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" Abstract. We introduce the notion of'fowerposets which is g

natural generalization of that of powersets with inclusion as
their partial ordering. We show that every powerposet is an
algebraic semilattice and that every continuous poset can be
directed-continuously embeddable into some powerposet.

We also discuss the possibility of making powerposets into
A-models as in the case of Plotkin-Scott's Pw theory.
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0. Introduction

The domain Pw introduced by Dana Scott is a very simple and
beautiful structure [9]. It provides a universal circumstance to
develop theoretical computer science. Nevertheless, to many of
computer scientists, Pw is too large to handle with in their
everydays' work. So we want to select other (possibly partially
ordered) set for w. Powerposets are domains constructed in this
way.

In section 1 we introducé the notions of lower ends and
upper ends in slightly generalized forms of those wusually
‘defined.

Section 2 1is devoted to review the fuﬁdamental concepts of the
theories of continuous lattices and A-calculus models.

The main results of ﬁhis note are in section 3, 1including +the
theorem which says that every powerposet 1is an algebraic
semilattice. As a corollary of this f{theorem, we cén conclude
that Pw is an algebraic lattice as already mentioned by Scott.
We also show that for every continuous poset there is an one-one
map from it to some powerposet preserving directed sups.

Finally in section 4 we discuss the possibility of expanding a

self-referential powerposet to a A-calculus model.

1. Lower Ends and Upper Ends

Iet w= (n, <) and W = (', <') be posets, a, b, c subsets

of t, and X, y, 2z elements of w throughout this note.

Definition 1.1. (i) aix={yea |y < x}.

(ii1)  lx = mw}x.



(iii)
(iv)
(v)
(vi)

(vii)

alb = U{ alx | x e b }.

la = tla.

atx = {yea | x<yl.

Tx = ﬁT

x.

atb = U{ aTx | x e b }.

(viii) fa = nta.

Proposition 1.2.

Proposition 1.3.

If w is discrete (i.e. for every x and y in

x { y implies x = y), alb = anb = atb.

Proposition 1.4.

(ii)
(iii)
(iv)
(v)
(vi)

a ¢ b implies alb

( 12i)
(1e1a1)
(iglai)

(Na,)
ier !

Corollary 1.5.

(1)
(i1)

(i) alg = @ = at@.
a = alb.

- U v .
b}) - ie:jel(a'lb ).

l(JeJ
T( U 1 Pj ) lex ﬁJ(a Tb ) -
Lb = in(ailb)'

b = N (a;Tb).
1el

i1

a ca'and b ¢ b' imply

alb c a'lb',

atb c a'th’.

Proposition 1.6.

(ii)
(iii)
(iv)
(v)
(vi)

atb cc
al(ble)

at(btc)
al(alb)
at(atb)

(i) alb c ¢ implies alb ¢ clb.

implies atb < ctb.
c alc.

c atc.

- alb = (alb)ib.

= atb = (atb)tb.



1R;

The proofs of these propositions are very easy, and so left

to readers.

Definition 1.7. (i) a is called a lower end of b (notation:
a £, b) when bla = a.

(i1) a is called an upper end of b (notaion: a £y b) when bfa

= a.

Lemma 1.8. (i) a is a lower end of b iff bla c a c b.

(ii) a is an upper end of b iff bta c a c b.

Proof. (i) If part: a = ala by 1.4(ii)
c bla by 1.5(i).
Only if part: a = bla c b by 1.2.

(ii) sSimilar to (i).

Proposition 1.9. If is discrete, the following +three
statements are equivalent;

(1) a is a lower end of b.

(2) a is a subset of b.

(3) a is an upper end of b.
Proof. By 1.3 and 1.8.

Proposition 1.10. (i) alb <L @

(ii) a £ b iff there exists a subset ¢ of mw such that

a = blc.
(iii) atdb SU a.
(iv) a QU b iff there exists a subset c¢ of mw such that

a = bfc.
Proof. (i) By 1.6(v) al(alb) = alb.
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(ii)  Only if part: Immediate.
If part: By 1.6(v) bla = bl(blc) = blc = a.
(iii) Similar to (i).

(iv) Similar to (ii).

Theorem 1.11. Let a, b and b' be subsets of m with b U b' = a

and b n b' = @. Then b L & iff b' £y a.

Proof. ‘Since b = apb ¢ alb ¢ a and b' = anb' ¢ atb'c a by 1.2,
we have a = bUb' ¢ alb Y atb' ¢ aVa = a. Thus, alb U atd' = a.
Moreover for every'x, x € alb n alb' implies the existence of
y € b and z € b' that satisfy |

z e b' nalx cb' n aly ¢ b' n alb

and yebnalx cb nalz cbnalb',
Thus, b' n alb = @ or b n atb' = @ imply alb n atb' = 4.
Only if part: If alb = b, then b' nalb =b'a b = 4.

Thus, alb n atb' = . Hence afb' = a -~ alb = a - b = b'.
If part: If atb' = b', then b n atb' = b n b' = 4.

Thus, alb n alb' = F. Hence alb = a - atb' = a - b' = b.

Corollary 1.12. For x € a < 1,

(i) x is maximal in a iff { x} Lyeaiff a- {x} < a.

(ii) x is minimal in a iff { x} { a iff a - {x} $g @
Proof. Immediate from 1.11.

2. Review 7

In this section we review the fundamental concepts of the

theories of continuous lattices and A-calculus models.



Definition 2.1. (i) A subset d of T is called directed if
every finite subset of d has an upper bound in d.

(ii) We say that x is way below y (notation: x << y), if for
every directed subset d of T the relation y £ sup d alwgys
implies thevexistence of z of d with x £ z.

(iii) ayx={yea | y << x }-

(iv) X = mgx.
(v) ajb = Ul a}x | x e b }.
(vi) {a = t}a.

(vii) An element x e m is called compact if x << x.

(viii) K(m) = { x e m | x is compact }.
Note that every directed set is nonempty.

Proposition 2.2. (i) x << y implies x £ y.
(ii) w £ x <y £ z implies w << z.
(iii) x = sup { Xy ooy Xy } and x; <<y for all i =1,...,n

imply x <K y.

Definition 2.3. (i) A poset T is called up-complete if every

directed subset of W has a sup in .

(ii) [Markowski] An up~complete poset T is called continuous

-if for every x in T, {x is directed and x = sup {x.
(iii) [Hoffman] An up-complete poset T is called algebraic if

for every x in w, K(w)lx is directed and x = sup (K(m)ix).

Iwamura and Markowski's result says that we can replace
"directed set" by "nonempty chain" in 2.3(i) [5, 7].
Markowski also suggests the thesis that "continuous posets"

are the proper setting for an abstract theory of computation
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[8].

The following two theorems are due to Markowski.

Theorem 2.4. [Interpolation Theorem] Let T be a continuous
poset, x << y in w, and d a directed subset of ™ with y £ sup d.

Then there exists z € d such that x <K z.
Theorem 2.5. Every algebraic poset is continuous.

Definition 2.6. (i) A semilattice 1is a poset in which every

nonempty finite subset has an inf.

(ii) A complete semilattice is an up-complete poset in which

every nonempty subset has an inf.

(iii) An arithmetic semilattice is an algebraic semilattice 1«

in which K(rr) is a semilattice.

Note that every complete semilattice w has the least

element inf .

Definition 2.7. (i) A lattice is a semilattice in which every
nonempty finite subset has a sup.

(ii) A lattice is called complete if every subset has an inf

and a sup.

Theorem 2.8. Every complete semilattice with a greatest element

is a complete lattice.

Next we state some concepts of the theory of A-calculus

models.

Definition 2.9. Let (X, .) be a system with a binary operator .

on a set X, called an applicative structure.




(i) (x, .) is called combinatory complete when there are
two elements k and s in X such that kxy = x and sxyz = xz(yz)
for all x, y, z € X.

(ii) A function f : X — X is called representable if there

is an element x € X such that for every y € X £(y) = xy.

(iii) [X —~ X] denotes the set of all representable functions

on X.

The notion of A-models is introduced by Barendregt in order

to investigate A-calculus models formally.

The following theorem is due to Barendregt [2].

Theorem 2.10. Let (X, .) be combinatory complete and define the
map F : X - [X = X] by F(x)(y) = xy. Then (X, .) can be expanded
to a A-model iff there exists a G : [X — X] - X such that:

(1) F eG = 1[x - X7

(2) G- Fe [X->X].

Readers may refer to [4] and [1, 2] for further information

on these structures.

3. Powerposets

Theorem 3.1. Two relations £ and <5 are partial order

relations on Prr.’

Proof. We only prove for +the relation £ ; The other case is
analogous.

Reflexivity: a < a by 1.4(ii).

Antisymmetricity: a (L‘b and b {, a imply a c b and b c a by
1.8(i). Thus, a = b.



o
(<]
[

Transitivity: Assume that a < b < c. Then by 1.5(i) clac

clb = b. Thus, by 1.6(i) cia c bla = a. On the other hand a c c.
Hence by 1.8(i) a <, c-

According to the above theorem we call these structures

(Pr, SL) and (Prx, £;) powerposets.

Corollary 3.2. Let T be a discrete poset. Then
(Pm, £ ) = (Prn, <g) = (Pm, C).

Proof. By 1.9.

Proposition 3.3. ILet ¢ :m - m' be a monotonic function. Then
the map ¥~' : Prn' - Pn is also monotonic with respect to each

ordering £, and £j.

Proof. Suppose that Pr is partially ordered by £, . Then it is
trivial that $7'(a) ¢ $7'(b) if a £ b in Pr'. So it suffices to
show that ¢-'(v)lY¥~'(a) c ¥ '(a) by 1.8.

Now let x e -'(b)l¥ '(a). Then x € 9~ '(b) and there is
y e $7'(a) with x £ y. Hence ¥(x) € b, P(y) € a and P(x) < P(y)
in ' because ¥ is monotonic. Thus, $(x) € bla = a since a <, b.
So x € $7'(a). Therefore ¢-'(b)L¥-'(a) c ¥~'(a).

- The proof for the ordering SU is similar.

Definition 3.4. (i) Poset denotes the category of all posets

with all monotonic functions as arrows.

(ii) The contravariant functor P : Poset — Poset is defined

by




T} > (Pﬂ, SL)
PL : q’l | | /{ (f—l
' ' > (Pr', <)

(iii) The contravariant functor Py : Poset — Poset is defined
by
T > (Pr, <y)
Pg: ¢ l T,?—t
AN > (Pn?', $6).

Note that the above functors are well-defined by 3.3.

Theorem 3.5. For every poset @ Py(m) = PL(KOF) where 1w°P is an

opposite poset, considering W as a category.
Proof. Immediate because atﬂb = alnopb for all a, b € Pr.

By the above theorem we can assume that evéry powerposet is
of the form P (w) = (Pr, £ ) without loss of generality. So in
the rest of this note we concentrate on this form, and write

Pt = (Pr, £) instead of writing P (n) = (Pr, £ ).

Lemma 3.6. Let S be a subset of Pr that has an upper bound in

Pr. Then S has a sup in Pr and sup S = US.

Proof. Let t be an upper bound‘for S in Pm and s = USf Then for
every a in S, sla = (US)la =U{ bla | b e S} by 1.4(iii). Now
for any b in S, since a, b { t, bla C tla = a by 1.5(i). Hence
slacVY{a} =acs. -Therefore by 1.8(i) a < s, i.e. s is an
upper bound for S. Next suppose that u is a given wupper Dbound
for S. Then uls = uf(Us) = Y{ ula | a € S § by 1.4(iii). Here

ula = a since a £ u. Thus, uls = U{ a | a € 8 } = 8. Therefore
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s £ u.

Theorem 3.7. A powerposet Pn is a complete semilattice.

Proof. Let D Dbe a directed subset of Pn, and 4 = UD. Then for
every a in D, dla = (UD)la =Y{ bla | b e D} by 1.4(iii). Here
for any b of D, there exists c¢ in D such that a, b £ ¢ since D
is directed. Then for such c, bla c cla = a. Thus,
dlja ¢ Y{ a}l =acd. Hence by 1.8(i) a £ d. Therefore by 3.6
d = sup D, i.e. P is up-complete.

Next let S be a‘nonempty subset of Pn, and let T be the set
of all lower bounds for S. Then since S is nonempty, there is an
element s of S, and s is an upper bound for T. Thus, by 3.6 T
has a sup in Prn. On +the other hand, for every a of S since
T { a, we have sup T £ a. Therefore sup T € T.» Hence sup T =

inf S.

Corollary 3.8. If n is discrete, Pt is a complete lattice.

Proof. $Since Pnr has +the greatest element W € Pn, Pm is a

complete lattice by 3.7 and 2.8.
The converse of this corollary also holds.

Proposition 3.9. If Prr is a complete lattice, w is discrete.

Proof. By 3.6, sup Pn = Upg = m. Thus, for every a of Pnm,
a < m. Now assume that x < yinT. Then xe {y =7l{iy} = {y}

since { y } < m. Hence x = y. Therefore T is discrete.

Definition 3.10. (i) B, = { alf | £ is a finite subset of a }.
(ii) B =U{B, | ae Pn}.
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Proposition 3.11. (i) B, is directed.

(ii) a = sup B;.

Proof. (i) Let F be a finite subset of Bz. Then since
FCB, <aby1.10(i), there exists sup F =UF € Pr by 3.6. Now
let F = { alf;,.., alf, |. Then sup F = al(U{ f},..., £, }) € B,
by 1.4(iii). Thus, By is directed.

(ii) sSince By < a by 1.10(i),

I

C
&

"

sup B, al(U{f | £ is finite subset of a 1)

= ala = a by 1.4(iii) and (ii).

Proposition 3.12. a <K b iff there exists a finite subset f of

b with a £ blf.

Proof. If part: Let D be a directed subset 6f P with
b £ sup D. Then for every x € £, since x € £ € b C sup D = UD,
there is d, € D such that x € 4;. Thus, for such 4, bldx c
(sup D)ldy = dy since b, dy < sup D. Therefore blx c bld, c 4,.
Moreover d,!(blx) < (sup D){(blx) = blx because bix < b £ sup D
by 1.10(i). Hence blx < dy .

Now, since D is directed and f is finifte, { dX l x €f } has an

upper bound d in D.

U{ al(bix) | x e £ ]

Then dl(blf)

U{blx | x e £} = blf since blx < 4, £ 4.
Hence bl{f £ d. Therefore by the assumption a < d.
Only if part: By 3.11(ii) b < sup B, . Thus, by the assumption

and 3.11(1i) there is a finite subset f of b such that a blf.

Proposition 3.13. (i) B, = K(Pn)l, a.
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Proof. (i) For every a|f € By with a finite subset f of a,
alf < a by 1.10(i). Moreover alf = (alf)!{f by 1.6(v). Thus, by
3.12 alf << alf, i.e. alf is compact. Hence alf € K(Pn)lpna.
édnversely, for every b € K(Pn)lfna b << b £ a. Then by 3.12
there‘is a finite £ ¢ b with b < blf < b. Thus, b = blf. Now
sinée b £ a, we have alf c alb = b.  Thus, by 1.6(i)
blf ¢ alf ¢ blf. Therefore b = blf = alf € B,.

(ii) Immediate from (i).
Theorem 3.14. A powerposet Pn is an algebraic semilattice.
Proof. By 3.7, 3.11 and 3.13(i).

Proposition 3.15. If m 4is discrete, Prn is an arithmetic

lattice.

Proof. That Pn is an algebraic lattice is clear from 3.8 and
3.14. So we must show that K(Pr) is a similattice. 3But by
3.13(ii) K(Pr) = { £ | £ is a finite subset of w |. Hence every

nonempty finite subset F ¢ K(Pn) has an inf NP in K(Pr).

The following example says that Pr is not always an

arithmetic semilattice.

Example 3.16. Let . m = w Y { # 8} (w=1(0,1, 2,...}) in
which every order relation is of the form n £ # or h £ $ for

some n of w. Then by 3.13(ii)

K(Pr) = { a | a is a finite subset of w }
Ufa|#eacn}VUial|]seacTl},

and (# and |$ are both compact in Pn. But the set of 'all lower

bounds for { I#, {$ | in K(Pn) is
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{»a | . a is a finite subset of w»},

and clearly this set has no maximum;elemént..TherefOre K(Pr) 1is

not a’semilattice.

Proposition 3.17. A function ¥ : Pm - Pn' is continuous (w.r.t.
the Scott topology induced by <) iff it is monotonic and for
every a € Pt 9(a) = U{ $(e) | e € B, }.

Proof. Only if part: Immediate because
¢(a) = sup { $(e) | e € By} =Y{¥(e) | ee B} by 3.6.

If part: TFor every e € B we have Y(e) < 9(a) since ¢ is
monotonic and e £ a. Thus, the set { Y(e) | e € Ba } is upper

bounded and its sup is Y{ P(e) | e ¢ B, ) by 3.6. Hence %$(a) =
sup { f(e) | e € By }.

Corollary 3.18. Let 9 : m » m' be a monotonic function. Then

the map Py : Pn' -» Pn is continuous w.r.t. the Scott topology.

Proof. Since $7'(Va;) = Y¢~'(a;), it is inmediate by 3.3 and
3.17. |

In the rest of +this section we shall show that eQ;ry

continuous poset can be directed-continuously embeddable into

its powerposet.

Definition 3.19. For a poset T the function €y 1T Pn is

defined by €qp(x) = {x.
Lemma 3.20. The function ETt is monotonic.

Proof. For x and y in m with x <y, {x ciy by 2.2(ii).

Moreover for 2z € (}y)l(§x), there is t € }x with z £ t. Thus,

-13 -
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z £ % << x, which implies =z € §x. Therefore ({y)l(}{x)c }x.

Hence by 1.8(1) € (x) = §x < {y = €(y).

Theorem 3.21. For a continuous poset n, &; is a one to one

function preserving directed sups.

Proof. Assume that £.(x) = &;(y) for some x, y € m. Then
X = sup {x = sup £,(x) = sup €4(y) = sup yy =y
since 1 is continuous. Hence &€y is one to one.

Now let d be a directed subset of n with z = sup d. Then by
3.20 tp(d) = { €p(x) | x € a } £ &y(2z). Hence by 3.6 sup £R(d)‘
exists in Pn and sup tg(d) € €;(2). On the other hand, for any
x € g(z) = {2 x << z = sup d. Thus, by 2.4 there is y ¢ d such
that x << y. Hence x € }y = €¢4(y) < sup €,(d). Therefore £,(z) C

sup £,(d). So we can conclude that sup £, (d) = € (sup d).

4. Powerposets as Lambda Calculus Models

In +this section our interests is on the posets with coding
functions of their compact elements. We will show that such a

poset can be made into a A-model in a natural way iff it is

discrete.

Definition 4.1. A poset m = (n, £) is called self-referential

when it is equipped with the two partial functions p : m - K(Pn)

and q : © —» n that satisfy:

[SR] For every e € K(Pn) and y € t there exists x & W such

that p(x) = e and q(x) = y.

A1l the posets appeared in +this section are  self-

referential. We will write "p(x) = e" or "q(x) € a" instead of
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writing "p(x) is defined and p(x) = e" or "q(x) is defined and

a(x) e a", and so on.

Definition 4.2. (i) For a, b € Pn, a.b € Pn is defined by
a.b = {q(x) | x € a and p(x) < b }.
We write ab and abc for a.b and (a.b).c, respectively.
(ii) For a € Pn, a function fun(a) : Pn = Prt is defined by
fun(a)(b) = ab, i.e. fun(a) is the function represented by a.
(iii) PFor a function ¥ : Prmt — Pn, graph(y) € Pw is defined by
graph(¢) = { x | a(x) & $(p(x)) }.

Note that the binary operator . on a po&erposet difined
above is exactly correspoding to that of a Plotkin-Scott-algebra
(PSE-algebra, in view of Engeler's approach) [3, 6, 9].

So we have the following theorem:

Theorem 4.%. If T is discrete, (Pn, .) can be expanded to a

A-model.

Proof. Since (Pr, .) is a PSE-algebra, it is a well-known

result.

Proposition 4.4. For a, b e Pr,
(i) ab =VY{ ae | e € By I

(ii) (ielai)b = iel(aib)'

Proof. (i) PFirst we show that ae c ab for all e ¢ B,. Let
y € ae. Then there exists x in a such that p(x) £ e and

q(x) = y. But since e £ b, we have p(x) < b. Hence y € ab.
Conversely for every y € ab, there exists x'€ a such that

p(x) < b and q(x) = y. Then y € a(p(x)).
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Therefore ab = U{ae | e ¢ B, }.

(ii) Immediate.

Proposition 4.5. For a function Y : Pn -» Pr and a € Pnm,

(fun o graph)(¢)(a) = U{ ¢(e) | e € By J.

"

Proof. (fun e graph)(¥)(a) = graph(¥)a

{ a(x) | x € graph(¥) and p(x) £ a }

{ a(x) | a(x) € 9(p(x)) and p(x) < a}
{v | (Fe eBy) yeY(e)} vy [SR]

U{¢(e) | e €3, 1.

i

Theorem 4.6. For a function ¥ : Pr - Pn, the following three

statements are equivalent:
(1) ¥ is representable.
(2) TFor every a € Pn, $(a) = U{ 9(e) | e € B, I.
(3) ¢ = (fun o graph)(¥).

Proof. (1) => (2): Let ¥ = fun(b).
Then $(a) = ba and Y(e) = be. Thus, (2) holds by 4.4(i).
(2) => (3): By 4.5, for any a of Pn
(fun o graph)(y)(a) = U{ 9(e) | e e B3 } = ¥(a).
Tmm,(ﬁm.ognmhﬂ?)z‘%‘ |
(3) => (1): Trivial.

Corollary 4.7. Every continous function from Pr to Pm (w.r.t.

the Scott topology induced by ) is representable.

Proof. By 3.17 and 4.6.

Proposition 4.8. The function graph o fun is representable.
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Proof. For all a € Pn, (graph o fun)(a)

{ x| a(x) € a(p(x)) }

{x ] a(x) e U{elp(x)) | e eBy} ) by 4.4(11)
Ul { x| a(x) e elp(x)) ] | ee By}

U{ (graph o fun)(e) | e € B, }.

Therefore by 4.6 graph o fun is representable.

Theorem 4.9. A powerposet (Pr, .) can be expanded to a A -model

iff it is combinatory complete.

Proof. Only if part: Trivial.

If part: By 4.6, 4.8 and 2.10.

Proposition 4.10. There exists k € Pn such that for every

a, b € Pn kab a.

~Proof. ILet k = { x | g(a(x)) € p(x) }. Then

{ a(x) | a(a(x)) ¢ p(x) and p(x) < a }

ka

{y !l (e e K(Pn)) q(y) € e and e £ a } vy [SR]
{y ] ay)eal.

1}

aﬁd xab = { q(y) | a(y) € a and p(y) € b J = a again by [SRI.

Although we had the above proposition, there is a self-
referential poset whose powerposet is not combinatory complete.

Moreover we can show that the converse of Theorem 4.3 is also

valid.

Theorem 4.11. If a powerposet (Pn, .) is combinatory complete,

T is discrete.

Proof. By 4.6, for any a, b, C,» ¢, € Pn ¢ £ c implies

2
a(bc,) C a(bc,) since the function Ac.a(bc) is representable.
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- Now suppose that m is not discrete. Then n é Pn is not a maximum
element by‘2.8. Hence there exists a compact element e such
that e, § m. Let e, = nle, . Then we have

e, € K(Pn), e, <m, e c e,, e, £ e, and e, 4 e, .
By [SR] there are x, and x, such that

p(x,) = e, p(x,) = e, and alx,) # q(xz)f
Put a

{ xp, x
b={ x| p(x) = & and q(x) € e| }
U{x] p(x) = e, and q(x) € e, I,
c, = ¢ and c, =ve‘.

Then a(be,) = ae,

I
—_—
o)
P~
>
N’
g

and a(bc,) = a(e‘ Ue,) = ae, = { a(x,) }.
Hence'a(bct) ¢ a(bc,) while cy € c,.-

~But this is a contradiction. Therefore W is discrete.

Corollary 4.12. A powerposet (Prw, .) can be expanded to a

A-model iff 1t is discrete.

Proof. By 4.3 and 4.11.

Acknowledgments

The author would like to thank Professor Kojiro KXobayashi
for his helpful comments and also thank Mr. Hirofumi Yokouchi
for fruitful discussions in many occasions.

References

(1] H. Barendregt, The Lambda Calculus: Its Syntax and
Semantics, (North-Holland, Amsterdam, 1981).

- 18 -



