<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>Countable J_S^a-admissible ordinals (LOGIC AND THE FOUNDATIONS OF MATHEMATICS)</td>
</tr>
<tr>
<td>著者</td>
<td>SHINODA, Juichi</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (1984), 516: 79-91</td>
</tr>
<tr>
<td>発行日</td>
<td>1984-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/98387</td>
</tr>
<tr>
<td>種類</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
<tr>
<td>提供機関</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Countable J^S_a-admissible ordinals

Juichi SHINODA (篠田壽一)

Department of Mathematics
College of General Education
Nagoya University

50. Introduction.

In [3], Platek constructs a hierarchy of jumps J^S_a indexed by elements a of a set 0^S of ordinal notations. He asserts that a real $X \subseteq \omega$ is recursive in the superjump S if and only if it is recursive in some J^S_a. Unfortunately, his assertion is not correct as is shown in [1]. In [1], it also has been shown that an ordinal $>\omega$ is J^S_a-admissible if it is $|a|_S$-recursively inaccessible, where $|a|_S$ is the ordinal denoted by a.

Let A be an arbitrary set. We say that an ordinal α is A-admissible if the structure $<L_\alpha[A], \in, A \cap L_\alpha[A]>$, which we will denote by $L_\alpha[A]$ for simplicity, is admissible, a model of the Kripke-Platek set theory KP, where $L_\alpha[A]$ is the sets constructible relative to A in fewer than α steps. We use ω^A_1 or $\omega_1(A)$ to denote the first A-admissible ordinal $>\omega$, and use $\omega_1(A_1, \ldots, A_n)$ for $\omega_1(<A_1, \ldots, A_n>)$.

The purpose of this paper is to prove the following theorem.

Theorem 1. Suppose $a \in 0^S$ and $\alpha > \omega$ is a countable $|a|_S$-recursively inaccessible ordinal. Then, there exists a real $X \subseteq \omega$ such that $\alpha = \omega_1(J^S_a, X)$.

In the case $|a|_S = 0$, $J^S_a = 2^E$, the Kleene object of type 2, and $\omega_1(2^E, X) = \omega^X_1$ for all reals $X \subseteq \omega$. α is an admissible ordinal if and only if it is 0-recursively inaccessible. Therefore, Theorem 1 is an extension of the following theorem of Sacks.
Theorem 2. (Sacks [4]). If \(\alpha > \omega \) is a countable admissible ordinal, then there exists a real \(X \) such that \(\alpha = \omega_1^X \).

Sacks also showed that the real \(X \) mentioned in Theorem 2 can be taken to have the minimality property:

\[\omega_1^Y < \alpha \text{ for every } Y \text{ of lower hyperdegree than } X. \]

Likewise, we can show that for every countable \(|a|_S \)-recursively inaccessible ordinal \(\alpha > \omega \) there is a real \(X \) such that:

\[\alpha = \omega_1(J_a^S, X); \]

and

\[\omega_1(J_a^S, Y) < \alpha \text{ for every } Y \text{ of lower } J_a^S \text{-degree than } X. \]

Theorem 1 will be proved by the forcing with \(J_a^S \)-pointed perfect trees. Let \(\alpha > \omega \) be a countable \(|a|_S \)-recursively inaccessible ordinal and \(X \) be a generic real with respect to this forcing relation. Then \(L_\alpha[X] \) is admissible and \(\alpha \leq \omega_1(J_a^S, X) \). To see \(\omega_1(J_a^S, X) < \alpha \), we must show that \(X \) preserves sufficiently many admissible ordinals below \(\alpha \) to make \(\alpha \) to be \(<J_a^S, X>-\)admissible.

\section*{§1. \(|a|_S \)-recursively inaccessible ordinals.}

A normal type 2 object is a total function \(F \) from \(\omega \) to \(\omega \) such that the Kleene object \(\mathcal{Z}_F \) of type 2:

\[\mathcal{Z}_F = \begin{cases} 0 & \text{if } (\exists n)f(n) = 0, \\ 1 & \text{otherwise}, \end{cases} \]

is recursive in \(F \). The superjump \(S(F) \) of \(F \) is a type 2 object

1) For \(J_a^S \)-degrees, the reader may refer to [5].
defined by:

\[S(F)(<n, f>) = \begin{cases}
0 & \text{if } \{n\}^F(f) \text{ is defined}, \\
1 & \text{otherwise.}
\end{cases} \]

Platek [3] defines a hierarchy \(J^S_a \) of type 2 objects along with a set \(O^S \) of ordinal notations, starting from \(2^\omega \) and iterating the superjump operation transfinitely.

An ordinal \(\alpha \) is \(0 \)-recursively inaccessible if it is admissible. \(\alpha \) is \((\sigma + 1) \)-recursively inaccessible if it is \(\sigma \)-recursively inaccessible and a limit of \(\sigma \)-recursively inaccessible ordinals. For limit \(\lambda \), \(\alpha \) is said to be \(\lambda \)-recursively inaccessible if it is \(\sigma \)-recursively inaccessible for all \(\sigma < \lambda \). Let \(X \) be an arbitrary set. \(\sigma \)-recursively-in-\(X \) inaccessible ordinals are defined in the same way starting from \(X \)-admissible ordinals. By \(RI(\sigma, X) \), we denote the class of all \(\sigma \)-recursively-in-\(X \) inaccessible ordinals. In the case \(X = \phi \), \(RI(\sigma, \phi) \) is the class of all \(\sigma \)-recursively inaccessible ordinals.

The following lemma, due to Aczel and Hinman, gives a characterization of \(\omega_1(J^S_a, X) \) for \(X \subseteq \omega \).

Lemma 3. (Aczel and Hinman [1]). Suppose \(a \in O^S \) and \(\sigma = |a|_S \), the ordinal denoted by \(a \). Then \(\sigma < \omega_1(J^S_a) \), and for any ordinal \(\alpha > \omega \) and \(X \subseteq \omega \):

\[\alpha \in RI(\sigma, X) \implies \alpha \text{ is } <J^S_a, X>-\text{admissible.} \]

\(\omega_1(J^S_a, X) \) is the least ordinal in \(RI(\sigma, X) \).

Let \(\lambda_0 \) be the least ordinal \(\lambda \) such that \(\lambda \) is \(\lambda \)-recursively inaccessible. Lemma 3 shows that \(|O^S| = \sup\{|a|_S : a \in O^S\} \leq \lambda_0 \). In [1], it has shown that \(|O^S| = \lambda_0 \).

Let \(\alpha > \omega \) be a countable admissible ordinal. Using the unbounded
Levy forcing over L_α, we can add to L_α a generic function $K:(\alpha, \omega) \times \omega \to \alpha$ such that if $\omega \leq \beta < \alpha$ then the function $\lambda n K(\beta, n)$ is a bijection from ω onto β. Therefore, in $L_\alpha [K]$ all sets are countable. It has been shown in [4] that $<L_\alpha [K], \in, K>$ is an admissible structure in which Σ_1-DC (Σ_1-Dependent Choice) holds.

Suppose $a \in O^S$. For any $X, Y \subseteq \omega$, $X \leq_{J_a^S} Y$ means X is recursive in $<J_a^S, Y>$, which is equivalent to that $X \in L_\rho [Y]$, where $\rho = \omega_1 (J_a^S, Y)$. X and Y have the same J_a^S-degree, $X \equiv_{J_a^S} Y$, if $X \leq_{J_a^S} Y$ and $Y \leq_{J_a^S} X$. $X <_{J_a^S} Y$ if $X \leq_{J_a^S} Y$ but $X \neq_{J_a^S} Y$.

Lemma 4. Suppose $\alpha > \omega$ is a countable $|a|_S$-recursively inaccessible ordinal and K is a generic function with respect to the unbounded Levy forcing over L_α. Then for any $X, Y \subseteq \omega$:

$$X \leq_{J_a^S} Y \land Y \in L_\alpha [K] \longrightarrow X \in L_\alpha [K].$$

Proof. The unbounded Levy forcing preserves admissible ordinals. That is, if $\beta < \alpha$ is an admissible ordinal then β is K-admissible. This is because for admissible β, $K \upharpoonright (\beta, \omega) \times \omega$ is generic with respect to the unbounded Levy forcing over L_β. Therefore, if $Y \in L_\alpha [K]$ then α is $|a|_S$-recursively-in-Y inaccessible, so $L_\rho [Y] \subseteq L_\alpha [K]$, where $\rho = \omega_1 (J_a^S, Y)$. Thus we have the lemma. \[\Box \]

§2. J_a^S-pointed perfect trees.

Let a be an element of O^S such that $|a|_S > 0$. We put $J = J_a^S$ for simplicity.
A perfect tree is a set \(P \) of finite sequences of 0's and 1's such that:

(1) \(p \in P \) \& \(q \subseteq p \rightarrow q \in P \);

and

(2) \((\forall p \in P)(\exists q, r \in P) (q \text{ and } r \text{ are incompatible extensions of } p) \),

where \(q \subseteq p \) denotes that \(p \) is an extension of \(q \). For a perfect tree \(P \), \([P]\) denotes the set of all infinite paths through \(P \):

\[
[P] = \{ f \in 2^\omega : (\forall n) \bar{f}(n) \in P \}.
\]

We say that \(P \) is \(J \)-pointed if:

(3) \((\forall f \in [P])(\omega_1(J, P) \leq \omega_1(J, f) \& P \in L_{\omega_1(J, P)}[f]) \).

Note that if \(P \) is \(J \)-pointed then it is \(\leq_J \)-pointed in the sense of Sacks [4: 2.1], but not vice versa.

Lemma 5. Suppose \(P \) is \(J \)-pointed. If \(X \subseteq \omega \) and \(P \leq_J X \), then there exists a \(J \)-pointed \(Q \subseteq P \) such that \(Q =_J X \).

Proof. In [4: 2.3], Sacks constructed a perfect subtree \(Q \) of \(P \) such that:

(4) \(Q \) is recursive in \(P \) and \(f \) for every \(f \in [Q] \);

and

(5) \(Q =_J X \).

To see \(Q \) is \(J \)-pointed in our sense, fix \(f \in [Q] \). Since \(P \) is \(J \)-pointed and \(f \in [P] \), by (3), we have:

(6) \(P \in L_{\omega_1(J, P)}[f] \).

Clearly:

(7) \(f \in L_{\omega_1(J, P)}[f] \).
From (4) (6) and (7), we obtain:

(8) \(Q \in L_{\omega_1}(J,P)[f] \).

From (5) and the assumption \(P \leq J^X \), we see:

(9) \(\omega_1(J,P) \leq \omega_1(J,Q) \).

From (8) and (9), we obtain \(Q \in L_{\omega_1(J,Q)}[f] \).

For any ordinal \(\delta \), \(\{\delta\}_f^P \) denotes the \(\delta \)-th element of \(L[f] \) in the canonical wellordering on \(L[f] \). A perfect tree \(P \) is said to be uniformly \(J \)-pointed if there exists an ordinal \(\delta \) such that:

(10) \(\forall f \in [P] \, (P = \{\delta\}_f^P \& \delta < \omega_1(J,f)) \).

Obviously, uniformly \(J \)-pointed perfect trees are \(J \)-pointed. Let \(\alpha > \omega \) be a countable \(|a|_S \)-recursively inaccessible ordinal and \(K \) a generic function over \(L_\alpha \) in the sense of the unbounded Levy forcing. Observe that if \(P \) is uniformly \(J \)-pointed and \(P \in L_\alpha[K] \) then there exists a \(\delta < \alpha \) which satisfies (10) since the leftmost path \(f_P \) through \(P \) is recursive in \(P \) and so \(\omega_1(J,f_P) \leq \omega_1(J,P) < \alpha \).

Let \(M \) be a countable admissible set and \(P \) be a perfect tree in \(M \). Then \(P \) becomes a partially ordered set as usual. The forcing with \(P \) as the set of conditions is called the local Cohen forcing over \(M \) and denoted by \(\|P\|^M_M \), or simply by \(\|P\|^M \). If \(f \in [P] \) is generic with respect to \(\|P\|^M \), then \(M[f] \) is an admissible set, and so is \(L_{\mu}[f] \), where \(\mu = M \cap \text{On} \).

Lemma 6. For any \(\xi < \alpha \) and any \(J \)-pointed perfect tree \(P \) in \(L_\alpha[K] \), there exists a uniformly \(J \)-pointed perfect tree \(Q \subseteq P \) such that \(\xi < \omega_1(J,Q) \) and \(Q \in L_\alpha[K] \).
Proof. Since ξ is countable in $L_\alpha[K]$, there is a real $X \in L_\alpha[K]$ such that ξ is recursive in X. By Lemma 5, there is a J-pointed perfect subtree P_1 of P such that $P_1 \equiv J X$. Then we see $\xi \lt \omega_1(J, P_1)$, and $P_1 \in L_\alpha[K]$ by Lemma 4. Thus, we may assume $\xi \lt \omega_1(J, P)$ from the beginning. Put $M = L_{\omega_1(J, P)}[P]$. Consider the local Cohen forcing relation $\Vdash_{M}^{P} \varphi$ over M. Since P is J-pointed, we have:

(11) $(\forall f \in [P]) \omega_1(J, P) \leq \omega_1(J, f)$;

and

(12) $(\forall f \in [P]) (\exists \gamma \lt \omega_1(J, P)) \{ \gamma \}^P = P$.

By (12), there exists a $p_0 \in P$ and $\gamma \lt \omega_1(J, P)$ such that:

(13) $p_0 \Vdash_{M}^{P} \{ \gamma \}^P = P$,

where \mathcal{J} is the canonical name which denotes the generic reals. As in [4:2.10], we can construct a perfect tree $Q \subseteq P$ such that:

(14) $Q \in L_{\omega_1(J, P)}[P]$;

and

(15) $(\forall f \in [Q]) \{ \gamma \}^P = P$.

From (14), we can find a $\delta \lt \omega_1(J, P)$ such that $\{ \delta \}^P = Q$. So, by (15), there is an $\varepsilon \lt \omega_1(J, P)$ such that:

(16) $(\forall f \in [Q]) \{ \varepsilon \}^P = Q$.

Let f_Q be the leftmost branch of Q. Then, by (11):

(17) $\omega_1(J, P) \leq \omega_1(J, f_Q) \leq \omega_1(J, Q)$.

Hence, from (16), we see that Q is uniformly J-pointed. By (17),
we also see \(\xi < \omega_1(J, Q) \). Since \(P \in L_\alpha[K] \), we have \(\omega_1(J, P) \leq \alpha \), and so \(Q \in L_{\omega_1(J, P)}[P] \leq L_\alpha[K] \).

Let \(\mathcal{L} \) be a first-order language. A \(\Pi^1_1 \) formula in \(\mathcal{L} \) is a second-order formula of the form:

\[
(\forall S_1) \cdots (\forall S_m) \psi,
\]

where \(S_1, \ldots, S_m \) are predicate variables and \(\psi \) is first-order formula in the expanded language \(\mathcal{L} \cup \{S_1, \ldots, S_m\} \).

Lemma 7. Suppose \(A \) is a countable admissible set such that \(\omega \in A \) and \(\mathcal{L} \in A \) is a first-order language. Let \(\theta(x_1, \ldots, x_n) \) be a \(\Pi^1_1 \) formula in \(\mathcal{L} \). Then there exists a \(\Sigma_1 \) formula \(\Phi(x_1, \ldots, x_n, y) \) such that for any structure \(\mathcal{M} = \langle M, \ldots \rangle \in A \) for \(\mathcal{L} \) and any \(a_1, \ldots, a_n \in M \):

\[
A \models \Phi(a_1, \ldots, a_n, \mathcal{M}) \iff \mathcal{M} \models \theta(a_1, \ldots, a_n).
\]

Proof. This is well-known. See, e.g., Barwise [2: IV.3.1].

Using this lemma, we obtain the following lemma.

Lemma 8. The set of all uniformly \(J \)-pointed perfect trees in \(L_\alpha[K] \) is \(\Sigma^1_1 \) over \(L_\alpha[K] \).

Proof. Put \(\sigma = |a|_S \), (recall that \(J = \mathcal{J}_a \)). Let \(P \) be a perfect tree in \(L_\alpha[K] \) and \(\delta < \alpha \). Let \(\beta(P, \delta, \sigma) \) denote the least admissible ordinal \(\beta < \alpha \) such that \(\max(\delta, \sigma, \omega) < \beta \) and \(P \in L_\beta[K] \). The function \(\beta \) is \(\Sigma^1_1 \) over \(L_\alpha[K] \). We can easily find a \(\Pi^1_1 \) formula \(\theta \) in the language of set theory such that for any perfect tree \(P \in L_\alpha[K] \):

\[
P \text{ is uniformly } J \text{-pointed } \iff (\exists \delta < \alpha) L_\beta(P, \delta, \sigma)[K] \models \theta(P, \delta, \sigma).
\]

Thus the lemma follows from Lemma 7. \(\square \)
§3. Forcing with uniform J^{S}_a-pointed perfect trees.

Suppose $|a|_S > 0$ and put $J = J^{S}_a$. Let $\alpha > \omega$ be a countable $|a|_S$-recursively inaccessible ordinal and K a generic function with respect to the unbounded Levy forcing over L_α, which we fix throughout this section.

Let $L(\alpha, \mathcal{T})$ be a ramified language containing names for all members of $L_\alpha[f]$. $L(\alpha, \mathcal{T})$ includes: a numeral \bar{n} for each $n \in \omega$, unranked variables x, y, z, \cdots; ranked variables $x^\beta, y^\beta, z^\beta, \cdots$ for each $\beta < \alpha$; and abstraction operator $\hat{\cdot}$. It is intended that \mathcal{T} denotes $\{n \in \omega : f(n) = 1\}$, that x ranges over $L_\alpha[f]$, that x^β ranges over $L_\beta[f]$, and that $\hat{x^\beta} \phi(x^\beta)$ denotes the set:

$$\{x \in L_\beta[f] : L_\beta[f] \models \phi(x)\}.$$

$C(\beta)$ is the set of names for elements of $L_\beta[f]$ and $C = \bigcup_{\beta < \alpha} C(\beta)$.

Let \mathcal{P} denote the set of all uniformly J-pointed perfect trees in $L_\alpha[K]$. P, Q, R, \cdots denote the members of \mathcal{P}. For a ranked sentence ϕ of $L(\alpha, \mathcal{T})$ and $P \in \mathcal{P}$, let $\rho(P, \phi)$ be the least admissible ordinal $\rho < \alpha$ such that $P \in L_\rho[K]$ and rank(ϕ) $< \rho$. The function ρ is Σ_1 over $L_\alpha[K]$. The forcing relation $P \models \phi$, where ϕ is a sentence of $L(\alpha, \mathcal{T})$, is defined inductively:

1. ϕ is ranked. $P \models \phi \iff (\forall f \in [P]) L_{\rho(P, \phi)}[f] \models \phi$;

2. $\phi \lor \psi$ is not ranked. $P \models \phi \lor \psi \iff P \models \phi$ or $P \models \psi$;

3. $(\exists x^\beta) \phi(x^\beta)$ is not ranked. $P \models (\exists x^\beta) \phi(x^\beta)$ if $P \models \phi(c)$ for some $c \in C(\beta)$;

4. $P \models (\exists x) \phi(x)$ iff $P \models \phi(c)$ for some $c \in C$;

5. ϕ is not ranked. $P \models \neg \phi \iff (\forall Q \subseteq P) \neg (Q \models \phi)$.

- 9 -
Using Lemma 7 and 8, it is easy to see that the forcing relation $P \models \phi$, restricted Σ_1 sentences ϕ, is Σ_1 over $L_\alpha[K]$.

Lemma 9. For each P and ϕ, there exists a $Q \subseteq P$ such that $Q \models \phi$ or $Q \models \neg \phi$.

Proof. In view of (5), we may assume that ϕ is ranked. By Lemma 6, we may also assume that $\phi \in L^\delta[P]$ for some P-admissible δ such that $\delta < \omega_1(J, P)$. Then, in $L^\delta[P]$, all sets are countable. Thus, in $L^\delta[P]$, we can enumerate all ranked sentences of rank $\leq \text{rank}(\phi)$:

$$\phi = \phi_0, \phi_1, \ldots, \phi_n, \ldots \quad (n \in \omega).$$

Let $\|P\|$ be the local Cohen forcing relation over $L^\delta[P]$. In $L^\delta[P]$, we can construct a family $\langle q_s : s \in \text{Seq}(2) \rangle$ of elements of P such that:

(6) $q_s \models^P \phi_n$ or $q_s \models^P \neg \phi_n$, where $n = \text{lh}(s)$;

and

(7) $q_s^{<0}$ and $q_s^{<1}$ are incompatible extensions of q_s,

where $\text{Seq}(2)$ is the set of all finite sequences of 0's and 1's.

Let $Q = \{ q \in P : (\exists s) q \subseteq q_s \}$. Then by (7) Q is a perfect subtree of P. By (6), it is easy to see that $Q \models \phi$ or $Q \models \neg \phi$. Since $Q \in L^\delta[P]$, $Q = \{ \gamma \}$ for some $\gamma < \delta$. Therefore Q is uniformly J-pointed because P is.

A real $f \in 2^\omega$ is said to be generic if for every dense subset \mathcal{D} of P which is definable over $L_\alpha[K]$ there is a $P \in \mathcal{D}$ such that $f \in [P]$. For every $P \in \mathcal{D}$, there is a generic f such that $f \in [P]$. From Lemma 9, it follows that for every generic f and sentence ϕ:

$$L_\alpha[f] \models \phi \iff (\exists P)(f \in [P] \land P \models \phi).$$
Lemma 10. If \(f \) is generic, then \(L_\alpha[f] \) is admissible.

Proof. We need to show that \(L_\alpha[f] \) satisfies the \(\Delta_0 \) Collection. Let \(\phi(x, y) \) be a formula of \(\mathcal{L}(\alpha, \mathcal{J}) \) with no unranked quantifiers. We claim that if \(P \models (\forall n)(\exists y)\phi(n, y) \) then there exists a \(Q \subseteq P \) and a \(\beta < \alpha \) such that \(Q \models (\forall n)(\exists y^\beta)\phi(n, y^\beta) \). The proof of this claim is almost the same as that of [4: 3.12] with some notational changes. So, we omit the proof here. From the claim, it follows that \(L_\alpha[f] \) satisfies the \(\Delta_0 \) Collection. \qed

Proof of Theorem 1. Let \(\alpha > \omega \) be a countable \(|a|_S \)-recursively inaccessible ordinal and \(K \) be as before. Put \(\sigma = |a|_S \) and \(J = J^S_a \).

In the case \(\sigma = 0 \), Theorem 1 is exactly Theorem 2, which has already been established by Sacks [4]. So we may assume \(\sigma > 0 \). Let \(f_0 \in 2^\omega \) be a generic real over \(L_\alpha[K] \) with respect to the forcing with uniform J-pointed perfect trees. By Lemma 6, for each \(\xi < \alpha \), the set \(\{ P \in \mathcal{P} : \xi < \omega_1(J, P) \} \) is dense in \(\mathcal{P} \). It is obviously definable over \(L_\alpha[K] \). Therefore there is a \(P \in \mathcal{P} \) such that \(f_0 \in [P] \) and \(\xi < \omega_1(J, P) \).

Since \(P \) is J-pointed, we have:

\[\xi < \omega_1(J, P) \leq \omega_1(J, f_0). \]

Thus, we have \(\alpha \leq \omega_1(J, f_0) \). To see \(\alpha = \omega_1(J, f_0) \), we must show that \(\alpha \in RI(\sigma, f_0) \). At first we consider the case where \(\sigma = \tau + 1 \) for some \(\tau \).

It is sufficient to prove that \(\alpha \) is a limit of ordinals in \(RI(\tau, f_0) \), since then by induction on \(\tau \) we can show that \(\alpha \in RI(\tau, f_0) \), (note that \(\alpha \in RI(0, f_0) \) by Lemma 10). Suppose \(\xi < \alpha \). We shall show that the following set \(\mathcal{D}_\xi \) is dense in \(\mathcal{P} \):

\[\mathcal{D}_\xi = \{ P \in \mathcal{P} : (\exists \delta < \alpha)(\xi < \delta \quad \& \quad (\forall f \in [P])\delta \in RI(\tau, f)) \}. \]
Assume this can be done. Using Lemma 7, it is easy to see that \(\xi \) is \(\xi_1 \) over \(\lambda_1^\alpha[K] \). Therefore, for every \(\xi < \alpha \), there exists a \(\delta < \alpha \) such that \(\xi < \delta \) and \(\delta \in \text{RI}(\tau, f_0) \).

To show that \(\mathcal{D}_\xi \) is dense in \(\mathcal{G} \), take an arbitrary \(\mathcal{P} \in \mathcal{G} \).

By Lemma 6, we may assume \(\xi < \omega_1(J, \mathcal{P}) \). Take a \(\delta \in \text{RI}(\tau, \mathcal{P}) \) so that \(\xi < \delta < \omega_1(J, \mathcal{P}) \). Such a \(\delta \) exists because \(\omega_1(J, \mathcal{P}) \) is a limit of ordinals in \(\text{RI}(\tau, \mathcal{P}) \). Consider the local Cohen forcing relation \(\Vdash^{\mathcal{P}} \) over \(\lambda_\delta^\alpha[\mathcal{P}] \). Let \(\delta^+ \) be the next \(\mathcal{P} \)-admissible ordinal of \(\delta \). Then, \(\lambda_\delta^\alpha[\mathcal{P}] \) is countable in \(\lambda_{\delta^+}[\mathcal{P}] \). So we can enumerate inside \(\lambda_{\delta^+}[\mathcal{P}] \) all sentences of the appropriate forcing language:

\[
\phi_0, \phi_1, \ldots, \phi_n, \ldots \quad (n \in \omega).
\]

As in the proof of Lemma 9, we can construct a perfect subtree \(\mathcal{Q} \in \lambda_{\delta^+}[\mathcal{P}] \) of \(\mathcal{P} \) such that:

\[(\forall f \in \mathcal{Q}) f \text{ is generic with respect to } \Vdash^{\mathcal{P}}.\]

\(\mathcal{Q} \) is uniformly \(J \)-pointed since \(\mathcal{Q} \in \lambda_{\delta^+}[\mathcal{P}], \delta^+ < \omega_1(J, \mathcal{P}) \) and \(\mathcal{P} \) is uniformly \(J \)-pointed. To show that \(\delta \in \text{RI}(\tau, f) \) for all \(f \in \mathcal{Q} \), take \(f \in \mathcal{Q} \). Let \(\beta < \delta \) be an arbitrary \(\mathcal{P} \)-admissible ordinal \(> \omega \), and \(\Vdash^{\mathcal{P}}_\beta \) be the local Cohen forcing relation over \(\lambda_\beta^\alpha[\mathcal{P}] \). It is easy to see that \(f \) is generic with respect to \(\Vdash^{\mathcal{P}}_\beta \), and so \(\beta \) is \(f \)-admissible.

From this, by induction on \(\tau \), we see that \(\delta \in \text{RI}(\tau, f) \).

Now we consider the case where \(\sigma \) is a limit ordinal. The proof is carried out in the same way. For any \(\xi < \alpha \) and any \(\tau < \sigma \), let \(\mathcal{D}_{\xi^T} \) be the set:

\[
\{ \mathcal{P} \in \mathcal{G} : (\exists \delta < \alpha)(\xi < \delta \quad \& \quad (\forall f \in [\mathcal{P}]) \delta \in \text{RI}(\tau, f) \} \).
\]

Then \(\mathcal{D}_{\xi^T} \) is dense in \(\mathcal{G} \) and definable over \(\lambda_\alpha[K] \). Therefore, we have that \(\alpha = \omega_1(J, f_0) \) for any generic \(f_0 \) with respect to \(\Vdash^\tau \). □
REFERENCES

[1] P. Aczel and P.G. Hinman, Recursion in the superjump, in:
Generalized Recursion Theory, edited by J.E. Fenstad and P.G. Hinman
(North-Holland, Amsterdam, 1974), 3-41.

Colloquium ’69, edited by R.O. Gandy and C.E.M. Yates (North-Holland,
Amsterdam,1971), 257-271.

[4] G.E. Sacks, Countable admissible ordinals and hyperdegrees,
Advances in Math., 19(1976), 213-262.

80(1980), 75-106.

Department of Mathematics
College of General Education
Nagoya University
Chikusa-ku, Nagoya 464, Japan