ooooboooao
5150 1984 0 1-15

Evaluation of an Applicative Language on

co-operating infinite number of Processors

by

A. Aiba and M. Nakanishi

Department of Mathematics
Faculty of Science and Technology

KEIO University, Yokohama 223, JAPAN

ABSTRACT

Almost abstract machines for the lambda calculus reduce terms sequentially,
and élmost abstract:machines té interpret programs written in applicative
programming 1anguagés do notl strictly based on the lambda calculus. NORM
which is the abstract machine proposed in_this paper interprets programs in
terms of lambda-delta terms in parallel. The purpose of NORM is to
ihterpret programs written in applicative programming languages in the
suitabie way, which is suéported by the theory of the lambda calculus. To
do this, constants for the delta reduction must be defined according to the
object which is handled by a particular language, since the beta reductiqn
is common within any languages. That is, NORM is an abstract machine whi;h
accepts lambda-delta terms as its machine language, and reduced them by

quasi Gross-Knuth strategy.

1. Introduction

We propose the draft of the construction of an abstract machine called
NORM. It inferpret a program written in the applicative programming
languége by compiling it into the lambda-delta term (Curry;zi,
Barendregt—8l): The purpose of NORM is to interpret programs written in

applicative programming languages. To do this, lambda-delta terms are used

o

as its machine language. These applicative programming language does not
have the sequentiality in the interpretation of programs, essentially. On
the other hand, current computer architecture have the sequentiality which

is suitable for procedural programming languages.

The construction of NORM is quite different from a conventional computer.
Essentially, the result of an evalution of a program written in a pure
applicative language does not depend on the evalution order of its
sub-expressions. This fact suggests the possibility of a parallel reduction
of a program written in such language. In this paper; we use the similar
notation to that of the 1lambda expression to represent any program for
NORM. And a program written in it is interpreted by NORM directly in the
same meaning that a program coded by a machine language is executed by the
conventional computer. The architecture of NORM with parallel evalution is
consisted by 1) one supervisor unit, 2) unbound number of processing unit,
and 3) communication lines which consists a binary-tree form of processing
units. Under this conceptual environment, a parallel reduction of a program
is performed, and this reduction method can be an implementation of the
quasi Gross-Knuth strategy (Barendregt-81). Of course, it must be expanded

as it includes the delta reduction.

In chépter 2, the conceptual construction of NORM is briefly introduced.

The algorithm for the parallel reduction is described in chapter 3.

2. Concept of NORM

NORM is a evalﬁation mechanism which is based on the simplificatidn. That
is, we define that a program is a formula which may be' reduced by the
simplification and some applications of functions. A program for NORM 1is
considered as a lambda expression whose sub-expressions may be delta

redexes, and NORM reduces it. Thus, the reduction of a program for NORM

3

proceeds by consequently applications of the beta and the delta reduction.
In a conceptual sense, NORM is consisted by three parts: reducer, applier,
and pre-processor. reducer pérforms the ‘beta reduction, and applier
performs the delta reduction. And any identifier can be a name of an
arbitraly expression by the facility of the naming. To make a relationship
between the name and the expression, a command for the naming is used. This

is processed by the pre-processor.

The conceptual construction of NORM can be shown as in Fig.-1.

I I I I
----> I pre-processor I ----> I reducer I ---->
I I I I
______________________ y
I
I
T
_____ V_____
I I
I applier 1
I I

fig.-1 conceptual construction of NORM

We will give some examples’of a program for NORM and conceptual evaluations
of them. In these examples, wé settle a linked list in Lisp as data of the
program, and some primitive functions to deal with list are prepared. They
are hd, tl, cons, eq, ané atom, and they are same functions as car, cdr,
cons, eq, and atom in Lisp. And to distinguish data from expressions, a
single quote followed by a description of a datum is used. Thus, '(A B C D)
is a datum. For instance, (hd '(A B C)) is regarded as a delta redex, and
calculated in applier, then the value 'A is obtained. This expression has

the complete same meaning as the expression (car '(A B C)) in Lisp.

<Example-1>

(bx. (hd X)) "(A B C) .uruennnn. (1)

£
‘s

An‘exppfesSién (1) is reéarded as a beta redex, énd (1) is reduced into the
following expression by the reducer. |

- | (hd '(A B C)) «..... ;... (2)

Then the whole expression of (2) 1is regarded as a delta redex, and
evaluated by the abplier;1 then the value 'A is obtained. This is the

simplest example of a program for NORM.

<Example-2>
To show a slightly complicated example, we use the command for the naming.
e <- AX.)y. (cons X ¥) ceeeueeenn. (3)
(e '"(A B) '"(CD)) «ceevunnanans (4)
When the expression (4) 1is reduced after thérnaming as (3), "e" is expanded
to the right hand side of (3), and the reduction proceeds as 1in the

example-1, and the value '(A B C D) is obtained.

<Example-3>
This example shows the utilization of a recursive function. We can define
the "append" function in Lisp éé follows:
(DE APPEND (X Y)
 (COND ((NULL X) Y)
(T»(CONS‘(CAR X) (APPEND (CDR X) Y)))))

And we can use this function in NORM if the following definition is done.

append <- MX.\y.
(if (null x) then y

else (cons (hd x) (append (tl x) y)))

where if-then-else structure we use in (6) is realized in NORM by the
ordinary lambda terms when predicates return following values: when the

value is true, (Ax. Ay. x) must be returned, and when the value is false,

5

(x. y. y) must be returned from the applier. And the following is the
outline of- the reduction of an expression which uses the function "append"
defined as in the above.

(append '(A B) '(C)) .ueieeeae{7)
In (7), "append" is expanded to the right hand side of (6) as we described
in the previous example..

(Ax.Ay. (if (null x) then y
else (cons (hd x) (append (tl x) y)))

'(AB) '"(C)) ...eia.... (8)
Then the expression (8) is reduced ‘as if it was an ordinary lambda
expression. And else-clause is selected by the éredicate "null".

(cons (hd '(A B)) (append (t1 '(A B)) '(C))) suveveeee. (9)

In (9), an application of "append" is reduced first,. because a primitive
function can not apply to the arguments if there are arguments include beta
redexes, or delta redexes. The reduction of (9) proceeds, and finally the

value '(A B C) is obtained. ..

These are examples of the reduction in. NORM in - the conceptual sense, and
when we . implement it on .the computer, the Normal Order Reduction is
adopted. 1In-the next chapter, we will show the algorithm for the parallel

reduction in an-conceptual environment.

3. Parallel Reduction

In' the example-1.and 2 in the previous chapter, there is only one redex in
each expression. Thus, there is no possibility to perform the " parallel
reduction. But in example-3, there are many redexes in the expression (6),
because it is defined recursive. Not. only a recursive function, there are
expressions which include more than two redexes, such as:

(Ax.x) ((Ay.y) 'B)(10)
In the expression (10), there are two redexes, and our. scheme . for the

parallel reduction is going to perform reductions of all redexes in an

¢

expression. To show this scheme, we take the expression (10) és the first
example. In the expression (10), one redex is the whole expression, and the
other one is the argument of the whole expression. Then, NORM performs
reductions of these redexes in parallel. Suppose that the reduction of the
second redex which is listed in the above is-faster than that of the first

one. Fig.-2 shows an eigmple of the parallel evaluation.

I
I
Pl I a P2
{==mm——- >
I I
I I
I I
I<-===—-- b
I
I
c —---=>
I
I
I
v

fig.-2 the example of the parallel evaluation

In fig.-2, "a" is the point at which NORM recognizes two redexes, and
reduction is divided into two processes, Pl and P2. Pl reduces the wholé
expression of (10), and P2 <reduces the argument of (10). At "b", P2 ends
and reduction of argument of (10) finishes. So, the value of this reduction
effects the reduction in Pl, (arrow starts with point b on P2, and ends 1in
the point on Pl shows this effect) and when the reduction in Pl ends (at
point c¢), the whole reduction finishes. This is the scheme of our parallel

reduction.

To perform the parallel reduction we mentioned in the above, a program for
NORM is translated into the inner-form. The inner-form takes the form of a
tree using nodes with pointers. The translation from a program for NORM to

the inner-form is as follows:

1)

2)

3)

4)

7

A variable, and a constant (a datum) is translated into the terminal
node.
An abstraction of the form
Av.E
is translated to the following tree
ab
6//’\\E*
where E* is the translated form of E.‘ But, every occurences of v in
E, which 1is a bound wvariable of this abstraction, shares their
pointers with binders which appears the 1left hand side of the tree.
An application of the form
(E F)

is translated into the following tree.

& N

where E* and F* are translated forms of E and F, respectively.
A definition is not translated into the tree representation. NORM does

only making a pair of the name and the expression, and memory it.

Make clear this translation rule, some examples are 1listed in the below.

<example-4>

The expression

is

({Ax.)y. (cons x y)) "(A B C) '"(D E))

translated into the following form.

=)

and all *1 connect with "x", and *2 connect with "y".

<Example-5>

The expression

(M.Ay. (if (null x) then y ‘ ‘
else (cons (hd x) (append (tl x) y)))

is translated into the following form.

and all *1 connect with "x", and *2 connect with "y".

The construction of the NORM is considered as follows.. 1) Infinite number
of processors: Each processor handles a node of the inner-form, and sends
the value or the request to the other processor. Arbitraly two processors
must be connected by a communication line to send them.

2)‘One supervisor unit: This unit handles the root of the inner-form. A
request of the evaluation 1is originated from this wunit, and waits the

value.

More precisely, each processor except the supervisor unit has the same
algorithm. That is, they receive the request of the evaluation, recognize
the type of the node which represents the‘ type of the expression, send
requests = to other processors if necessary, waits the result sometimes, and

returns the pointer that points the node as a value.

We will list +the algorithm of NORM written in: the Algol-like 1language.
First, we mention about special faculiies of the language which are used to
describe the algorithm. There are three special facilities in this

programming language, "wakeup", "wait-until"”, and "complete".

"wakeup" - is a function which sends a signal*tolits child processor. Its
argument is a pointer to the node of the inner-form. This pointer. points
the robt of the inner-form of the sub-expression which must be handled by
the waked up processor. That is, this function sends the demand for the
reduction to its child processor. This function returns the processor
identifier of the waked up processor which is unique within éll Processors.
"wait-until” is a function which make the‘précessor includingvthis function
wait until the process which is identified by the identifier which is given
as 1its argument terminates. "complete" is a function, it takes a proéessor
identifier as 1its argument, and it returns true when the processor.
terminates its own process. "pre-p" 1is the pre-processor to transform
programs into their inner-forms. And its value is a pointer to the root of
the inner-form. "print“ receives a pointer to the root of the inner-form,
and it translate this inner-form to the character striné, then print it.
"left-of" and "right-of" are selectofs for the inner-form, and they select
the left-hand side subtree, and the right-hand side sub-tree, respectively.
"is-" somethings except "is-nf" are recognizers for the type of the node
given as its argument. Especially, "is-pfc" returns true if its argument
is a primitive function closure. "put-nf". is a function which marks the

node given as an argument, and "is-nf" returns true if the node given as

10

its argument is marked by "put-nf", otherwise it returns false. "p-of" is
a predicate which returns true if the node given as an argument is
connected to its parent node, or it is the root of the inner-form of the
whole' program. "expand" is a function whose argument is an identifier
which is named, and it returns the pointer to the root of the inner-form
which represents the expression which 1is given by the naming facility.
"connect" is a function with two arguments, and it connect the pointer to
the inner form given as the second argument to the pointer which is given

as the first argument,

The followings are the algorithm of NORM,
"overload"” is an algorithm for the supervisor unit, and "slave" is that for

other processors.

overload()
root-pt, value-pt, temp var;
while true do
root-pt <- pre-p();
while not(is-nf(root-pt)) do
temp <- wakeup(root-pt);
value-pt <- wait-until(temp);
od;
print(value-pt)

od;
slave(pt)
templ, temp2, temp3, value-pt var;
begin
"if is-literal(pt)
then begin
value-pt <- pt;
put-nf (pt)
end;

elseif is-identifier(pt)
then if is-defined(pt) & p-of(pt)
then value-pt <- expand(pt)
else begin
value-pt <- pt;
put-nf(value-pt)

end
end;
elseif is-abstraction(pt) & p-of(pt)
then begin

templ <- wakeup(right-of(pt));
value-pt <- wait-until(templ);
if is-nf(right-of(value-pt))

11

then put-nf(value-pt)

end;
elseif is-application(pt)
then begin :
if is-abstraction(left-of(pt))
then begin
if not(is-nf(left-of(pt))) & p-of(pt)
then templ <- wakeup(right-of(pt))
connect(left-of (left-of(pt)), right-of(pt));
wait-until (templ);
value-pt <~ left-of(right-of(pt));
end; -

elseif is-identifier(left-of(pt)) or
is-pfc(left-of (pt))
then begin
if is-literal(right-of(pt)) & p-of(pt)
then begin
templ <- Applier(pt);
temp2 <- wakeup(templ);
value-pt <- wait-until(templ)
end)
elseif is-nf(right-of(pt))
then begin .
value-pt <- pt;
put-nf (value-pt)
end
elseif p-of(pt)
then begin
templ <- wakeup(right-of(pt));
temp2 <- wait-until(templ);
templ <- wakeup(pt);
value-pt <- wait-until (templ)
end
end -
else begin
if not(is-nf(right-of(pt))) & p-of(pt)
then templ <- wakeup(right-of(pt));
if not(is-nf(left-of(pt))) & p-of(pt)
then begin ’
temp2 <- wakeup(left-of(pt));
temp3 <-until(temp2);
end;
if is-nf(left-of(pt))
then begin
value~pt <- pt;
put-nf (value-pt)
end
elseif p-of(pt)
then begin
temp2 <- wakeup(pt)
value-pt <- wait-until(temp2)
end;
wait-until(templ)
end
return(pt)
end;

We will give some examples of the evaluation in this algorithm.

-~

1=

<Example-6>
. We start from very simple example. Suppose that
be an expression to be reduced. '

(Ax.x) 'A ..., (11)

And inner-form of (11) is such that:

the

following

S.U.

root-pt

wakeup P.U.

| wakeup | P;U.

pt
A

} return

wait ; return

wait — | e RERRRLEEEEEELEEE
return

value-pt

A

ﬁig.—S Reduction in NORM

1A

X

In fig.-5, vertical lines separate processor, but the vertical length of
each rectangular has not essential meanings because times which are needed

for each processor can not be decided in advance.

4. Conclusion

To make cirtify the algorithm of NORM which is éescribed in the previous
chapter, we must do some mathematical consideration on it. By this
algorithm, all redexes in the expression are reduced in parallel if we
neglect the execution time of one or two steps in that algorithm. This is
similar method can be éonsidered as the quasi Gross-Knuth strategy.
However, the most significant difference is that this algorithm also
performs the delta reduction. First, we must extend the quasi Gross-Knuth
strategy to include the delta reduction, and a theorem to show this
algorithﬁ is the correct implémentation of this strategy. The theorem is as

follows.

Theorem-1

For all E, which is an element of the set of lambda-delta terms,

NORM(E*) = F¥*,

where E* and F* means that the inner-form corresponding to E and F,
respectively. And NORM(E*) denotes the result of the reduction of E* on

NORM whose algorithm is listed in the previous chapter.

By proving this theorem, algorithm for NORM is a correct implementation of
extended quasi Gross-Knuth strategy, which is the strategy made up from the
quasi Gross-Knuth strategy by including the delta reduction. Extending the

quasi Gross-Knuth strategy to extended quasi Gross-Knuth strategy is our

15
present problem, and proving the theorem is our future problem. Already we
made the software simulator for NORM by using Lisp which evaluates in

sequential, and the constant (data) of this simulator si the list of Lisp

(Aiba-82).

References

(Aiba-82):Aiba, A., Yonezawa, N., and Nakanishi, M., "An Experimental
Implementation of NORM" (In Japanese), Proc. of 25th Annual

Convention of IPSJ, 1982

(Barendregt-=81)
Barendregt, H. P., "The Lambda Calculus: Its - Syntax and
Semantics", Studies in Logic and The Foundation of Mathematics
vol.103, North-Holland, 1981

(Curry-58)
Curry, H. B., Feys, R., and Craig, W., "Combinatory Logic: Volume'

1", North-Holland, 1958

