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§0. Introduction.

In [3], Platek constructs a hierarchy of jumps \Ji indexed by
elements a of a set 0° of ordinal notations. He asserts that a real
X € w 1is recursive in the superjump S if and only if it is recursive
in some Ji . Unfortunately, his assertion is not correct as is shown
in [1]. In [1], it also has been shown that an ordinal >w is Ji-
admissible if it is Ials—recursively inaccessible, where |a|S is the
ordinal denotéd by a.

Let A be an arbitrary set. We say that an ordinal a is
A-admissible if the structure <<La[A],€ , ArWLa[AJ >, which we will
denote by La[A]' for simplicity, is admissible, a model of the Kripke-
Platek set theory KP, where La[A] is the sets constructible relative
to A in fewer than o steps. We use mi or ml(A) to denote

the first A-admissible ordinal >w, and use wl(A ,~--,An) for

wl(<A ',An>).

1’

The purpose of this paper is to prove the following theorem.

Theorem 1. Suppose aéEOS and o >w 1is a countable Iaf -recursively

S

inaccessible ordinal. Then, there exists a real XCSw such that (x=wl(J2 , X).

In the case la}s = 0, Ji = 2E, the Kleene object of type 2, and
wl(zE, X) = w? for all reals X € w. o 1is an admissible ordinal if

and only if it is O-recursively inaccessible. Therefore, Theorem 1 is

an extension of the following theorem of Sacks.



Theorem 2. (Sacks [4]). If a>w 1is a countable admissible ordinal,

. X
then there exists a real X such that o = wl .

Sacks also showed that the real X mentioned in Theorem 2 can be

taken to have the minimality property:

wi < o for every Y of lower hyperdegree than X.

Likewise, we can show that for every countable |a|S—recursively inaccessible

ordinal a>w there is a real X ’'such that:

- S :
a -wl(Ja’X) >

and

S 1)

w (Ja

1 »Y¥) < a for every Y -of lower JiQdegree'than X.

Theorem 1 will be proved by the forcing with Jz—pointed perfect
trees. Let o >w be a countable |als4recursively inaccessible ordinal
and X be a generic real with respect to this forcing relation. Then
La[X] is admissible and oc;uul(JeSl , X). To see (ul(\]it » X) <a, we must
show that X preserves sufficiently many admissible ordinals belgw (x.to

make o to be <Jz , X>-admissible.

§1. lals—recursively inaccessible ordinals.

. . . . w
A normal type 2 object is a total function F from w to w

such that the Kleene object 2E of type 2:

0 if (gn)f(n)

il
o

2E(£) =
1 otherwise,

is recursive in F. The superjump S(F) of F is a type 2 object B

1) For Ji—degrees, the reader may refer to [5].
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defined by:

0 if {n}'(f) is defined,
S(F)(<n, £>) =
1 otherwise.
Platek [3]7definés a higrarchy Ji of- type 2 objects along with
a set OS of ordinal notations, starting from 2E and iterating‘the
superjump operation transfinitely.
An ordinal o is O-recursively inaccessible if'it is admissible.
o is (0 +1l)-recursively inaccessible if it is o-recursively inaccessible
and a limit of O—rééursively inaccessible ordinals. For limit A, o
is said to be A-recursively inaccessible if it is o-recursively in-
accessible for ali_q <A. Let X be an arbitrary set. ¢g-recursively-
in-X inaccessible -ordinals are defined in the samé way starting from
X-admissible ordinals. By Ri(c, X), Qe aenote ;he class of all o-
recursively-in-X inaccessible ordinals. In the case X =¢, RI(0, 9) is

the class of all o-recursively inaccessible ordinals.

The following lemma, due to Aczel and Hinman, gives a characterization

S
of wl(Ja , X) for X C w.

Lemma 3. (Aczel and Hinman [1]). Suppose aJsOs and g = ]a‘s,
the ordinal denoted by a. Then 0'<wl(J§), and for any ordinal a>w

and X Cw:

o € RI(o, X) —> o is <J§ , X>-admissible. -

wl(Ji , X) 1is the least ordinal in RI(0, X).

Let XO be the least ordinal X such that A is A-recursively
inaccessible. Lemma 3 shows that |OS| = sup{lais; ac 05} < Age Im [,
it has shown that |0°| = A

0

Let o >w be a countable admissible ordinal. Using the unbounded



Levy forcing over Loc’ we can add to LOL a generic function K : (a-w) X w
—> 0 such that if m__<=B<OL then the function AnK(B, n) 1is a bijection
from w onto RB. Therefore, in LOL[K] all sets are countable. It has
been shown in [4] that <LOL[K]’ €, K> is an admissible structure in which
Zl-DC (Zl—Dependent Choice) holds.

Suppose aEOS. For any X,YS w, X< gY means X 1is recursive
a

in <J§ , Y>, which is equivalent to that XELQ[Y], where p = wl(Ji , Y).

X and Y have the same Jz—degree, X= g¥Y, if XX SY and Y <X SX.
Ja Ja I

X<gY if X< Y but X# V.

Ja Ja Ja

Lemma 4. Suppose 0 >w 1is a countable IaIS—recursively inaccessible
ordinal and K 1is a generic function with respect to the unbounded Levy
forcing over LOL' Then for any X, Y € w:

< gY & Yel [K] — .
X< g e L, [K] X e L [K]

Ja

Proof. The unbounded Levy forcing preserves admissible ordinals.
That is, if B<a 1is an admissible ordinal them B8 is K-admissible.
This is because for admissible B, Kl (B-w) xw 1is generic with respect
to the unbounded Levy forcing over LB. Therefore, if YeLa[K] then

a is |a|s—recursively—in—Y inaccessible, so Lp[Y] < L(].[K]’ where

- S
0 = uol(Ja ,Y). Thus we have the lemma. 0

S
§2. J5 -pointed perfect trees.

Let a be an element of 0> such that !a]s >0. We put J = JES1

for simplicity.



a2

A perfect tree is a set P of finite sequences of 0's and 1's
such that:

(1) peP & q<Sp—>qeP;
‘and

(2) (ypeP)(gq, reP) (q and r are incompatible extensions of p),
where q < p denotes that p 1is an extension of q. TFor a perfect

tree P, [P] denotes the set of all infinite paths through P:
[P] = {£e2”: (yn)E(n) eP}.

We say that P 1is J-pointed if:

(3) (VEe PD(w (3, P) 2w (3, £) & Pel [£D).

Note that if P is J-pointed then it is _SJ-pointed in the sense of

Sacks [4:2.1], but not vice versa.

Lemma 5. Suppose P 1is J-pointed. If X € w and PjAIX, then

there exists a J-pointed Q £ P such that (QE\IX.

Proof. 1In [4:2.3], Sacks constructed a perfect subtree Q of

P  such that:
(4) Q 1is recursive in P and f for every fe [Q];

and

To see Q is J-pointed in our sense, fix fe [Q]. Since P. is J-

pointed and f e [P], by (3), we have:

(6) P e Lwl(J,P)[f]'
Clearly:
(7) f e Lwl(J,P)[f]'



From (4) (6) and (7), we obtain:

8) Qe Lml(J,P)[f].

From (5) and the assumption P_s;IX, we see:

) w0, ?) 2w, Q.

From (8) and (9), we obtain QEELwl(J’Q)[f]. , O

For any ordinal §, {S}f denotes the &-th element of L[f] in
the canonical wellordering on L{f]. A perfect tree P 1is said to be

uniformly J-pointed if there exists an ordinal & such that:

(10) ((Vfe[P](P= {S}f & cS<wl(J, £)).

Obviously, uniformly J-pointed perfect trees are J-pointed. TLet: a>w

be a countable |a|_-recursively inaccessible ordinal and K a generic

S
function over La in the sense of the unbounded Levy forcing. Observe
that if P is uniformly J—pbinted and PesLa[K] then there exists a
§ <o which satisfies (10) since the leftmost path fP through P is
recursive in P and so wl(J, fP) ézwl(J, P) < o.

Let M be a countable admissible set and P be a perfect tree in
Mf Then P becomes a partially ordered set as usual. The forcing with
P as the set of conditions is called the local Cohen forcing over M
and denoted by ”ﬁ , or simply by Ifg. If fe[P] 4is generic with

respect to Hg, then M[f] is an admissible set, and so is Lu[f],

where U = M N On.

Lemma 6. For any £ <o and any J-pointed perfect tree P in

La[K]’ there exists a uniformly J-pointed perfect tree Q c P such that

\
L

E<wl(J, Q) and QeLa[K].



Proof. Since £ is countable in La[K], there is a real XGLG.{K]
such that & 1is recursive in X. By Lemma 5, there is a J-pointed

»

perfect subtree P, ;of P such th;t PlEJX. Then»vv‘re see £<wl(J, Pl)’

and Pl eLa[K] by Lemmda 4. Thus, we may assume E<w1(J, P) from the

beginning. Put M =1L (1,P) [P]. Consider the local Cohen forcing relation
l b

H—% over M. Since P is J—pointed, we have:

(1) Ee[PhoW, P Lw W, B;
and

(12) (VEe [P @y <w (I, P) {y}* = P,
By (12), there exists a poeP 'karid y<wl(J, P) such that:
: . P,. . g .
(13). », “—ﬁ FY} =P,

where J 1is the canonical name which denotes the generic reals. As in

[4: 2.10], we can construct a perfect tree Q S P such that:

(14) Qe Lwl(J,P) [P];

and

(15) (Vvfe [qQ]) {y}f = P.

From (14), we can find a 5<cul(J, P) such that {G}P = Q. So, by (15),

there is an ¢ <wl(J, P) such that:
- £
(16) (¥£e [q]) {e}” = Q.

let £, be the leftmost branch of Q. Then, by (11):

an wl(J, P) < wl(J, f

S g <u (s Q.

Hence, from (16), we see that Q is uniformly J-pointed. By (17),



e |

we also see €<wl(J, Q). Since PELOL[K]’ we have wl(J, P) £ a, and

so Qel 2] < L, [K]. O

wl(J,P)
Let L be a first-order language. A Hi‘ formula in £ is a

second-order formula of the form:
(VSl) : (VSm) P,

where Sl,'-- ,Sm are predicate variables and Y 1is first-order formula

in the expanded language &£ U {Sl, v ,Sm}.

Lemma 7. Suppose A is a countablé admissible set such that weA
and L €A is a first-order language. Let G(Xl,”-,xn) be a Hi
formula in &£ . Then there exists a I formula @(xl,-“,xn, y) such

1

that for any structure M = <M, --+> €A for £ and any a ,"',aneM:

1

A F oG, M) <> Tk 8(ay,-ee,a ).

Proof. This is well-known. See, e.g‘., Barwise [2: IV. 3.1]. O

Using this lemma, we obtain the following lemma.

Lemma 8. The set of all uniformly J-pointed perfect trees in

La[K] is Zl over Loa[K]°

Proof. Put O = |al. , (recall that J=JS). Let P be a perfect
Lroor g a

tree in LOL[K] and &8<o. Let B(P, 8, 0) denote the least admissible
ordinal B <a such that max(8, 0, w) <B and Pe LB[K] . The function
B is Zl over LOL[K]. We can easily find a Hi formula © in the

language of set theory such that for any perfect tree PELOL[K]:

P is uniformly J-pointed <—> (36 <a)lL [K] F 3(p, 6, 0).

B(?,S,0)

Thus the lemma follows from Lemma 7. - C
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§3. Forcing with uniform Jg—pointed perfect trees.

Suppose Ials >0 and put J=Ji . Let yoc >w be a countable
]als—recursively inaccessible ordinal and K a generic function with
respect to the unbounded Levy forcing over LOL, which we fix throughout
this section.

Let L (a, T) be a ramified language ;ontaining names for all
members of La[f]. i(a, 7)) includes: a numeral n for each 'neu),
unranked variables X Y52, 77t :anked variables XB, yB, zB, .o
for each B <a; and abstractiqn operatér ~. ‘It is intended that J

denotes {new: f(n) =1}, that x ranges over La{f], that XB ranges

over Lg[f], and that‘ §B¢(x8) denotes the set:
e Ly[£] « LlEl "k o0},

C(B) is the set of names for elementé of LB[f] vand ‘C = 'B\ga‘C('B).’

Let g:’ denote the set of all uhiformly J-pointed perfect trees
in La[K]. P,Q, R, :+- denote the members of @ For a ranked sentence
® of £L(a, T) and Pe P, let o(Pb, ¢) be the least admissible
ordinal p<da such that PELQ_[K] émd rank(d)) <p. The function p is
Zl over LOL[K]. The forcing relation P H— ¢, where ¢ 1is a sentence
of L (a, ¥), is defined inductively:

(1) ¢ is ranked. P|—¢ iff (Vfe [P])L (£] E ¢;

p(P,®)
(2) ¢ v is not ranked. P |~ ¢ v iff Pl—¢ or Pl—1;

(3) (HXB)(b(xB) is not ranked. P | (3x8)¢(x8) if Pllo¢(c) for

some ce C(R);
(4) Pl (HX)¢(X) iff Pl ¢(c) for some ceC;

(5) ¢ 1is not ranked. P |T1¢ iff (vQ S P)3(Q |F¢).



Using Lemma 7 and 8, it is easy to see that the forcing relation

P H'- ¢, restricted Zl sentences ¢, is I, over Ld{K]'

1

Lemma 9. For each P and ¢, there exists a Q S P such that

Q¢ or Q- T9.

Proof. In view of (5), we may assume that ¢ is ranked. By Lemma 6,
we may also assume that cbel LG[P] for some P-admissible ¢ such that
§ <wl(J, P). Then, in 'L(S[P], 'all sef:s are countable. Thus, in Ls [P1,

we can enumerate all ranked sentences of rank_<___rank(¢) :

¢= d)o, ¢l’ --.’¢‘ s "t (nsem).’

n

Let ”3 be the local Cohen forcing relation over Ls[P]. In Lg[P],

we can construct a family <qS :seSeq(2) > of elements of P such that:

(6) q H‘ﬁ ¢, or qs,‘”'—P_] ¢ » where n = 1h(s);

s

and

(7Y ¢ are incompatible extensions of qs s

and Uz

$<0> 1>

whgre Seq(2) is ‘the set of all finite sequences of 0's and 1's.’
Let Q = {qeP : (d@s) cigqu. - Then by (7) Q 1is a perfect subtree of P.
By (6), it is easy to see that Q H—-d) or Q H-'—I ® . Since QELS[P],
Q= {\{}P for some v <&8. Therefore Q 1is uniformly J-pointed because
P is. | O
w

A real f e 2 is said to be generic if for every dense subset
.,@ of Z@ which is definable over LOL{K] there is a P <& such that
f € [P]. For every PE€ §, there is a generic f such that £ € [P].

From Lemma 9, it follows that for every generic f and sentence ©o:

L, (£] E ¢ iff @p)(felP]l & P | ¢).
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Lemma 10. If f 1is generic, then Loc{f] is admissible.

Proof. We need to show that L,[f] satisfies the AO Collection.
Let ¢ (%, y) be a formula of of'(ot, 7) with no unranked quantifiers.
We claim that if P H—- (vyn) (Ay) $(n, y) then there exists a Q € P and
a2 B<o such that Q |- (vn) (E{yB)cp(n,‘ yB) . The proof of this claim is
almogt the same as that of [4: 3.12] with some notational changes.
S0, we omit the proof here. ‘Fro;n the claim, it follows that La[f]
satisfies the A Collection. O

0

Proof of Theorem 1. Let 0o >w be a countable Ials—recursively

and J=JS .
a

inaccessible ordina} and K be as before. Put 0 = |a|S
In the case 0=0, TheoremAl is exactly Theorem 2, which has already
been established by éacks [4]. So we may assume o0 >0. Let foe ¥ be
a generic real over La[K] with respect to the forcing with uniform
J-pointed perfect trees. By Lemma 6, for each £ <q, the set

{fpep:¢g <wl(J, P)} is den;se in . It is obviously definable over

L [K]. Therefore there is a Pe § such that foe [P] and £<wl'(J, P).

o

Since P is J-pointed, we have:
£ < wl(J, P) L w (7, fo)'

Thus, we have a;wl(J, fo). To see a = wl(J,» fO)" vwe_ must show that
aeRI(o, fo). At first we consider the case wheré g=7T1+1 for some T.
It is sufficient to prove that o 1is a limit of ordinals in RI(T, fo),
since then by induction on T we can show that ae€ RI(T, fo), (ﬁote that
aeRI(0, fo) by Lemma 10). Sx{ppose £ <a. We shall show that the following

set &, is dense in % -
S .

o@g ={Pe®:@S<a)(E<S & (VEe [P])SeRI(T, £))}.
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Assume this can be done. Using Lemma 7, it is easy to see that L

g

is ’Zl over Lu{K]. Therefore, for every £ <a, there exists a d&<q
such that £<§ and & eRI(T, fo).

To show that éDE is dense in 53, take an arbitragy Pe &3.
By Lemma 6, we may assume E‘<wl(J, P). Take a d§eRI(T, P) .so that
£<8§ <wl(J, P). Such a § exists because wl(J, P) is a limit of
ordinals in RI(T, P). Consider the local Cohen forcing relation IFE
over LS[P]’ Let st be the next P-admissible ordimal of . Then,

L6[P} is countable }n L6+[P]' So we can enumerate inside L6+[P]

all sentences of the appropriate forcing language:

¢0, ¢1’...3 ¢ ";' (nG(u).

n

As in the proof of Lemma 9, we can construct a perfect subtree Q45L6+[P]

of P such that:
(vfe [Q]) £ 1is generic with respect to iFE.

Q  is uniformly J-pointed since QEEL6+[P], 6+~<ml(J, P) and P is
uniformly J-pointed. To show that §eRI(t, £f) for all fe [Q], take
fe [Q]. 'Let 8:i6 be an arbitrary P-admissible ordinal >w, and !hg
be the local Cohen forcing relation over LE[P]. It is easy to see that
f 1is generic with respect to [F%, and so B is f-admissible.
From this, by induction on T, we see that &§eRI(T, f).

Now we consider the case whre ¢ 1is a limit ordinal. The proof
is carried out in the same way. For any &<o and any T<0, let ‘EDET

be the set:
{Pe P:(@8<a)(E<S & (Vfe [P]) SeRI(T, £)}. >

Then éE%T is dense in §’ and definable over Lu[K]' Therefore, we

have that o = wl(J, f for any generic fo with respect to H—. e

o
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