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1. Introduction

Analogical reasoning (AR) is derivations of conclusions
from premises like other reasoning. The premise in AR is a
description that given two situations are similar in some
respects, while the conclusion is one that the situations are
similar in the other respects as well.

The analogical reasoning or analogical problem solving is
so important in the studies of AI that many authors have
investigated from various viewpoints [3,4,5,6,7]. However no
mathematical framework for AR is found as far as the author's
knowledge is concerned. So in the present paper, we trf to build
a mathematical theory for AR, We have paid our special attention
to the following two observations which should be a basis of AR.

(1) We can utilize the past experiences to solve the
current problem by detecting a similarity between the past and
the current problems [3,4,5,6,7].

(%) We can acquire or learn a constraint and a general law
by detéﬁting the similarity and by identifying the similar parts
of the two situationé [5].

Thus the similarity detection is a key problem in AR, From
this viewpoint, we take the first step toward a mathematical
theory of analogy detection. The formalism is based on Winston's
matching for analogy and is in terms of a first order language.

The basic idea of our formalism is as follows.



(1) A similar part of two situations is a common part of
them. Since the whole can deduce its part, we can refer to the
similar part as a special kina of theorem derived from each of
the situations.

(2) By taking logical NOT, we can view an analogy as a
generalization by Plotkin[l,2]. Thus we can treat the analogy

problem in nearly the same way as the generalization.

2. Extensible Relation Structures

Winston[5] describes a system which reasons and learns by
analogy. His implemented system takes simple English like
inputs which describe several facts about some situations ~such
as Shakespeare's tragedies or scientific laws. Then the system
translates them to kinds of networks called extensible relation
representations. The extensible relation representation consists
of situation parts as nodes that are tied together with
relétions. In order to express a supplementary desériptiOn for
the relation itself; a new kind of node called reference node is
created, Such a node is hanging from the relation to which the
node refers when we illustrate it as a figure. (See Example 1l.l)

Then, for given two situations, matching for analogy is to
pair off the situation parts, not reference nodes., In other
word, the reference nodes are used only for describing various
kinds of relations about situation parts. Therefore, a relational

representation without the reference nodes is suitable when we



use first order language. For this reason, we regard Winston's
extensible relation representation as a general network structure
S with pointer-type reference nodes, and then encode it to a set
L(S) of ground atoms by eliminating the refefence nodes. In the
following definition, the situation parts and the reference nodes
are simply called objects and references, respectively. Moreover
internal properties of situation parts are defined by predicates

over objects.

Definition 1.1 Extensible Relation Structure (ERS)

ERS S is a tuple (O,V,R,f,P), where V is a set of nodes
called references, O is a set of nodes called objects, R is a
family {Rj}; ¢ 1 of relations, each relation R; has an arity
n > 1 and is a subset of (Vv uO)®, £ is a one-to-one mapping
vV —==> ig:[Ri and is called reference relation, and P is a

family of predicates over objects.

Before defining L(S), we encode S to a set C(S) of ground
atoms with the references. In order to distinguish the usual
relations frbm the reference relations, we use the reserved
predicatef;ymbols "refer" and "rel". Thus the relation names are
treated as function symbols., The encoding

is trivial, so we only show it by example.
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Example 1.1 (Winston)

love
love-1
romeo lcause juliet
1 1
: kiss-1 !
]
| .
has-prop } , a-kind-of
I
| kiss :
4 v
strong girl

where "strong", "girl"™ are property's value, not situation parts
(object), and love-1l and kiss—1 are refereces. As the result of
coding, we have the set C(S) of ground atoms:
C(s) = {rel(love(romeo,juliet)), ... factl
rel(kiss(romeo,juliet)), ... fact2
rel (cause (love-1l,kiss-1)), ... fact3
refer(love-l,love(romeo,juliet)),
refer (kiss-1,kiss(romeo,juliet)),
hés-prop-strong(romeo), »ss factd

a-kind-of-girl(juliet)} ... fact5.

Observe that love-l refers the factl that romeo loves
juliet., and kiss-1 the fact2., Since fact3 that love-1l cause
kiss-1 is also a fact, an "extended" fact that
cause(love(romeo,juliet),kiss(romeo,juliet)) also holds. Such a
transitive derivation is easily described as follows:

For each function symbol r, we add the following rules to C(S).



transitive rule: refer(X,r(XyreeerWreeo,X,))
<- refer(X,r(Xl,...,Xj....,Xn)).
refer(xj.W).
terminal rule: rel(r(xl,...;W,..;;Xn))
<~rel(r(XjreeerXsreesrXy)),

J
refer(xj.W).

Since the reference node refers toa particular instance
of relation, we assume that for each reference v there exists
exactly one atom refer(v,t) in C(S) for some term t. 1In general,
if there are cyclic reference relations, then infinitely many
true relations over objects and references are derivable as

logical consequences. However, we have

Proposition 1.2

(1) For a reference v. there exists at most one term t
which satisfies the condition C that refer(v,t) is logically
implied byJQ(S) and has no references, Hence we can define

"exp" as follows:

v if v is object,
exp(v) =< t if v satisfies the condition C,
w if otherwise

(2) Let L(S) be the set of all ground atoms which are
logically implied by C(S) and has no reference symbols. Then

L(S) is only finite.



Since L{(S) is only finite , we chose L(S) as a logical

representation of ERS S.

3. Matching for Analogy

G. Polyal[9] said as follows:

"Two systems are analogous, if they agree in clearly
definable relations of their respective parts."'

Then the analogy detection (or matching for analogy) is to
find the correspondences of the parts with the agreements on the
definable relations. In order to deal with the problem of
analogy detection computationally, we must effectively decide if
the relations agree or not. For this reason, we simply consider
that two relations r and r' agree if they have the same relation
name. This restriction of the agreements is just the sahe_as
that of Winston in which he call the agréements of relations
"evidences"., In this section, we formally define the evidences

using ERS and characterize them in terms of first order language.

Definition 3.1
(1) Given two ERSs S; = (03,V;,Rj,£5,P;) (i=1,2)
a pairing ¢ is a one-to-one relation over 0; and O5.

(2) For given pairing ¢ c0; x 0Oy, we extend ¢ to ¢t which
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pairs reference nodes also. ¢

i1s defined by H ®(n), where

® (0) = 9,

¢ (n+l) = o(n) v {<u,u'> ¢ Vy X ¥y :

<aa'>,<b,b'> € ¢(n),
fy(u)=r(a,b), and
fa(u')=r(a',b")}

Proposition 3.2

<u,v>ecot iff w 7 exp(u) = exp(v) (¢), where t=t'(®) means

identity that term t and t' are exactly the same by identifying
each a and b with <a,b> in 0.

Now define evidences.

Evidence I: Paired objects <a,a'> ¢ & have the same

property; that is p(a) and p(a') hold for some P € Py 0 Py,

Evidence II: Paired nodes <ujvyi> e ot (i=1,n) are in

the same relationship; that is, r(ul..n,un) € R; and

r(vl....,vn) € Ry hold for some r « Ry n Ry.

By using Proposition 3.2, we have:
J
S

Proposition 3.3

Evidence I and II are stated as follows:

Evidence I: For p ¢ P; n Py, <asa'> €9, both p(a) and p(a')

holds; that is p(a) ¢ L(Sl) and p(a') ¢ L(Sz).

Evidence II: For rel(ti) € L(Si) (i=1,2), t] = t, { ® ) holds

for some relation r.
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Example 3.3

One of situations is shown in Example 2. . Another is

the following:

love

love-1
charming cause cinderella
1

t
X |
1 v ]

has-prop ! kiss-1 | a-kind-of
| ]
t |
Y v

strong kiss girl, princess

For pairing = {<romeo,charming>,<juliet,cinderella>}, we

have five evidences:
<has-prop-strong(romeo) , has-prop-strong(charming)>,
<a-kind-of-girl(juliet),a-kind-of-girl(cinderella)>,
<rel(love(remeo,juliet)),rel(love(charming,cinderella))>,
<rel(kiss(rqmeo,juliet))irel(kiss(charming,cinderella))>,
<re1fcause(love(romeo,juliet),kiss(romeo,juliet))),
rel(cause(love(charming,cinderella),

kiss(charming,cinderella)))>,




s
wn

4, Analogy Theorems

According to Proposition 3.3, an evidence can be a pair of
identical atoms <Aj,Ay> ¢ L(Sl) x L(SZ), where the identity
means A; = Aj ( ¢ ). Note that this atom pairing is one-to-one.

Let E( ¢ ) be the set of all evidences as pairs of atoms ,
and p; be the usual projection. Since pj(E( ¢ )) and py(E(0))
are completely identical subsets of L(Si), E( ¢) represents a common
identical parts of situations when S; represents some situation.
Moreover, we can represent this paftial identity by the
corresponding formula. |

First assign variable X¢a,a'> for each <a,a'> ¢ ¢. For each
evidences in E( ¢ ), we associate an atom A; as follows:

Atom P(x<a,a'>) with evidence <p(a).p(a')>, and an atom
rel(term(x<a1'aﬂl>,"..X<an'a&1>)) with
<rel(term(aj,...rap)),rel(term(a’y,.ccra'y))>. Then the desired

formula is:

W( (D) :ﬁ\\J‘X<a1'al1>y.o'., X<an;a'n>[AlA ce e A Ak]o

Clearly L(Si) -—=> W( ® ) is valid (i=l,2),_and the pairing
is conversely computed as an pair of answer substitution of
resolution proof. In fact,
01 = {X¢q,ary/alr 0p = {Xgy,15/a"} are
answer substitutions of C(S;) ---> W( ¢ ), and the

{<X0 1, X0 9> 1 X e Var(w( ¢ Y} is 9.

10



Since W( & ) can define the partial identity of objects and
atoms, we will call W an analogy theorem. Now we give a

formalism of analogy.

Let S; and Sy be conjunctive set of ground atoms with no
common individual constants. Let L=L[Sl;sz] be the set of
formulas W such that W is a conjunctive set of atoms, all
variables are existensially quantified, and S; ---> W is Qalid
for i=1,2,

The following proposition is due to Skolemization,

Proposition 4.1 (Duality)
Let Al}.u,An be atomic formulas. Then

W= HXIrcoopaxn[Al A goe A Am] —_——> W'=3y110to’3ym[B1 A ees A Bn]

pgd

is valid iff'ﬁl V ees VB, subsumes Ay V ... vV Ap.
Especially, when every A; is ground atom, if 0 is an answer
substitution of W then ByV...vB, 0 -subsumes X1VQHVZm and vice

versae.

From the proposition 4.1, we identify W in L with a clause
C in C= C[51;S,] by taking NOT-operation, where C is the set of
all clauses that subsumes both of E}. We call this identification

as a duality.

11
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Since the pairing ¢ and the corresponding atom pairing
are one-to-one, we constraints W in L this one-to-one condition
called Partial Identity Condition (PIC). The term "partial
identity™ is due to Klix([8].

Let o be a pair of substitutioh' (o797 02). For variable
or atom A, <A 0 3,A 0 5> is denoted by Ag . For set W of
variables or atoms, {A 0 : A ¢ W} is denoted by W ¢ . Note that,
for a conjunctive set W of atoms, W ¢ L[Sy;S5] iff there exists a

pair 0 of substitutions such that Wo < S; x Sj.
Definition 4,2

(1) A pair of substitution ’0 is said to satisfy PIC for w
in L if Wo ¢ S1 X So» and both Wo and Var(W)care one-to-one
relations.

(2) For given Si' we say W in L an analogy theorem under
51 and S, if there exists a pair of substisutions o= (ol; g 2)
which satisfies PIC for W. In this case we call (W, 0 ) an

analogy, and Wo  the evidence set of the analogy (W,o0 ).

5. Analogies and Implications

For given Sy and Sor there are many analogy theorems and
analogies, Then the most important problem is to determine if

one analogy is better than another. That is, the problem of

12
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ordering of analogies. In the previous studies of analogy, this
ordering is done by using numerical score [4,5]. However the
maximal score is unique, but, analogies with the maximal score
are not unique. For this reason, we should have a more

structural ordering.

Definition 5.1 (Plotkin[1l,2])

For given clauses Cl and Coy if a clause C <ji—subsumes Ci
(i=1,2), then C is called a generalization of Cj (i=1,2). 1In
this case., we call a pair (C,0) a generalization diagram of C;

and Cy, where ¢ is a pair ( oy, 03).
C1 C2

generalization

diagram o] o

According to the duality stated in Section 4, we have
(1) (W= 3%y,e00,3%x[A] A e AR ], 0) is an analogy under S;
iff (2) (W,0) is a generalization diagram of §1 and'§é which
satisties PIC
iff (3) (W' = {Ay,...,A },0) is a generalization diagram of §;

which satisfies PIC.

13



In what follows, we use (3) as the notation of analogies.

Plotkin also defined a quasi-order and an equivalence of
generalizations of Cj. By his definition, the equivalent
generalizations are logically equivalent. However, in the case
of analogy, logical equivalence does not means an equivalence of

analogy. For instance, consider the following example:
Example 5.2

s= {p(f(a)),p(b)}. s'= {p(£(a")),p(b")}
X/a, ¥/b X/a', ¥/b!
W={p(£(X)),p(¥Y)}
A/X
W'={p(£(a))}
are two generalization diagrams as analogies, Observe that W and
W' are logically equivalent, and that evidence set of W' is a
proper subset of that of W, Moreover, the object that the

variable A denotes in W' is obtained by substituting A by the

variable X in W. This means that the above diagram commutes.
In general, for given two analogies (A,0 ) and (B,t1),

when there exists a subsumption " that makes the corresponding

generalization diagrams commutative, then the partial identity

14
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X 1 for variable X in B is described by the partial identity Xno
Thus the condition of diagram commutativity is a syntactic way of

describing one analogy B by another A. Of cource, B is worse (or

weak) than A.

Definition 5.3

For given S; (i=1,2), an analogy (A, o ) is called better
than an analogy (B, 7 ), if there exists a substitution such
that é n —subsumes A and that X 1t ; =X no ; for all variable X
in B (i=1,2), 1In this case we denote (A, o) > (B, T ). We also

define (A, 0 ) ~ (B, 1t ) if (A, 0 ) > (B, 1 ) and vice versa.

Proposition 5.4
(1) 1f (A. 0o ) > (B, T ) then Ao > BTt .

(2) The ordering > for analogies is a quasi-order.

6. Canonical Analogy Structures

The purpose of this section is to establish a canonical
search space for analogy. For the detection of analogy , if we
have object-pairing first and then show its evidences, then the
corresponding method for analogy detection is essentially bottom-
up, and the search space is the set of all object pairs. |

However, like the bottom up method, a top-down detection of

analogy is also possible, In this case we must find a partial

15
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identity P of ground atoms, and then establish object pairings
which have their evidence sets as a part of P, The search space

introduced in this section is for top-down analogy detection, and

is called Canonical Analogy Structure (CAS) for given P,

Definition 6.1 Let S; be sets of ground atoms,

(1) A pair of atoms is called compatible if they have the
same predicate.

(2) S =87 x Sy is called a selection if S is one-to-one.

(3) For a given selection S = {<A;,B;>:1 <i<n}, a poset
(D(S), <) is defined as follows:

(3-1) D(S) consists of all equivalence classes [L] of
generalizations‘of literals tup(Al,.u.An) and tup(Bl,.",Bn),
where "tup" is a new predicaté symbol to denote a tuple, the |
generalizations of literals are similarily defined by regarding
literals as unit clauses, and the equivalence of literals is
define by alphabetical variance.

(3-2) [L1] < [Ly] iff L; subsumes L, as unit clauses;

Note that when we use the above tuple notation, the
predicate symbols appearing in A or B are treated as function
symbols. In what follows, equivalent class [L] is represented by

~its arbitrary element L.

16



Example 6.2 D(S) for S={<p(f(a)),p(f(a'))>,<p(b),p(b')>}

tup(p(£(a)),p (b)) | tup(p(£(a") /P (b")
: AN '//
\\\ //

4
\\ o
~ 7

tup (p (£(X))sP(¥)) wvvess top

TN

tup(p(f(X))(Z) tup (p (X) ,p(Y))

PN

tup (p (X) ,2) tup(Z,p(X))

N

tup (X,Y) ...... bottom

Note that D(S) is a finite lattice with least generalization:
as n and unification as v, |

The aim of introducing D(S) is to extract analogies which
have their evidence sets as subsets of S. For T=tup(e1,.u.en)

D(S), if e; is a variable then e; plays no role for object

J J

pairing., Therefore we ignore such a é d(T) is defined by

j.

{ ei.l'""ei.k}' where ei,j are all non-variable arguments.,

Now we define the canonical structure for given selection.

Definition 6.3 CAS[S] is an ordered structure (V,<) such that

(1) V consists of all (d(T), o )} such that

17
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T e D(S), 0 =(o0ysr O3)s
T 01=tup(Aly-'o'An)I

T 62=tupe(Blyco.'Ban and
o satisfies PIC. '

(2) < is the quasi-order of analogies.

Proposition 6.4
(1) If (W, ) € C(S) then (W, ¢ ) is an analogy under pi(S).
(2) CAS(S) is a poset. That is the quasi-order becomes a

partial order by restricting analogies to those of CAS(S).

The reason why the author call CAS(S) "canonical" is due to

the following lemma.

Lemma 6.5
Let (W, 1) be an analogy under S; and S, with its evidence
set W T ¢ S8c8; * Sy. Then there exists (d(T), 0) < CAS(S)

‘such that (4(T), o) > (W, T ).

7. Maximal Analogies

The purpose of matching for analogy is to extract the
common identical parts as large as possible. That is, we must

find maximal common identical subsets of S;. This maximality is

18-



A
naturally defined by using the quasi-order of analogies, and we

give a procedure which search all the maximal analogies.

Definition 7.1
(1) An analogy (W,o0 ) is called maximal if
(W, ¢ ) ~ (W, ¢t ) holds whenever (W', ¢ ) > (W , ¢ ).
(2) A selection S is called maximal if there exists no

selection such that 8! 2 S.

Proposition 7.2
If (W, o ) is a maximal analogy., then there exists an
equivalent maximal element (d(T), 1 ) ¢ CAS(S) for some maximal

selection S.
The inverse of Proposition 7.2 does not hold in general.

Example 7.3 Consider the following non-extensible

relation structure.

rell rell

a b al¢e——— - p'!
N N
re12 _ rel3
re12 rel3

\ \4
c— >4 c' — > q°

rell rely

19
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Note that the above two figures represent
sy={rel;(a,b),rely(a,c),rely(c,d),rel3(d,b)} and
Sz={re11(b'.a'),relz(a',c'),rell(c'.d{),re13(d'.b')},
respectively. |

Then there are two maximal selections SEL1 and SEL2..

SELl={(re11(a,b),rell(b',a')>,<re12(a,c),relz(a',c')>,
<relj(c,d),rely(c',d")>,<relz(d,b),relz(d',b")>}
SEL2={<relj(a,b),relj(c',d"')>,rely(a,c),rely(a',c')>,
<relj(c,d),rely(b'.a')>,rel3(d,b),rel3(d'.b")>}
The parts of CAS(SELl1l) and CAS(SEL2) are:

]
CAS (SEL1) | CAS (SEL2)

|
o e mme e e eee = - c—— - - I F- T T T T - - -
: ||:— rell _'
, X<asa'>  Xa,b'> 11 X<a,et> T Xp,at> |

|
| | : | :
' by ! I
Wl | rely relsj Iy ] | W3

: by I
' :|| !

| |
I Ecc,e>>Xa,an> 1) Eee,bt> T>Xcg,at>
| relj ( - rely |
R, A____JIL _____________ J
Fmm - == =1
| 1 |
| X¢a,a'>  X<b,b'> | :
| : |
[

Wz LI re12 rel3 |: W2

l |

|
I ll

|

: Xee,et> %casat>

|
b e e e m— I

20
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Observe that Wy is maximal in CAS(SELl), Wo and W3 are maximal in

CAS(SEL2), and that Wy is not maximal in CAS(SELl).
By summarizing the above obsevation,

Theorem 7.4

Let S be a maximal selection, and (W, o) be a maximal
efYement of CAS(S). Then (W, 0 ) is not maximal analogy, iff
there exists maximal selection S8' > W 0 such that (W, 0 ) is not

maximal element in CAS(S').

According to Proposition 7.2 and Theorem 7.4, we can get
all the maximal analogies (up to equivalence for analogies) in the
following way:

Compute the maximal elements in CAS(S) for maximal

selction S, and check the condition of Theorem 7.4.
Note'that. in order to compute maximal elements in CAS(S), it
suffices to search D(S) downward from the top (which is the 1eas£
generalization) until an element T satisfies PIC, Then the

corresponding (d(T), 0 ) is the desired maximal element.

8. Concluding Remarks
We have given some formal definitions of the extensible

relation representation and the matching for analogy, and then we

have formalized the problem of analogy detection which plays a

21



4

-

key role in analogical reasoning. There still remain many
problems to be solved:

(1) Analogy as a pairing of function symbols. Note that in
this paper we have dealt with the analogy as a pairing of ground
terms.

(2) Use of deduction or abstraction. 1In order to extract
useful analogy, we should positively make use of information
about situations, which are related to the use of deduction. 1In
fact, Winston[5] said: "Some deduction or abstraction are

necessary before matching.”
Owing to limited space, we omit all the proofs. For
details, see [10].
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