children
in order to choose the car-part of the list.

The definitions of functions are also stored in the form of graphs.
More than one graphs may refer to a definition at the same time since
operation (b) copies the definition.

After repeating these operations the reduced subgraphs output the

results of the evaluations.

3. The list processing

The cons processes constitute list structures by building using the
cons operators{Kelier 19791]. ‘They receive 'CAR' or 'CDR' that their
parent nodes send. If they regeive 'CAR' or 'CDR', they connect their
parents to their car-parts or cdr-parts. This mechanism enables the
YCAR' or 'CDR' stream to select +the parts of lists. The processes
generate selectors 'CAR' or 'CDR' to manipulate 1list structures.

We introduce a langﬁgge to describe processes. It is similar to
Hoare's éSP(Communicating Sequential Processes) [Hoare 1978] except that
it can describe procedure calls and recursions, and use ports and
channels to communicate with other processes. Sources or destinations
are specified by naming a port through which communications are to take
place.k The port names are local to the processes, and pairs of ports
are to be connected by channels.

The description of the car process is
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car_node::
CHILD!SEL(CAR);
stop(PARENT, CHILD).

A identifier followed by '::' is a process or procedure name.

The output command has the form

<{port>!<expression>

The second line is a output command which outputs 'SEL(CAR)' to the port
whose name is CHILD which is connected to the process at the child node.
'SEL(CAR)' is said 'structured expression'. Target variables of input
commands which receive structured expression must have same structures.
That is to say, a target variable which correspond to 'SEL(CAR)' must
have the form 'SEL( <variable> )'.

The input command has the following form.

{port>?<target variable>

Inter-process communications use no  buffers, in other words,
corresponding input and output commands are executed simultaneously.

The statement

stop( <port1>, <port2> )

terminates the process, deletes the node and connects <porti1> with
<port2>.

The description of the cdr process is almost same as that of the car
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process as

cdr _node::
CHILD!SEL(CDR);

stop(PARENT, CHILD).

where the second 1line is different from the car process. It does not
send 'CAR' but 'CDR’'.

The cons process 1is represented in the following description. The
identifiers PARENT, CHILDCAR, CHILDCDR represent ports to the parent,

the car-part and the cdr-part of this node.

consnode:: element,selector:var;

[PARENT?SEL (selector) ->

[selector=CAR ~> stop(CHILDCAR,PARENT) [
selector=CDR -> stop(CHILDCDR,PARENT) 1 [

PARENT?EOS() ->
PARENT! ' (';

-+ CHILDCAR!EOS(); CHILDCDR!EOS();
olele(CHILDCAR);
CHILDCDR?elemen%;

-

stop(CHILDCDR,PARENT) 1.

olele(e)
c?element; PARENT!element;
[element="(" ->
*[ element # ')' -> o1elé(c) ]
; element := NIL [

element # '(' -> skipl.



The form
[ <guard> -> <command 1list> [ <guard> -> <command 1list> [ ...]

is said an alternative command. An arbitrary one successfully
executable guard is selected and the followed command list is executed.
The expression which is put '¥' before a alternative command is a
repetitive command. It specifies as many iterations as possible of
constifutent alternative command.

The cons process selects following three behaviors.

(a) If it receives 'CAR', it connects 'PARENT' with *CHILDCAR'
and terminates.

(b) If it receives 'CDR', it connects 'PARENT' with 'CHILDCDR'
and terminates.

(e) Receiving the element EOS() indicates that the 'selector'
stream 1is empty. In this case the cons process gets 'value'
streams from 'CHILDCAR' and 'CHILDCDR', and outputs cons of

these streams to the parent node.

If the list structure is given only EOS() as the selector stream, it
outputs whole stream of the list sturucture's value. It is evaluated in
a fully 1lazy manner which 1is compatible with the ‘'Lenient cons'
[Friedman 19761]. The atom process which constitute leaves of list

structures are described as

atom_node(atom)::

¥[PARENT?EOS() -> PARENT!atom].
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where the argument 'atom' specifies the atom that the atom node outputs.
To identify the tail of the list sturcture, the following nil process is

used.

nil node::

¥[PARENT?EOS() -> PARENT!'('; PARENT!')'].

It outputs a pair of parentheses.

The cons process also handle a 'color' -element that argument ~

selection nodes wuse. The argument selection node is explained in the
section 4.

The car and cdr process do not fork, that is to say, definitions of
functions are modified after evaluation at the first time. So, the
graph of the function definition exhibits self-optimizing properties
[Turner 1979] in spite of the parallel evaluation. Optimizations are

suppressed at the variables whose values depend on the environments.

4. Processing function calls

‘The fun, graph andxﬁargument selector processes execute functioh
calls. The form of process graphs for function calls are il}ustrated in
Figure 3. Thé fun process is embedded in the calling function. It is
connected to the definition of called function by a channel. The graph
process ties up a input and a output of the function body.

Function calls are processed with the following steps.

(a) The fun and graph processes fork. This operation separates
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the channel connecting these processes into two channels. One
of them 1is used for a input channel and the other a output
channel.

(b) Terminations of the fun and graphvprocesses connect the
input and output of the function body with those of the fun
process. This operation replaces the fun process by‘ the

function body.

The graph after these operations is shown in Figure 4.

After executing above steps, every graphs which call this function
share the function body. As the selector stream flows, constituent
processes fork one by one from the root to the leaves. To command
processes to fork, the signal 'FORK()' flows before the seleétor stream,
The car and cons processes which handle 'FORK()' are detailed in the
Appendix.

The 1input of the function body is connected to every fun nodes which'
call the function. The argument selector process selects the calling
fun process out of them. For this purpose, the color generator process
puts the ‘'color' element which indicates the calling graph in the
sel;ctor stream. The argument is selected corresponding to the color.rﬂ

The description of the fun process is

fun node:: color:var;
PARENT?FORK();
PARENT?COLOR(color);
[ fun node
i1 FUNARG!FORK(); FUNARG!COLOR(color);
FUNARG?GRAPH();

[ . stop(FUNARG,CHILD)



!l FUNARG!FORK(); stop(PARENT,FUNARG) 1.

where 'FUNARG' is a port to the definition of the function.

The fork of a process is represented by
[ <process> || <process> ].

which copies the node and the arc. The right process will use the
channel that the process uses before. Other channels are connected to
the 1left process. Variables of the original process is not shared but
copied into each process.

A signal 'FORK()' and a color invoke a function call.

The graph process has three ports 'PARENT', 'VALUE' and 'ARG' which

are marked in Figure 3. Corressponding with the fun process, we get the

following definition.

graph node:: selector,color,oldcolors:var; graphl1(0).

graphi(color:var)::
PARENT?FORK(); PARENT?COLOR(oldcolors);
PARENT!GRAPH();
[ graph1(color+1)>
|1 ARG!COLORREG(color);
PARENT?FORK () ;
[stop(PARENT, ARG)
|1 VALUE!FORK(); VALUE!COLOR((color,oldcolors));

stop(VALUE,PARENT)]].

The graph node registers a color to the argument selector and put the
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signal 'FORK()' and the color before the selector stream. Each color
corresponds with the calling graph. Using this color, the argument
selector can select the calling graph. The description of the argument

selector is

argument selector node:: color,oldcolors,element:var;

aselft.

asell::
¥[TO_GRAPH?COLORREG(color) -> stream(TO _GRAPH, color) 1|
TO_BODY?COLOR((color,oldcolors)) ->

[asell || color!COLOR(oldcolors); stop(color,TO BODY)1l.

where 'TO BODY' 1is a port of a channel to the function body and

'TO_GRAPH' the graph node. The statement
stream( <port>, <new port> )

creates a port <new port> and its channel which is same as <{port>'s.
This statement copies the channel.

To register a color to the argument selector, the graph node sends
COLORREG(<c010r>)‘ and the argument selector creates the new port whose

name is <color>.

5. Evaluating variables

To get a value of a variable, the place of the actual parameter which

corresponds to the variable must be found. We introduce name elements
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into selector streams to find the value. Variables in source text are
transformed into name nodes in the graph. The name node sends a name to
the lambda node and the lambda node selects a actual parameter.

The description of the name node is

name node(name)::
CHILD!NAME (name) ;

stop(PARENT, CHILD).

which 1is similar to the car and cdr nodes except that it sends a name
instead of a selector.

The lambda node tries to‘find a name in its name table that has names
of formal parameters. If the name is found, the lambda node generates é
selector stream to access the actual parameter. If not, it sends the
name to the 1lambda node which corresponds to the oﬁter lambda

expression.

lambda node(name table):: name,element,color:var;
q:queue;
PARENT?NAME (name) ;
[ lambda node(name table)
i q:=search;tablé(name,name_table);
[not(empty(q)) -> CHILD!SEL(CAR);
\ | ¥[CHILD!SEL(remove(q)) ->Vskip] 0
empty(q) -> CHILD!SEL(CDR);
CHILD!NAME (name)1;

stop(PARENT, CHILD)].

The function 'search table' searches a name table and the queue 'q'
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is assigned a sequence of selectors to access the corresponding formal
parameter. The predicate 'empty' checks whether the queue is empty or
not. The function 'remove' removes a element from the queue. It fails
if the queue is empty.

Strictly speaking, the lambda node needs to handle the signal
'FORK()' and the color. The description is elaborated like the car node
in the Appendix.

The rules of transformation of the source text into the graph is
shown in Figure 5. The lambda node can refer to the outer lambda node
since the graph corresponding to the lambda expression replaces the fun
node whose children involve the outer lambda node. Figure 6 illustrates
an example of the graph which calculates Fib defined as

Fib (1, 1 | mapcar(plus, Fib1(Fib)))

Fib1(x) ( (car(x),cadr(x)) | Fib1(ecdr(x)) )

mapcar(f,1) = ( f(car(l)) | mapcar(f,cdr(l))).

which outputs the stream of the Fibonacci sequence endlessly. The print

node at the top of the graph invokes a evaluation.

PRINT::
CHILD!FORK();
CHILD!COLOR(0);
CHILD!EOS();

¥[CHILD?element -> print(element)].

The FUNARG problem’is easily avoided in our evaluation method. You
can easily get other environments connecting the channels to other

lambda nodes. Our method has the same flexibility in environments as
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the association 1list. But our method searches in a parallel manner,
Self-optimizing properties that we discuss 1in the section 7 delete
variables from global definitions of functions as graphs are evaluated.

The variables are evaluated at the first time only.

6. Numerical operations and stream processing

Numerical function 'plus', for example, is described as follows.

plus node:: selector,argl,arg2,color:var;
PARENT?FORK(); PARENT?COLOR(color);
[plus node
i1 PARENT?EOS();
stream(CHILD,CHILD1);
CHILD1!FORK(); CHILD1!COLOR(color);
CHILD1!SEL(CAR);
CHILD1!EOS(); ¢
CHILD!FORK(); CHILD!COLOR(color);
CHILD!SEL(CDR); CHILD!SEL(CAR);
CHILD!EOS();
CHILD1?argd; CﬁILD?argZ;

PARENT!(arg1farg2) 1.

This node gets numerical values from their children and outputs a sum of
them to the parent.. Similarly, stream processing functions[Burge 1975]
is described as

stream processing:: color:var;
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PARENT?FORK(); PARENT?COLOR(color);
[ stream processing
'l PARENT?EOS()};
CHILD!FORK; CHILD!COLOR(color);
CHILD!EOS();

<the description of the stream processing> ].

which works like UNIX's filters[Richie 1974].

7. Self-optimizing properties

Generators of selector streams, the car, cdr and name processes do
not fork. So, their nodes in definitions are always deleted and
definitions are optimized. A subgraph which involves variables must not
be optimized since their values do not fix. To avoid optimizations of
variables, the argument selectors block selector streams until the car
and cdr processes fork, that is, the argument selectors receive colors.
The car and cdr processes fork when they receive colors as is detailed
in Appendix.

If the optimization is restricted only in a function, the effect of
optimization 1is small. We introduce global functions and variables for
more optimizations. The global function does not change its definition:
during the evaluation. It can be replaced by the function bodies at the
first evaluation.

Almost all functions eéxcept 1local defined functions are global
defined functions. The global variable does not change?ité‘value during
the evaluation. It is a constant variable in other word.

The global must be declared -before evaluation. The input reader
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transforms a occurence of a global function into the global fun node
instead of the usual fun node.

The global fun node does not fork before the function call. So, the
fun_node of not only copied graph but also the definition is replaced by
the called function body. Thisywill fix the definition of the function.
The body of the called function will melt in the calling function
because of Self-optimizing properties. The global fun node enables the
graph to be applied more self-optimizing properties.

The 1lisp compiler or the translater to combinators deletes variables
and improve the execution speed. Self-optimizing properties in our

system has same effects as the compilation.

s

8. Sketches for the implementation

in this section, we consider how to implement our system. Since
processes do not wuse shared memories, our method is wuseful in
distributed systems.

Consider the square array of computers connected by packet
communication 1lines., It is illustrated in Figure 7. All computers can
communicate with four neighbors. Processes which constitute a graph can
be assigned to these<5§mputers since all communications are restricted
to channels. Since each computer contains definitions of functions,
these functions are executed in a arbitrary computer. The process for
load balancing is inserted between the name processes and the top-level
lambda processes. This process chooses a computer which has the least
load when new functiops are called. All computers can access any
resources distributed in the sys?em by calling the resource handling

functions.
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Graphs are represented by linked lists in each computer. Nodes of
list represent process images. Channels to other computers are relayed
by communication driver processes which controls packet communication
lines. Channels are not created dynamically but only copied by the fork
of processes. Their connections are identified by channel numbers in
the packet communication 1line. So, the system needs no consistent
identifiers of process beyond each computer.

Different machines can be mixed in our system. For example, consider
thé list structure machines which execute only the cons processes. From
the point of other machines, this machine behaves as if it had process
graphs, but usual binary pointer structures represent these processes,
Since the usual binary pointer structures require less memory space than
those constructed by cons processes, the list structure machines make it
easy to construct large data bases. |

In this paper, all processes are described by the CSP-like language.
It is easy to ‘transform these descriptions into a conventional
deterministic sequential programs introducing statements 'fork',
'stream’', ‘'communicate' and 'stop'. The statement 'communicate'. has to
wait more than one port exchanging data for absorbing nondeterminism in

Pl

CSP.

9. Conclusion

We propose a method to evaluate lambda expressidns with processes
which communicate one another. Although processes are distributed on
graphs, our system can directly evaluate expressions involving variables
and list structures. Our system also has some self-optimizing

properties.
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Appendix

car_node:: color:var;
[PARENT?FORK() -> CHILD!FORK() 1
PARENT?COLOR(color) ->
[car_node |{ CHILD!COLOR(color); car node] [
CHILD!SEL(CAR) -> skip 1

stop(PARENT, CHILD).

In this description the signal 'FORK()' and the color can pass the
car node even 1if a selector is waiting to output. If the color is
passed, the car node forks. To implement these features, this

description has "output guards"[Bernstein 19801].

consnode:: element,selector:var; q:queue;

PARENT?element; cons1(element).
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cons1(element:var)::
¥[FORK():=element -> addqueue(qg,element);
PARENT?element;
[consnode || consi(element) ] [
SEL(selector):=element
-> [selector=CAR
~->¥[element:=remove(q) -> CHILDCAR!element];
stop(CHILDCAR, PARENT) 0
selector=CDR
->¥[element:=remove(q) -> CHILDCDR!element];
stop(CHILDCDR,PARENT) 11
color=undefined; COLOR(color):=zelement ->
addqueue(q,element) . 0
EOS():=zelement
-> PARENT!'(';
addqueue(q,E0S());
¥ element:=remove(q) -> CHILDCAR!element;
CHILDCDR! element];
olele(CHILDCAR);
CHILDCDR?element;
[element='(" => stop(CHILDCDR,PARENT) [
element#' (' -> PARENT!'|';
PARENT!element;

PARENT! ') 11.

The statement 'addqueue' adds a element to a queue and 'remove' removes
an element from a queue. It fails if the queue is empty. The initial

value of the queue is empty.
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Figure 7. The-square array of computers



