<table>
<thead>
<tr>
<th>Title</th>
<th>Countable J^S_a-admissible ordinals (LOGIC AND THE FOUNDATIONS OF MATHEMATICS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>SHINODA, Juichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1984(516):79-91</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1984-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/98387</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Countable J_S^a-admissible ordinals

Juichi SHINODA (篠田 晃一)

Department of Mathematics
College of General Education
Nagoya University

§0. Introduction.

In [3], Platek constructs a hierarchy of jumps J_S^a indexed by elements a of a set 0^S of ordinal notations. He asserts that a real $X \subseteq \omega$ is recursive in the superjump S if and only if it is recursive in some J_S^a. Unfortunately, his assertion is not correct as is shown in [1]. In [1], it also has been shown that an ordinal $\alpha>\omega$ is J_S^a-admissible if it is $|a|_S$-recursively inaccessible, where $|a|_S$ is the ordinal denoted by a.

Let A be an arbitrary set. We say that an ordinal α is A-admissible if the structure $\langle \mathbb{L}_\alpha[A], \in, A \cap \mathbb{L}_\alpha[A] \rangle$, which we will denote by $\mathbb{L}_\alpha[A]$ for simplicity, is admissible, a model of the Kripke-Platek set theory KP, where $\mathbb{L}_\alpha[A]$ is the sets constructible relative to A in fewer than α steps. We use ω^A_1 or $\omega_1(A)$ to denote the first A-admissible ordinal $\alpha>\omega$, and use $\omega_1(A_1, \ldots, A_n)$ for $\omega_1(\langle A_1, \ldots, A_n \rangle)$.

The purpose of this paper is to prove the following theorem.

Theorem 1. Suppose $a \in 0^S$ and $\alpha>\omega$ is a countable $|a|_S$-recursively inaccessible ordinal. Then, there exists a real $X \subseteq \omega$ such that $\alpha=\omega_1(J_S^a, X)$.

In the case $|a|_S = 0$, $J_S^a = \mathcal{2}E$, the Kleene object of type 2, and $\omega_1(\mathcal{2}E, X) = \omega_1^X$ for all reals $X \subseteq \omega$. α is an admissible ordinal if and only if it is 0-recursively inaccessible. Therefore, Theorem 1 is an extension of the following theorem of Sacks.
Theorem 2. (Sacks [4]). If $\alpha > \omega$ is a countable admissible ordinal, then there exists a real X such that $\alpha = \omega_1^X$.

Sacks also showed that the real X mentioned in Theorem 2 can be taken to have the minimality property:

$$\omega_1^Y < \alpha \text{ for every } Y \text{ of lower hyperdegree than } X.$$

Likewise, we can show that for every countable $|a|_S$-recursively inaccessible ordinal $\alpha > \omega$ there is a real X such that:

$$\alpha = \omega_1(J^S_a, X);$$

and

$$\omega_1(J^S_a, Y) < \alpha \text{ for every } Y \text{ of lower } J^S_a \text{-degree than } X.\) \)

Theorem 1 will be proved by the forcing with J^S_a-pointed perfect trees. Let $\alpha > \omega$ be a countable $|a|_S$-recursively inaccessible ordinal and X be a generic real with respect to this forcing relation. Then $L_\alpha[X]$ is admissible and $\alpha \leq \omega_1(J^S_a, X)$. To see $\omega_1(J^S_a, X) < \alpha$, we must show that X preserves sufficiently many admissible ordinals below α to make α to be $<J^S_a, X>$-admissible.

§1. $|a|_S$-recursively inaccessible ordinals.

A normal type 2 object is a total function F from ω to ω such that the Kleene object 2_E of type 2:

$$2_E(f) = \begin{cases}
0 & \text{if } (\exists n)f(n) = 0, \\
1 & \text{otherwise},
\end{cases}$$

is recursive in F. The superjump $S(F)$ of F is a type 2 object.

1) For J^S_a-degrees, the reader may refer to [5].
defined by:

\[S(\mathcal{F})(\langle n, f \rangle) = \begin{cases} 0 & \text{if } \{n\}^\mathcal{F}(f) \text{ is defined,} \\ 1 & \text{otherwise.} \end{cases} \]

Platek [3] defines a hierarchy \(J^S_a \) of type 2 objects along with a set \(O^S \) of ordinal notations, starting from \(2^\mathcal{E} \) and iterating the superjump operation transfinitely.

An ordinal \(\alpha \) is 0-recursively inaccessible if it is admissible. \(\alpha \) is \((\sigma+1)\)-recursively inaccessible if it is \(\sigma \)-recursively inaccessible and a limit of \(\sigma \)-recursively inaccessible ordinals. For limit \(\lambda \), \(\alpha \) is said to be \(\lambda \)-recursively inaccessible if it is \(\sigma \)-recursively inaccessible for all \(\sigma < \lambda \). Let \(X \) be an arbitrary set. \(\sigma \)-recursively-in-\(X \) inaccessible ordinals are defined in the same way starting from \(X \)-admissible ordinals. By \(RI(\sigma, X) \), we denote the class of all \(\sigma \)-recursively-in-\(X \) inaccessible ordinals. In the case \(X = \emptyset \), \(RI(\sigma, \emptyset) \) is the class of all \(\sigma \)-recursively inaccessible ordinals.

The following lemma, due to Aczel and Hinman, gives a characterization of \(\omega_1(J^S_a, X) \) for \(X \subseteq \omega \).

Lemma 3. (Aczel and Hinman [1]). Suppose \(a \in O^S \) and \(\sigma = |a|_S \), the ordinal denoted by \(a \). Then \(\sigma < \omega_1(J^S_a) \), and for any ordinal \(\alpha > \omega \) and \(X \subseteq \omega \):

\[\alpha \in RI(\sigma, X) \implies \alpha \text{ is } \langle J^S_a, X \rangle \text{-admissible.} \]

\(\omega_1(J^S_a, X) \) is the least ordinal in \(RI(\sigma, X) \).

Let \(\lambda_0 \) be the least ordinal \(\lambda \) such that \(\lambda \) is \(\lambda \)-recursively inaccessible. Lemma 3 shows that \(|O^S| = \sup\{|a|_S : a \in O^S\} \leq \lambda_0\). In [1], it has shown that \(|O^S| = \lambda_0\).

Let \(\alpha > \omega \) be a countable admissible ordinal. Using the unbounded
Levy forcing over L_α, we can add to L_α a generic function $K: (\alpha - \omega) \times \omega \rightarrow \alpha$ such that if $\omega \leq \beta < \alpha$ then the function $\lambda n K(\beta, n)$ is a bijection from ω onto β. Therefore, in $L_\alpha[K]$ all sets are countable. It has been shown in [4] that $<L_\alpha[K], \in, K>$ is an admissible structure in which Σ_1-DC (Σ_1-Dependent Choice) holds.

Suppose $a \in O^S$. For any $X, Y \subseteq \omega$, $X \leq_{J_a} Y$ means X is recursive in $<J_a^S, Y>$, which is equivalent to that $X \in L_\rho[Y]$, where $\rho = \omega_1(J_a^S, Y)$.

X and Y have the same J_a^S-degree, $X \equiv_{J_a} Y$, if $X \leq_{J_a} Y$ and $Y \leq_{J_a} X$.

$X <_{J_a} Y$ if $X \leq_{J_a} Y$ but $X \neq_{J_a} Y$.

Lemma 4. Suppose $\alpha > \omega$ is a countable $|a|^S_\alpha$-recursively inaccessible ordinal and K is a generic function with respect to the unbounded Levy forcing over L_α. Then for any $X, Y \subseteq \omega$:

$$X \leq_{J_a} Y \quad \& \quad Y \in L_\alpha[K] \quad \rightarrow \quad X \in L_\alpha[K].$$

Proof. The unbounded Levy forcing preserves admissible ordinals. That is, if $\beta < \alpha$ is an admissible ordinal then β is K-admissible.

This is because for admissible β, $K \upharpoonright (\beta - \omega) \times \omega$ is generic with respect to the unbounded Levy forcing over L_β. Therefore, if $Y \in L_\alpha[K]$ then α is $|a|^S_\alpha$-recursively-in-Y inaccessible, so $L_\rho[Y] \subseteq L_\alpha[K]$, where $\rho = \omega_1(J_a^S, Y)$. Thus we have the lemma.

§2. J_a^S-pointed perfect trees.

Let a be an element of O^S such that $|a|^S > 0$. We put $J = J_a^S$ for simplicity.
A perfect tree is a set P of finite sequences of 0's and 1's such that:

1. $p \in P$ and $q \subseteq p \rightarrow q \in P$;

and

2. $(\forall p \in P)(\exists q, r \in P)$ (q and r are incompatible extensions of p),

where $q \subseteq p$ denotes that p is an extension of q. For a perfect tree P, $[P]$ denotes the set of all infinite paths through P:

$$[P] = \{ f \in 2^\omega : (\forall n)\bar{f}(n) \in P \}.$$

We say that P is J-pointed if:

3. $(\forall f \in [P])(\omega_1(J, P) \leq \omega_1(J, f) \& P \in L_{\omega_1(J, P)}[f])$.

Note that if P is J-pointed then it is \leq_J-pointed in the sense of Sacks [4:2.1], but not vice versa.

Lemma 5. Suppose P is J-pointed. If $X \subseteq \omega$ and $P \leq_J X$, then there exists a J-pointed $Q \subseteq P$ such that $Q =_J X$.

Proof. In [4:2.3], Sacks constructed a perfect subtree Q of P such that:

4. Q is recursive in P and f for every $f \in [Q]$;

and

5. $Q =_J X$.

To see Q is J-pointed in our sense, fix $f \in [Q]$. Since P is J-pointed and $f \in [P]$, by (3), we have:

6. $P \in L_{\omega_1(J, P)}[f]$.

Clearly:

7. $f \in L_{\omega_1(J, P)}[f]$.

- 5 -
From (4), (6) and (7), we obtain:

\[(8) \quad Q \in L_{\omega_1(J,P)}[f].\]

From (5) and the assumption \(P \leq J X\), we see:

\[(9) \quad \omega_1(J, P) \leq \omega_1(J, Q).\]

From (8) and (9), we obtain \(Q \in L_{\omega_1(J,Q)}[f]. \)

For any ordinal \(\delta, \{\delta\}^f \) denotes the \(\delta \)-th element of \(L[f] \) in the canonical wellordering on \(L[f] \). A perfect tree \(P \) is said to be uniformly \(J \)-pointed if there exists an ordinal \(\delta \) such that:

\[(10) \quad (\forall f \in \{P\})(P = \{\delta\}^f \& \, \delta < \omega_1(J, f)).\]

Obviously, uniformly \(J \)-pointed perfect trees are \(J \)-pointed. Let \(\alpha > \omega \) be a countable \(|a|_S \)-recursively inaccessible ordinal and \(K \) a generic function over \(L_\alpha \) in the sense of the unbounded Levy forcing. Observe that if \(P \) is uniformly \(J \)-pointed and \(P \in L_\alpha[K] \) then there exists a \(\delta < \alpha \) which satisfies (10) since the leftmost path \(f_P \) through \(P \) is recursive in \(P \) and so \(\omega_1(J, f_P) \leq \omega_1(J, P) < \alpha \).

Let \(M \) be a countable admissible set and \(P \) be a perfect tree in \(M \). Then \(P \) becomes a partially ordered set as usual. The forcing with \(P \) as the set of conditions is called the local Cohen forcing over \(M \) and denoted by \(\mathbb{P}_M \), or simply by \(\mathbb{P} \). If \(f \in \{P\} \) is generic with respect to \(\mathbb{P} \), then \(M[f] \) is an admissible set, and so is \(L_\mu[f] \), where \(\mu = M \cap \text{On} \).

\textbf{Lemma 6.} For any \(\xi < \alpha \) and any \(J \)-pointed perfect tree \(P \) in \(L_\alpha[K] \), there exists a uniformly \(J \)-pointed perfect tree \(Q \leq P \) such that \(\xi < \omega_1(J, Q) \) and \(Q \in L_\alpha[K] \).
Proof. Since ξ is countable in $L_\alpha(K)$, there is a real $X \in L_\alpha(K)$ such that ξ is recursive in X. By Lemma 5, there is a J-pointed perfect subtree P_1 of P such that $P_1 \equiv J X$. Then we see $\xi < \omega_1(J, P_1)$, and $P_1 \in L_\alpha[K]$ by Lemma 4. Thus, we may assume $\xi < \omega_1(J, P)$ from the beginning. Put $M = L_{\omega_1(J, P)}[P]$. Consider the local Cohen forcing relation \Vdash_M^{P} over M. Since P is J-pointed, we have:

(11) $(\forall f \in [P]) \omega_1(J, P) \leq_1 \omega_1(J, f)$;

and

(12) $(\forall f \in [P]) (\exists \gamma < \omega_1(J, P)) \{\gamma\}^P = P$.

By (12), there exists a $p_0 \in P$ and $\gamma < \omega_1(J, P)$ such that:

(13) $p_0 \Vdash_M^{P} \{\gamma\}^P = P$,

where \mathcal{J} is the canonical name which denotes the generic reals. As in [4:2.10], we can construct a perfect tree $Q \subseteq P$ such that:

(14) $Q \in L_{\omega_1(J, P)}[P]$;

and

(15) $(\forall f \in [Q]) \{f\}^P = P$.

From (14), we can find a $\delta < \omega_1(J, P)$ such that $\{\delta\}^P = Q$. So, by (15), there is an $\varepsilon < \omega_1(J, P)$ such that:

(16) $(\forall f \in [Q]) \{\varepsilon\}^P = Q$.

Let f_Q be the leftmost branch of Q. Then, by (11):

(17) $\omega_1(J, P) \leq \omega_1(J, f_Q) \leq \omega_1(J, Q)$.

Hence, from (16), we see that Q is uniformly J-pointed. By (17),
we also see $\xi < \omega_1(J, Q)$. Since $P \in L_\alpha[K]$, we have $\omega_1(J, P) \leq \alpha$, and so $Q \in L_{\omega_1(J, P)}[P] \subseteq L_\alpha[K]$. Let \mathcal{L} be a first-order language. A Π^1_1 formula in \mathcal{L} is a second-order formula of the form:

$$(\forall S_1) \cdots (\forall S_m) \psi,$$

where S_1, \ldots, S_m are predicate variables and ψ is first-order formula in the expanded language $\mathcal{L} \cup \{S_1, \ldots, S_m\}$.

Lemma 7. Suppose A is a countable admissible set such that $\omega \in A$ and $\mathcal{L} \in A$ is a first-order language. Let $\theta(x_1, \ldots, x_n)$ be a Π^1_1 formula in \mathcal{L}. Then there exists a Σ^1_1 formula $\phi(x_1, \ldots, x_n, y)$ such that for any structure $\mathcal{M} = \langle M, \ldots \rangle \in A$ for \mathcal{L} and any $a_1, \ldots, a_n \in M$:

$$A \vdash \phi(a_1, \ldots, a_n, \mathcal{M}) \iff \mathcal{M} \models \theta(a_1, \ldots, a_n).$$

Proof. This is well-known. See, e.g., Barwise [2: IV. 3.1].

Using this lemma, we obtain the following lemma.

Lemma 8. The set of all uniformly J-pointed perfect trees in $L_\alpha[K]$ is Σ^1_1 over $L_\alpha[K]$.

Proof. Put $\sigma = \vert a \vert_S$, (recall that $J = J^S_\alpha$). Let P be a perfect tree in $L_\alpha[K]$ and $\delta < \alpha$. Let $\beta(P, \delta, \sigma)$ denote the least admissible ordinal $\beta < \alpha$ such that $\max(\delta, \sigma, \omega) < \beta$ and $P \in L_\beta[K]$. The function β is Σ^1_1 over $L_\alpha[K]$. We can easily find a Π^1_1 formula θ in the language of set theory such that for any perfect tree $P \in L_\alpha[K]$:

$$P \text{ is uniformly } J \text{-pointed } \iff (\exists \delta < \alpha) L_\beta(P, \delta, \sigma)[K] \models \theta(P, \delta, \sigma).$$

Thus the lemma follows from Lemma 7.
§3. Forcing with uniform J^S_a-pointed perfect trees.

Suppose $|a|^S > 0$ and put $J = J^S_a$. Let $\alpha > \omega$ be a countable $|a|^S$-recursively inaccessible ordinal and K a generic function with respect to the unbounded Levy forcing over L_α, which we fix throughout this section.

Let $\mathcal{L}(\alpha, \mathcal{T})$ be a ramified language containing names for all members of $L_\alpha[f]$. $\mathcal{L}(\alpha, \mathcal{T})$ includes: a numeral n for each $n \in \omega$, unranked variables x, y, z, \ldots; ranked variables $x^\beta, y^\beta, z^\beta, \ldots$ for each $\beta < \alpha$; and abstraction operator $^\phi$. It is intended that \mathcal{T} denotes $\{n \in \omega: f(n) = 1\}$, that x ranges over $L_\alpha[f]$, that x^β ranges over $L_\beta[f]$, and that $^\phi(x^\beta)$ denotes the set:

$$\{x \in L_\beta[f] : L_\beta[f] \models \phi(x)\}.$$

$C(\beta)$ is the set of names for elements of $L_\beta[f]$ and $C = \bigcup_{\beta<\alpha} C(\beta)$.

Let \mathcal{F} denote the set of all uniformly J-pointed perfect trees in $L_\alpha[K]$. P, Q, R, \ldots denote the members of \mathcal{F}. For a ranked sentence ϕ of $\mathcal{L}(\alpha, \mathcal{T})$ and $P \in \mathcal{F}$, let $\rho(P, \phi)$ be the least admissible ordinal $\rho < \alpha$ such that $P \in L_\rho[K]$ and rank(ϕ) $\leq \rho$. The function ρ is Σ_1 over $L_\alpha[K]$. The forcing relation $P \models \phi$, where ϕ is a sentence of $\mathcal{L}(\alpha, \mathcal{T})$, is defined inductively:

1. ϕ is ranked. $P \models \phi$ iff $(\forall \phi \in [P]) L_{\rho(P, \phi)}[f] \models \phi$;

2. $\phi \lor \psi$ is not ranked. $P \models \phi \lor \psi$ iff $P \models \phi$ or $P \models \psi$;

3. $(\exists x^\beta)\phi(x^\beta)$ is not ranked. $P \models (\exists x^\beta)\phi(x^\beta)$ if $P \models \phi(c)$ for some $c \in C(\beta)$;

4. $P \models (\exists x)\phi(x)$ iff $P \models \phi(c)$ for some $c \in C$;

5. ϕ is not ranked. $P \models \neg \phi$ iff $(\forall \psi \subseteq P) \neg (Q \models \phi)$.
Using Lemma 7 and 8, it is easy to see that the forcing relation $P \models \phi$, restricted Σ_1 sentences ϕ, is Σ_1 over $L_\alpha[K]$.

Lemma 9. For each P and ϕ, there exists a $Q \subseteq P$ such that $Q \models \phi$ or $Q \models \neg \phi$.

Proof. In view of (5), we may assume that ϕ is ranked. By Lemma 6, we may also assume that $\phi \in L_\delta[P]$ for some P-admissible δ such that $\delta < \omega_1(J, P)$. Then, in $L_\delta[P]$, all sets are countable. Thus, in $L_\delta[P]$, we can enumerate all ranked sentences of rank $\leq \text{rank}(\phi)$:

$$\phi = \phi_0, \phi_1, \ldots, \phi_n, \ldots \ (n \in \omega).$$

Let \models_P^P be the local Cohen forcing relation over $L_\delta[P]$. In $L_\delta[P]$, we can construct a family $\langle q_s : s \in \text{Seq}(2) \rangle$ of elements of P such that:

(6) $q_s \models_P^P \phi_n$ or $q_s \models_P \neg \phi_n$, where $n = \text{lh}(s)$; and

(7) $q_s^{<0}$ and $q_s^{<1}$ are incompatible extensions of q_s,

where $\text{Seq}(2)$ is the set of all finite sequences of 0's and 1's.

Let $Q = \{ q \in P : (\exists s) q \subseteq q_s \}$. Then by (7) Q is a perfect subtree of P. By (6), it is easy to see that $Q \models \phi$ or $Q \models \neg \phi$. Since $Q \in L_\delta[P]$, $Q = \{ \gamma \}^P$ for some $\gamma < \delta$. Therefore Q is uniformly J-pointed because P is.

A real $f \in \omega$ is said to be generic if for every dense subset \mathcal{D} of \mathcal{P} which is definable over $L_\alpha[K]$ there is a $P \in \mathcal{D}$ such that $f \in [P]$. For every $P \in \mathcal{P}$, there is a generic f such that $f \in [P]$. From Lemma 9, it follows that for every generic f and sentence ϕ:

$$L_\alpha[f] \models \phi \text{ iff } (\exists P)(f \in [P] \& P \models \phi).$$
Lemma 10. If \(f \) is generic, then \(L_\alpha[f] \) is admissible.

Proof. We need to show that \(L_\alpha[f] \) satisfies the \(\Delta_0 \) Collection. Let \(\phi(x, y) \) be a formula of \(L(\alpha, \mathcal{J}) \) with no unranked quantifiers. We claim that if \(P \models (\forall n)(\exists y)\phi(n, y) \) then there exists a \(Q \subseteq P \) and a \(\beta < \alpha \) such that \(Q \models (\forall n)(\exists y^\beta)\phi(n, y^\beta) \). The proof of this claim is almost the same as that of [4: 3.12] with some notational changes. So, we omit the proof here. From the claim, it follows that \(L_\alpha[f] \) satisfies the \(\Delta_0 \) Collection. \(\square \)

Proof of Theorem 1. Let \(\alpha > \omega \) be a countable \(|a|_S \)-recursively inaccessible ordinal and \(K \) be as before. Put \(\sigma = |a|_S \) and \(J = J^S_a \).

In the case \(\sigma = 0 \), Theorem 1 is exactly Theorem 2, which has already been established by Sacks [4]. So we may assume \(\sigma > 0 \). Let \(f_0 \in 2^\omega \) be a generic real over \(L_\alpha[K] \) with respect to the forcing with uniform J-pointed perfect trees. By Lemma 6, for each \(\xi < \alpha \), the set \(\{P \in \mathcal{P} : \xi < \omega_1(J, P) \} \) is dense in \(\mathcal{P} \). It is obviously definable over \(L_\alpha[K] \). Therefore there is a \(P \in \mathcal{P} \) such that \(f_0 \in [P] \) and \(\xi < \omega_1(J, P) \).

Let \(P \) be J-pointed, we have:

\[\xi < \omega_1(J, P) \leq \omega_1(J, f_0). \]

Thus, we have \(\alpha \leq \omega_1(J, f_0) \). To see \(\alpha = \omega_1(J, f_0) \), we must show that \(\alpha \in \text{RI}(\sigma, f_0) \). At first we consider the case where \(\sigma = \tau + 1 \) for some \(\tau \).

It is sufficient to prove that \(\alpha \) is a limit of ordinals in \(\text{RI}(\tau, f_0) \), since then by induction on \(\tau \) we can show that \(\alpha \in \text{RI}(\tau, f_0) \), (note that \(\alpha \in \text{RI}(0, f_0) \) by Lemma 10). Suppose \(\xi < \alpha \). We shall show that the following set \(D_\xi \) is dense in \(\mathcal{P} \):

\[D_\xi = \{ P \in \mathcal{P} : (\exists \delta < \alpha)(\xi < \delta \ \& \ (\forall f \in [P])\delta \in \text{RI}(\tau, f) \} \].

- 11 -
Assume this can be done. Using Lemma 7, it is easy to see that \mathcal{D}_ξ is Σ_1 over $L_\alpha[K]$. Therefore, for every $\xi < \alpha$, there exists a $\delta < \alpha$ such that $\xi < \delta$ and $\delta \in \text{RI}(\tau, f_0)$.

To show that \mathcal{D}_ξ is dense in \mathcal{P}, take an arbitrary $P \in \mathcal{P}$. By Lemma 6, we may assume $\xi < \omega_1(J, P)$. Take a $\delta \in \text{RI}(\tau, P)$ so that $\xi < \delta < \omega_1(J, P)$. Such a δ exists because $\omega_1(J, P)$ is a limit of ordinals in $\text{RI}(\tau, P)$. Consider the local Cohen forcing relation $|\cdot|^P$ over $L_\delta[P]$. Let δ^+ be the next P-admissible ordinal of δ. Then, $L_\delta[P]$ is countable in $L_{\delta^+}[P]$. So we can enumerate inside $L_{\delta^+}[P]$ all sentences of the appropriate forcing language:

$$\phi_0, \phi_1, \ldots, \phi_n, \ldots \quad (n \in \omega).$$

As in the proof of Lemma 9, we can construct a perfect subtree $Q \in L_{\delta^+}[P]$ of P such that:

$$(\forall f \in [Q]) f \text{ is generic with respect to } |\cdot|^P.$$
Q is uniformly J-pointed since $Q \in L_{\delta^+}[P]$, $\delta^+ < \omega_1(J, P)$ and P is uniformly J-pointed. To show that $\delta \in \text{RI}(\tau, f)$ for all $f \in [Q]$, take $f \in [Q]$. Let $\beta < \delta$ be an arbitrary P-admissible ordinal $> \omega$, and $|\cdot|^P_{\beta}$ be the local Cohen forcing relation over $L_\beta[P]$. It is easy to see that f is generic with respect to $|\cdot|^P_{\beta}$, and so β is f-admissible.

From this, by induction on τ, we see that $\delta \in \text{RI}(\tau, f)$.

Now we consider the case where σ is a limit ordinal. The proof is carried out in the same way. For any $\xi < \alpha$ and any $\tau < \sigma$, let $\mathcal{D}_{\xi \tau}$ be the set:

$$\{P \in \mathcal{P} : (\exists \delta < \alpha)(\xi < \delta \& (\forall f \in [P]) \delta \in \text{RI}(\tau, f)).\}$$

Then $\mathcal{D}_{\xi \tau}$ is dense in \mathcal{P} and definable over $L_\alpha[K]$. Therefore, we have that $\alpha = \omega_1(J, f_0)$ for any generic f_0 with respect to $|\cdot|$. \square
REFERENCES

[1] P. Aczel and P.G. Hinman, Recursion in the superjump, in:
Generalized Recursion Theory, edited by J.E. Fenstad and P.G. Hinman
(North-Holland, Amsterdam, 1974), 3-41.

Colloquium '69, edited by R.O. Gandy and C.E.M. Yates (North-Holland,
Amsterdam, 1971), 257-271.

[4] G.E. Sacks, Countable admissible ordinals and hyperdegrees,
Advances in Math., 19(1976), 213-262.

80(1980), 75-106.

Department of Mathematics
College of General Education
Nagoya University
Chikusa-ku, Nagoya 464, Japan