<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Powerposets (Lambda Calculus and Computer Science Theory)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Adachi, Takanori</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1984), 515: 177-196</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1984-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/98372</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
Powerposets

Takanori Adachi
July 1983, No. C-52

Department of
Information Science
Tokyo Institute of Technology
Ookayama, Meguro-ku,
Tokyo 152
JAPAN
C-52 Powerposets
by Takanori Adachi, July 1983.

Abstract. We introduce the notion of powerposets which is a natural generalization of that of powersets with inclusion as their partial ordering. We show that every powerposet is an algebraic semilattice and that every continuous poset can be directed-continuously embeddable into some powerposet. We also discuss the possibility of making powerposets into λ-models as in the case of Plotkin-Scott's \mathbb{P}_ω theory.
0. Introduction

The domain $P\omega$ introduced by Dana Scott is a very simple and beautiful structure [9]. It provides a universal circumstance to develop theoretical computer science. Nevertheless, to many of computer scientists, $P\omega$ is too large to handle with in their everydays' work. So we want to select other (possibly partially ordered) set for ω. Powerposets are domains constructed in this way.

In section 1 we introduce the notions of lower ends and upper ends in slightly generalized forms of those usually defined.

Section 2 is devoted to review the fundamental concepts of the theories of continuous lattices and λ-calculus models. The main results of this note are in section 3, including the theorem which says that every powerposet is an algebraic semilattice. As a corollary of this theorem, we can conclude that $P\omega$ is an algebraic lattice as already mentioned by Scott. We also show that for every continuous poset there is an one-one map from it to some powerposet preserving directed sups.

Finally in section 4 we discuss the possibility of expanding a self-referential powerposet to a λ-calculus model.

1. Lower Ends and Upper Ends

Let $\pi = (\pi, \preceq)$ and $\pi' = (\pi', \preceq')$ be posets, a, b, c subsets of π, and x, y, z elements of π throughout this note.

Definition 1.1. (i) $a \downarrow x = \{ y \in a \mid y \preceq x \}$.

(ii) $\downarrow x = \pi \downarrow x$.

- 1 -
(iii) $a \downarrow b = \bigcup \{ a \downarrow x \mid x \in b \}$.
(iv) $\downarrow a = \pi \downarrow a$.
(v) $a \uparrow x = \{ y \in a \mid x \leq y \}$.
(vi) $\uparrow x = \pi \uparrow x$.
(vii) $a \uparrow b = \bigcup \{ a \uparrow x \mid x \in b \}$.
(viii) $\uparrow a = \pi \uparrow a$.

Proposition 1.2.

$$a \downarrow b \subset \bigcap_{i \in I} \bigcap_{j \in J} (a_i \downarrow b_j).$$

Proposition 1.3. If π is discrete (i.e. for every x and y in π $x \leq y$ implies $x = y$), $a \downarrow b = a \downarrow b = a \uparrow b$.

Proposition 1.4. (i) $a \downarrow \emptyset = \emptyset = a \uparrow \emptyset$.
(ii) $a \subset b$ implies $a \downarrow b = a = a \uparrow b$.
(iii) $(\bigcup_{i \in I} a_i) \downarrow (\bigcup_{j \in J} b_j) = \bigcup_{i \in I} \bigcup_{j \in J} (a_i \downarrow b_j)$.
(iv) $(\bigcup_{i \in I} a_i) \uparrow (\bigcup_{j \in J} b_j) = \bigcup_{i \in I} \bigcup_{j \in J} (a_i \uparrow b_j)$.
(v) $(\bigcap_{i \in I} a_i) \downarrow b = \bigcap_{i \in I} (a_i \downarrow b)$.
(vi) $(\bigcap_{i \in I} a_i) \uparrow b = \bigcap_{i \in I} (a_i \uparrow b)$.

Corollary 1.5. $a \subset a'$ and $b \subset b'$ imply

(i) $a \downarrow b \subset a' \downarrow b'$,
(ii) $a \uparrow b \subset a' \uparrow b'$.

Proposition 1.6. (i) $a \downarrow b \subset c$ implies $a \downarrow b \subset c \downarrow b$.
(ii) $a \uparrow b \subset c$ implies $a \uparrow b \subset c \uparrow b$.
(iii) $a \downarrow (b \uparrow c) \subset a \downarrow c$.
(iv) $a \uparrow (b \uparrow c) \subset a \uparrow c$.
(v) $a \downarrow (a \downarrow b) = a \downarrow b = (a \downarrow b) \downarrow b$.
(vi) $a \uparrow (a \uparrow b) = a \uparrow b = (a \uparrow b) \uparrow b$.
The proofs of these propositions are very easy, and so left to readers.

Definition 1.7. (i) a is called a lower end of b (notation: \(a \leq_L b \)) when \(b \uparrow a = a \).

(ii) a is called an upper end of b (notation: \(a \leq_U b \)) when \(b \uparrow a = a \).

Lemma 1.8. (i) a is a lower end of b iff \(b \uparrow a \sqsubseteq a \sqsubseteq b \).

(ii) a is an upper end of b iff \(b \uparrow a \sqsubseteq a \sqsubseteq b \).

Proof. (i) If part: \(a = a \uparrow a \) by 1.4(ii)
\[\sqsubseteq b \uparrow a \] by 1.5(i).

Only if part: \(a = b \uparrow a \sqsubseteq b \) by 1.2.

(ii) Similar to (i).

Proposition 1.9. If \(\pi \) is discrete, the following three statements are equivalent;

(1) a is a lower end of b.

(2) a is a subset of b.

(3) a is an upper end of b.

Proof. By 1.3 and 1.8.

Proposition 1.10. (i) \(a \sqsubseteq b \leq_L a \).

(ii) a \(\leq_L b \) iff there exists a subset c of \(\pi \) such that a = b \(\sqcup c \).

(iii) a \(\sqcup b \leq_U a \).

(iv) a \(\leq_U b \) iff there exists a subset c of \(\pi \) such that a = b \(\sqcup c \).

Proof. (i) By 1.6(v) \(a \downarrow (a \sqcup b) = a \sqcup b \).
(ii) Only if part: Immediate.

If part: By 1.6(v) $b!a = b!(b!c) = b!c = a$.

(iii) Similar to (i).

(iv) Similar to (ii).

Theorem 1.11. Let a, b and b' be subsets of π with $b \cup b' = a$ and $b \cap b' = \emptyset$. Then $b \preceq_a b'$ iff $b' \preceq a$.

Proof. Since $b = a!b \subseteq a!b \subseteq a$ and $b' = a\cap b' \subseteq a!b' \subseteq a$ by 1.2, we have $a = b!b' \subseteq a!b \cup a!b' \subseteq a!a = a$. Thus, $a!b \cup a!b' = a$. Moreover for every x, $x \in a!b \cap a!b'$ implies the existence of $y \in b$ and $z \in b'$ that satisfy

$$z \in b' \cap a!x \subseteq b' \cap a!y \subseteq b' \cap a!b \quad \text{and} \quad y \in b \cap a!x \subseteq a!z \subseteq b \cap a!b'$$

Thus, $b' \cap a!b = \emptyset$ or $b \cap a!b' = \emptyset$ imply $a!b \cap a!b' = \emptyset$.

Only if part: If $a!b = b$, then $b' \cap a!b = b' \cap b = \emptyset$.

Thus, $a!b \cap a!b' = \emptyset$. Hence $a!b' = a - a!b = a - b = b'$.

If part: If $a!b' = b'$, then $b \cap a!b' = b \cap b' = \emptyset$.

Thus, $a!b \cap a!b' = \emptyset$. Hence $a!b = a - a!b' = a - b' = b$.

Corollary 1.12. For $x \in a \subseteq \pi$,

(i) x is maximal in a iff $\{ x \} \preceq_a a$ iff $a - \{ x \} \preceq_a a$.

(ii) x is minimal in a iff $\{ x \} \preceq_a a$ iff $a - \{ x \} \preceq_a a$.

Proof. Immediate from 1.11.

2. Review

In this section we review the fundamental concepts of the theories of continuous lattices and λ-calculus models.
Definition 2.1. (i) A subset d of π is called directed if every finite subset of d has an upper bound in d.

(ii) We say that x is way below y (notation: $x \ll y$), if for every directed subset d of π the relation $y \leq \sup d$ always implies the existence of z of d with $x \preceq z$.

(iii) $a\downarrow x = \{ y \in a \mid y \ll x \}$.

(iv) $\downarrow x = \pi \downarrow x$.

(v) $a\downarrow b = \cup\{ a\downarrow x \mid x \in b \}$.

(vi) $\downarrow a = \pi \downarrow a$.

(vii) An element $x \in \pi$ is called compact if $x \ll x$.

(viii) $K(\pi) = \{ x \in \pi \mid x$ is compact $\}$.

Note that every directed set is nonempty.

Proposition 2.2. (i) $x \ll y$ implies $x \preceq y$.

(ii) $w \preceq x \ll y \preceq z$ implies $w \ll z$.

(iii) $x = \sup \{ x_1, \ldots, x_n \}$ and $x_i \ll y$ for all $i = 1, \ldots, n$ imply $x \ll y$.

Definition 2.3. (i) A poset π is called up-complete if every directed subset of π has a sup in π.

(ii) [Markowski] An up-complete poset π is called continuous if for every x in π, $\downarrow x$ is directed and $x = \sup \downarrow x$.

(iii) [Hoffman] An up-complete poset π is called algebraic if for every x in π, $K(\pi) \downarrow x$ is directed and $x = \sup (K(\pi) \downarrow x)$.

Iwamura and Markowski's result says that we can replace "directed set" by "nonempty chain" in 2.3(i) [5, 7]. Markowski also suggests the thesis that "continuous posets" are the proper setting for an abstract theory of computation.

- 5 -
[8].

The following two theorems are due to Markowski.

Theorem 2.4. [Interpolation Theorem] Let π be a continuous poset, $x \ll y$ in π, and d a directed subset of π with $y \leq \sup d$. Then there exists $z \in d$ such that $x \ll z$.

Theorem 2.5. Every algebraic poset is continuous.

Definition 2.6. (i) A **semilattice** is a poset in which every nonempty finite subset has an inf.

(ii) A **complete semilattice** is an up-complete poset in which every nonempty subset has an inf.

(iii) An **arithmetic semilattice** is an algebraic semilattice π in which $\mathcal{K}(\pi)$ is a semilattice.

Note that every complete semilattice π has the least element $\inf \pi$.

Definition 2.7. (i) A **lattice** is a semilattice in which every nonempty finite subset has a sup.

(ii) A lattice is called **complete** if every subset has an inf and a sup.

Theorem 2.8. Every complete semilattice with a greatest element is a complete lattice.

Next we state some concepts of the theory of λ-calculus models.

Definition 2.9. Let $(X, .)$ be a system with a binary operator $.$ on a set X, called an **applicative structure**.
(i) \((X, .)\) is called combinatory complete when there are two elements \(k\) and \(s\) in \(X\) such that \(kxy = x\) and \(sxyz = xz(yz)\) for all \(x, y, z \in X\).

(ii) A function \(f : X \to X\) is called representable if there is an element \(x \in X\) such that for every \(y \in X\) \(f(y) = xy\).

(iii) \([X \to X]\) denotes the set of all representable functions on \(X\).

The notion of \(\lambda\)-models is introduced by Barendregt in order to investigate \(\lambda\)-calculus models formally.

The following theorem is due to Barendregt [2].

Theorem 2.10. Let \((X, .)\) be combinatory complete and define the map \(F : X \to [X \to X]\) by \(F(x)(y) = xy\). Then \((X, .)\) can be expanded to a \(\lambda\)-model iff there exists a \(G : [X \to X] \to X\) such that:

1. \(F \circ G = 1_{[X \to X]}\);
2. \(G \cdot F \in [X \to X]\).

Readers may refer to [4] and [1, 2] for further information on these structures.

3. Powerposets

Theorem 3.1. Two relations \(\preceq_L\) and \(\preceq_U\) are partial order relations on \(\mathcal{P} \mathcal{M}\).

Proof. We only prove for the relation \(\preceq_L\); The other case is analogous.

Reflexivity: a \(\preceq_L\) a by 1.4(ii).

Antisymmetry: a \(\preceq_L\) b and b \(\preceq_L\) a imply a \(\subset\) b and b \(\subset\) a by 1.8(i). Thus, a = b.
Transitivity: Assume that \(a \preceq_L b \preceq_L c \). Then by 1.5(i) \(c \uparrow a \preceq c \uparrow b = b \). Thus, by 1.6(i) \(c \uparrow a \preceq b \uparrow a = a \). On the other hand \(a \preceq c \). Hence by 1.8(i) \(a \preceq_L c \).

According to the above theorem we call these structures \((P\pi, \preceq_L)\) and \((P\pi, \preceq_U)\) powerposets.

Corollary 3.2. Let \(\pi \) be a discrete poset. Then
\[
(P\pi, \preceq_L) = (P\pi, \preceq_U) = (P\pi, \preceq).
\]

Proof. By 1.9.

Proposition 3.3. Let \(\mathcal{F} : \pi \rightarrow \pi' \) be a monotonic function. Then the map \(\mathcal{F}^{-1} : P\pi' \rightarrow P\pi \) is also monotonic with respect to each ordering \(\preceq_L \) and \(\preceq_U \).

Proof. Suppose that \(P\pi \) is partially ordered by \(\preceq_L \). Then it is trivial that \(\mathcal{F}^{-1}(a) \preceq \mathcal{F}^{-1}(b) \) if \(a \preceq_L b \) in \(P\pi' \). So it suffices to show that \(\mathcal{F}^{-1}(b) \uparrow \mathcal{F}^{-1}(a) \preceq \mathcal{F}^{-1}(a) \) by 1.8.

Now let \(x \in \mathcal{F}^{-1}(b) \downarrow \mathcal{F}^{-1}(a) \). Then \(x \in \mathcal{F}^{-1}(b) \) and there is \(y \in \mathcal{F}^{-1}(a) \) with \(x \prec y \). Hence \(\mathcal{F}(x) \in b \), \(\mathcal{F}(y) \in a \) and \(\mathcal{F}(x) \preceq \mathcal{F}(y) \) in \(\pi' \) because \(\mathcal{F} \) is monotonic. Thus, \(\mathcal{F}(x) \in b \uparrow a = a \) since \(a \preceq_L b \).

So \(x \in \mathcal{F}^{-1}(a) \). Therefore \(\mathcal{F}^{-1}(b) \downarrow \mathcal{F}^{-1}(a) \preceq \mathcal{F}^{-1}(a) \).

The proof for the ordering \(\preceq_U \) is similar.

Definition 3.4. (i) \textbf{Poset} denotes the category of all posets with all monotonic functions as arrows.

(ii) The contravariant functor \(P_L : \textbf{Poset} \rightarrow \textbf{Poset} \) is defined by
Theorem 3.5. For every poset π, $P_{U}(\pi) = P_{L}(\pi^{op})$ where π^{op} is an opposite poset, considering π as a category.

Proof. Immediate because $a \uparrow_{\pi} b = a \downarrow_{\pi^{op}} b$ for all $a, b \in P_{\pi}$.

By the above theorem we can assume that every powerposet is of the form $P_{L}(\pi) = (P_{\pi}, \prec_{L})$ without loss of generality. So in the rest of this note we concentrate on this form, and write $P_{\pi} = (P_{\pi}, \prec)$ instead of writing $P_{L}(\pi) = (P_{\pi}, \prec_{L})$.

Lemma 3.6. Let S be a subset of P_{π} that has an upper bound in P_{π}. Then S has a sup in P_{π} and sup $S = U_{S}$.

Proof. Let t be an upper bound for S in P_{π} and $s = U_{S}$. Then for every a in S, $s \uparrow a = (U_{S}) \uparrow a = U\{ b \downarrow a \mid b \in S \}$ by 1.4(iii). Now for any b in S, since $a, b \leq t$, $b \downarrow a \leq t \downarrow a = a$ by 1.5(i). Hence $s \downarrow a \leq U\{ a \} = a \leq s$. Therefore by 1.8(i) $a \preceq s$, i.e. s is an upper bound for S. Next suppose that u is a given upper bound for S. Then $u \uparrow S = u \uparrow (U_{S}) = U\{ u \downarrow a \mid a \in S \}$ by 1.4(iii). Here $u \downarrow a = a$ since $a \preceq u$. Thus, $u \uparrow S = U\{ a \mid a \in S \} = s$. Therefore
s ≤ u.

Theorem 3.7. A powerposet P_π is a complete semilattice.

Proof. Let D be a directed subset of P_π, and $d = \cup D$. Then for every a in D, $\downarrow a = (\cup D) \downarrow a = \cup \{ b \uparrow a \mid b \in D \}$ by 1.4(iii). Here for any b of D, there exists c in D such that $a, b \preceq c$ since D is directed. Then for such c, $b \uparrow a \subset c \uparrow a = a$. Thus, $\downarrow a \subset \cup \{ a \} = a \subset d$. Hence by 1.8(i) $a \preceq d$. Therefore by 3.6 $d = \sup D$, i.e. P_π is up-complete.

Next let S be a nonempty subset of P_π, and let T be the set of all lower bounds for S. Then since S is nonempty, there is an element s of S, and s is an upper bound for T. Thus, by 3.6 T has a sup in P_π. On the other hand, for every a of S since $T \preceq a$, we have $\sup T \preceq a$. Therefore $\sup T = \inf S$.

Corollary 3.8. If π is discrete, P_π is a complete lattice.

Proof. Since P_π has the greatest element $\pi \in P_\pi$, P_π is a complete lattice by 3.7 and 2.8.

The converse of this corollary also holds.

Proposition 3.9. If P_π is a complete lattice, π is discrete.

Proof. By 3.6, $\sup P_\pi = \cup P_\pi = \pi$. Thus, for every a of P_π, $a \preceq \pi$. Now assume that $x \preceq y$ in π. Then $x \in \downarrow y = \pi \downarrow \{ y \} = \{ y \}$ since $\{ y \} \preceq \pi$. Hence $x = y$. Therefore π is discrete.

Definition 3.10. (i) $B_a = \{ a \uparrow f \mid f$ is a finite subset of $a \}$.
(ii) $B = \cup \{ B_a \mid a \in P_\pi \}$.
Proposition 3.11. (i) B_a is directed.

(ii) $a = \text{sup } B_a$.

Proof. (i) Let F be a finite subset of B_a. Then since $F \subseteq B_a \leq a$ by 1.10(i), there exists $\text{sup } F = U_F \in P \cap a$ by 3.6. Now let $F = \{ a f_1, \ldots, a f_n \}$. Then $\text{sup } F = a \downarrow (U \{ f_1, \ldots, f_n \}) \in B_a$ by 1.4(iii). Thus, B_a is directed.

(ii) Since $B_a \leq a$ by 1.10(i),

$$\text{sup } B_a = U_{B_a} = a \downarrow (U \{ f \mid f \text{ is finite subset of } a \})$$

$$= a \downarrow a = a$$ by 1.4(iii) and (ii).

Proposition 3.12. $a \ll b$ iff there exists a finite subset f of b with $a \leq b \downarrow f$.

Proof. If part: Let D be a directed subset of $P \cap a$ with $b \leq \text{sup } D$. Then for every $x \in f$, since $x \in f \subseteq b \subseteq \text{sup } D = U_D$, there is $d_x \in D$ such that $x \in d_x$. Thus, for such d_x, $b \downarrow d_x \subseteq (\text{sup } D) \downarrow d_x = d_x$ since b, $d_x \leq \text{sup } D$. Therefore $b \downarrow x \subseteq b \downarrow d_x \subseteq d_x$. Moreover $d_x \downarrow (b \downarrow x) \subseteq (\text{sup } D) \downarrow (b \downarrow x) = b \downarrow x$ because $b \downarrow x \leq b \leq \text{sup } D$ by 1.10(i). Hence $b \downarrow x \leq d_x$.

Now, since D is directed and f is finite, $\{ d_x \mid x \in f \}$ has an upper bound d in D.

Then $d \downarrow (b \downarrow f) = U \{ d \downarrow (b \downarrow x) \mid x \in f \}$

$$= U \{ b \downarrow x \mid x \in f \} = b \downarrow f$$ since $b \downarrow x \leq d_x \leq d$.

Hence $b \downarrow f \leq d$. Therefore by the assumption $a \leq d$.

Only if part: By 3.11(ii) $b \leq \text{sup } B_b$. Thus, by the assumption and 3.11(i) there is a finite subset f of b such that $a \leq b \downarrow f$.

Proposition 3.13. (i) $B_a = K(P \cap a)$.

(ii) $B = K(P \cap a)$.

- 11 -
Proof. (i) For every $a \uparrow f \in B_q$ with a finite subset f of a, $a \uparrow f \not\leq a$ by 1.10(i). Moreover $a \uparrow f = (a \uparrow f) \downarrow f$ by 1.6(v). Thus, by 3.12 $a \uparrow f \ll a \uparrow f$, i.e. $a \uparrow f$ is compact. Hence $a \uparrow f \in K(P \pi) \downarrow_{P \pi} a$. Conversely, for every $b \in K(P \pi) \downarrow_{P \pi} a$ $b \ll b \leq a$. Then by 3.12 there is a finite $f \subset b$ with $b \leq b \uparrow f \leq b$. Thus, $b = b \uparrow f$. Now since $b \leq a$, we have $a \uparrow f \subset a \uparrow b = b$. Thus, by 1.6(i) $b \uparrow f \subset a \uparrow f \subset b \uparrow f$. Therefore $b = b \uparrow f = a \uparrow f \in B_q$.

(ii) Immediate from (i).

Theorem 3.14. A powerposet $P \pi$ is an algebraic semilattice.

Proof. By 3.7, 3.11 and 3.13(i).

Proposition 3.15. If π is discrete, $P \pi$ is an arithmetic lattice.

Proof. That $P \pi$ is an algebraic lattice is clear from 3.8 and 3.14. So we must show that $K(P \pi)$ is a similattice. But by 3.13(ii) $K(P \pi) = \{ f \mid f \text{ is a finite subset of } \pi \}$. Hence every nonempty finite subset $F \subset K(P \pi)$ has an inf $\cap F$ in $K(P \pi)$.

The following example says that $P \pi$ is not always an arithmetic semilattice.

Example 3.16. Let $\pi = \omega \cup \{ \#, \$\} (\omega = \{ 0, 1, 2, \ldots \}) in which every order relation is of the form $n \leq \#$ or $n \leq \$ for some n of ω. Then by 3.13(ii) $K(P \pi) = \{ a \mid a \text{ is a finite subset of } \omega \}$

$$U \{ a \mid \# \in a \cap \pi \} U \{ a \mid \$ \in a \cap \pi \},$$

and $\downarrow \#$ and $\downarrow \$ are both compact in $P \pi$. But the set of all lower bounds for $\{ \downarrow \#, \downarrow \$ \}$ in $K(P \pi)$ is
\{ a \mid a \text{ is a finite subset of } \omega \},

and clearly this set has no maximum element. Therefore \(K(P_\pi) \) is not a semilattice.

Proposition 3.17. A function \(\varphi : P_\pi \to P_{\pi'} \) is continuous (w.r.t. the Scott topology induced by \(\preceq \)) iff it is monotonic and for every \(a \in P_\pi \) \(\varphi(a) = \bigcup \{ \varphi(e) \mid e \in B_a \} \).

Proof. Only if part: Immediate because
\[
\varphi(a) = \sup \{ \varphi(e) \mid e \in B_a \} = \bigcup \{ \varphi(e) \mid e \in B_a \} \text{ by 3.6.}
\]

If part: For every \(e \in B_a \) we have \(\varphi(e) \preceq \varphi(a) \) since \(\varphi \) is monotonic and \(e \preceq a \). Thus, the set \(\{ \varphi(e) \mid e \in B_a \} \) is upper bounded and its sup is \(\bigcup \{ \varphi(e) \mid e \in B_a \} \) by 3.6. Hence \(\varphi(a) = \sup \{ \varphi(e) \mid e \in B_a \} \).

Corollary 3.18. Let \(\varphi : \pi \to \pi' \) be a monotonic function. Then the map \(P_\varphi : P_{\pi'} \to P_\pi \) is continuous w.r.t. the Scott topology.

Proof. Since \(\varphi^{-1}(\bigcup_i a_i) = \bigcup_i \varphi^{-1}(a_i) \), it is immediate by 3.3 and 3.17.

In the rest of this section we shall show that every continuous poset can be directed-continuously embeddable into its powerposet.

Definition 3.19. For a poset \(\pi \) the function \(\xi_\pi : \pi \to P_\pi \) is defined by \(\xi_\pi(x) = \downarrow x \).

Lemma 3.20. The function \(\xi_\pi \) is monotonic.

Proof. For \(x \) and \(y \) in \(\pi \) with \(x \preceq y \), \(\downarrow x \subseteq \downarrow y \) by 2.2(ii). Moreover for \(z \in (\downarrow y) \downarrow (\downarrow x) \), there is \(t \in \downarrow x \) with \(z \preceq t \). Thus,
z \leq t << x, which implies z \in \downarrow x. Therefore (\downarrow y) \downarrow (\downarrow x) \subset \downarrow x. Hence by 1.8(1) \varepsilon_\pi(x) = \downarrow x \leq \downarrow y = \varepsilon_\pi(y).

Theorem 3.21. For a continuous poset \(\pi \), \(\varepsilon_\pi \) is a one to one function preserving directed sups.

Proof. Assume that \(\varepsilon_\pi(x) = \varepsilon_\pi(y) \) for some \(x, y \in \pi \). Then \(x = \sup \downarrow x = \sup \varepsilon_\pi(x) = \sup \varepsilon_\pi(y) = \sup \downarrow y = y \) since \(\pi \) is continuous. Hence \(\varepsilon_\pi \) is one to one.

Now let \(d \) be a directed subset of \(\pi \) with \(z = \sup d \). Then by 3.20 \(\varepsilon_\pi(d) = \{ \varepsilon_\pi(x) \mid x \in d \} \leq \varepsilon_\pi(z) \). Hence by 3.6 \(\sup \varepsilon_\pi(d) \) exists in \(P_\pi \) and \(\sup \varepsilon_\pi(d) \leq \varepsilon_\pi(z) \). On the other hand, for any \(x \in \varepsilon_\pi(z) = \downarrow z \) \(x \ll z = \sup d \). Thus, by 2.4 there is \(y \in d \) such that \(x \ll y \). Hence \(x \in \downarrow y = \varepsilon_\pi(y) \leq \sup \varepsilon_\pi(d) \). Therefore \(\varepsilon_\pi(z) \subset \sup \varepsilon_\pi(d) \). So we can conclude that \(\sup \varepsilon_\pi(d) = \varepsilon_\pi(\sup d) \).

4. Powerposets as Lambda Calculus Models

In this section our interests is on the posets with coding functions of their compact elements. We will show that such a poset can be made into a \(\lambda \)-model in a natural way iff it is discrete.

Definition 4.1. A poset \(\pi = (\pi, \leq) \) is called self-referential when it is equipped with the two partial functions \(p : \pi \rightarrow K(P\pi) \) and \(q : \pi \rightarrow \pi \) that satisfy:

\[[SR] \text{ For every } e \in K(P\pi) \text{ and } y \in \pi \text{ there exists } x \in \pi \text{ such that } p(x) = e \text{ and } q(x) = y. \]

All the posets appeared in this section are self-referential. We will write "\(p(x) = e \)" or "\(q(x) \in a \)" instead of
writing "p(x) is defined and p(x) = e" or "q(x) is defined and q(x) ∈ a", and so on.

Definition 4.2. (i) For a, b ∈ Pπ, a·b ∈ Pπ is defined by
\[a·b = \{ q(x) \mid x ∈ a \text{ and } p(x) ≤ b \}. \]

We write ab and abc for a·b and (a·b)·c, respectively.

(ii) For a ∈ Pπ, a function fun(a) : Pπ → Pπ is defined by
\[\text{fun}(a)(b) = ab, \text{i.e. fun}(a) \text{ is the function represented by } a. \]

(iii) For a function ψ : Pπ → Pπ, graph(ψ) ∈ Pπ is defined by
\[\text{graph}(ψ) = \{ x \mid q(x) ∈ ψ(p(x)) \}. \]

Note that the binary operator · on a powerposet defined above is exactly corresponding to that of a Plotkin-Scott-algebra (PSE-algebra, in view of Engeler's approach) [3, 6, 9].

So we have the following theorem:

Theorem 4.3. If π is discrete, (Pπ, ·) can be expanded to a λ-model.

Proof. Since (Pπ, ·) is a PSE-algebra, it is a well-known result.

Proposition 4.4. For a, b ∈ Pπ,

(i) \[ab = \bigcup \{ ae \mid e ∈ B_b \}. \]

(ii) \[(\bigcup_{i∈I} a_i)b = \bigcup_{i∈I}(a_i b). \]

Proof. (i) First we show that ae ⊆ ab for all e ∈ B_b. Let y ∈ ae. Then there exists x in a such that p(x) ≤ e and q(x) = y. But since e ≤ b, we have p(x) ≤ b. Hence y ∈ ab.

Conversely, for every y ∈ ab, there exists x ∈ a such that p(x) ≤ b and q(x) = y. Then y ∈ a(p(x)).
Therefore \(ab = \bigcup \{ ae \mid e \in B_b \} \).

(ii) Immediate.

Proposition 4.5. For a function \(\Psi : P\alpha \rightarrow P\alpha \) and \(a \in P\alpha \),
\[
(f_{\mathrm{fun}} \circ \text{graph})(\Psi)(a) = \bigcup \{ \Psi(e) \mid e \in B_a \}.
\]

Proof. \((f_{\mathrm{fun}} \circ \text{graph})(\Psi)(a) = \text{graph}(\Psi)a \)
\[
= \{ q(x) \mid x \in \text{graph}(\Psi) \text{ and } p(x) \leq a \}
= \{ q(x) \mid q(x) \in \Psi(p(x)) \text{ and } p(x) \leq a \}
= \{ y \mid (\exists e \in B_a) \ y \in \Psi(e) \} \text{ by [SR]}
= \bigcup \{ \Psi(e) \mid e \in B_a \}.
\]

Theorem 4.6. For a function \(\Psi : P\alpha \rightarrow P\alpha \), the following three statements are equivalent:

1. \(\Psi \) is representable.
2. For every \(a \in P\alpha \), \(\Psi(a) = \bigcup \{ \Psi(e) \mid e \in B_a \} \).
3. \(\Psi = (f_{\mathrm{fun}} \circ \text{graph})(\Psi) \).

Proof. (1) \(\Rightarrow \) (2): Let \(\Psi = \text{fun}(b) \).
Then \(\Psi(a) = ba \) and \(\Psi(e) = be \). Thus, (2) holds by 4.4(1).

(2) \(\Rightarrow \) (3): By 4.5, for any \(a \) of \(P\alpha \)
\[
(f_{\mathrm{fun}} \circ \text{graph})(\Psi)(a) = \bigcup \{ \Psi(e) \mid e \in B_a \} = \Psi(a).
\]
Thus, \((f_{\mathrm{fun}} \circ \text{graph})(\Psi) = \Psi \).

(3) \(\Rightarrow \) (1): Trivial.

Corollary 4.7. Every continuous function from \(P\alpha \) to \(P\alpha \) (w.r.t. the Scott topology induced by \(\varepsilon \)) is representable.

Proposition 4.8. The function \(\text{graph} \circ \text{fun} \) is representable.
Proof. For all \(a \in P_\pi \), \((\text{graph} \circ \text{fun})(a)\)

\[
= \{ x \mid q(x) \in a(p(x)) \} \\
= \{ x \mid q(x) \in \bigcup \{ e(p(x)) \mid e \in B_a \} \} \text{ by 4.4(ii)} \\
= \bigcup \{ \{ x \mid q(x) \in e(p(x)) \} \mid e \in B_a \} \\
= \bigcup \{ (\text{graph} \circ \text{fun})(e) \mid e \in B_a \}.
\]

Therefore by 4.6 \(\text{graph} \circ \text{fun} \) is representable.

Theorem 4.9. A powerposet \((P_\pi, .)\) can be expanded to a \(\lambda \)-model iff it is combinatorial complete.

Proof. Only if part: Trivial.

If part: By 4.6, 4.8 and 2.10.

Proposition 4.10. There exists \(k \in P_\pi \) such that for every \(a, b \in P_\pi \) \(k a b = a \).

Proof. Let \(k = \{ x \mid q(q(x)) \in p(x) \} \). Then

\[
ka = \{ q(x) \mid q(q(x)) \in p(x) \text{ and } p(x) \leq a \} \\
= \{ y \mid (\exists e \in K(P_\pi)) q(y) \in e \text{ and } e \leq a \} \text{ by [SR]} \\
= \{ y \mid q(y) \in a \}.
\]

and \(k a b = \{ q(y) \mid q(y) \in a \text{ and } p(y) \leq b \} = a \) again by [SR].

Although we had the above proposition, there is a self-referential poset whose powerposet is not combinatorial complete. Moreover we can show that the converse of Theorem 4.3 is also valid.

Theorem 4.11. If a powerposet \((P_\pi, .)\) is combinatorial complete, \(\pi \) is discrete.

Proof. By 4.6, for any \(a, b, c_1, c_2 \in P_\pi \) \(c_1 \leq c_2 \) implies \(a(b c_1) \leq a(b c_2) \) since the function \(\lambda c.a(b c) \) is representable.
Now suppose that π is not discrete. Then $\pi \in P\pi$ is not a maximum element by 2.8. Hence there exists a compact element e_1 such that $e_1 \not\leq \pi$. Let $e_2 = \pi \downarrow e_1$. Then we have
$e_2 \in K(P\pi)$, $e_2 \not\leq \pi$, $e_1 \subset e_2$, $e_1 \not\leq e_2$ and $e_2 \not\leq e_1$.
By [SR] there are x_1 and x_2 such that $p(x_1) = e_1$, $p(x_2) = e_2$ and $q(x_1) \neq q(x_2)$.
Put $a = \{ x_1, x_2 \}$,
$b = \{ x \mid p(x) = \emptyset \text{ and } q(x) \in e_1 \}$
$\cup \{ x \mid p(x) = e_1 \text{ and } q(x) \in e_2 \}$,
$c_1 = \emptyset \text{ and } c_2 = e_1$.
Then $a(bc_1) = ae_1 = \{ q(x_1) \}$
and $a(bc_2) = a(e_1 \cup e_2) = ae_2 = \{ q(x_2) \}$.
Hence $a(bc_1) \not\leq a(bc_2)$ while $c_1 \not\leq c_2$.
But this is a contradiction. Therefore π is discrete.

Corollary 4.12. A powerposet $(P\pi, .)$ can be expanded to a λ-model iff π is discrete.

Proof. By 4.3 and 4.11.

Acknowledgments

The author would like to thank Professor Kojiro Kobayashi for his helpful comments and also thank Mr. Hirofumi Yokouchi for fruitful discussions in many occasions.

References