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On the indices and integral bases of abelian biquadratic fields

By ’
Toru Nakahara

| 1. Introdﬁcﬁioﬁ. Let K be»ap algebfaic numbef‘field over

the rationals Q with finite‘deéree. Z and“<9n denote the ring
of fational integers and the integer ring of K respectively. If
Ok = Z‘[o(]‘ for some number ® in K, it is caliéd that Uk has
a power basis. For a number Z irl C)K we denote by Ind & |

the group indek ((DK: z[g]) if ¥ 1is a primitive element of K
and O otherwise. Then the index m(K) of any field K is
defined by g.c.d. {Indg 3 E€ OK}. The minimum index ™(K) of
any K is defifxed by min {Ind"[; 7 € Ok, Q(‘7) = K} . In§2 we
shall give an estimate of the index m(K) without using the
decomposition theory of primes when K is any abelian biquadratic
field. In &3 we shall investigate some relations between m(K)

and an integral basis related to a problem of Hasse and construct
such a field K that the minimum index WM(K) 1is greater than

any given integer N applying a method of M. Hall[2].

2. An estimate of the indices. By [8] it is well known that
if a prime p divides the index in(K), then p is smaller than
the degreé [KR:Ql

In our situation we obtain more precisely the next lemma.

Lemma 1. For any abelian biquadratic field K over Q it

holds that if the number 2°%3& exactly divides the index m(K),
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then e <2 and e' < 1. Especially if the discriminant d(K)
of a field K 1is even, then e = 0,

Proof. i) The cyclic cases. Let X be a biquadratic character
with odd conductor n determined by the biquadratic residue
symbol. k, denotes the n-th cyclotomic field Q(&,), herein
g,= exp(2xi/n). Let G be the Galois grou;ﬁ of k,/Q. The group
<X > 1is a cyclic subgroup with order 4 of the character group
of G. Let K denote the subfield of k, correspoﬁding to
the kernel H of X . Then we have K = Q(7) with the Gauss

period 7 =x§€/—{:€:. We fix an element 6 in G such that

X(6) = i, and denote 0 (), 6*(%), 63(2) by ;', ‘zé”, %"'
respectively for % in K.

First we consider the case of odd conductor n. Since the set
{1, 7, 7', 7"} makes an integral basis of K, it is enough
for computation of the Ind £ to choose ¥ = X7+ y?(' + z?(" for
Z in K. Let n = /m be square-free for odd integers {=a* + tb?,
m where any prime factor of ? is congruent to 1 modulo 4 and
A=a+2bi=1mod 2(1 = i). Then by using the Gauss sum
T = %ﬂ(x)@f attached to X and the Jacobi sum T(%)l/T(Q(Z)

we obtain Ind% = YVId(E)/d(K)| = |cN«n|, where o= (cm + dVP)/2,
c=((x=2) —y)b=~(x=-2)ya, d=((x=y+2) =X -1) x
((x = 2)* + y*)m)/2. Herein d(3¥), N mean the discriminant of

a number ¥ , the norm with respect to Q(¥/)/Q respectively.

i) 1f /=1mod 8 and b=0, 4mod 8 (resp. b=+ 2 mod 8),
then for & = 27+ 7'_ - 7" (resp. ?7_+_7' from X( - 1) =={ b

9

m= 1 mod 4
) we have Indg =4 mod 8. i), If (:_—"Smod 8,

m= - 1 mod 4
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then for § = 7+ 7' -7'' we get Ind §= 1l mod 2. 1i), If
m=0mod 3 and a =0 mod 3 (resp. a =% 0 mod 3), then we
choose % =7 (resp. 7 +7'). Thus we have Ind g # 0 mod 3.
i), If m#£0mod 3 and a =0 mod 3, then b# 0 mod 3 and
for ¢ =7 4N, = bzl 1 =-22( - 1)m| mod 9 holds. When 1-2X( = 1)m
=0 mod 9, we reset 3% = 27 + 37'. - Then 4NAy,= b?|1 - 8X( — 1)m|
#0 mod 9. 1i). The case of m# 0 and a# 0 mod 3. For 3 =7
if &*Nan= |4b’m? = (1 = X( - l)m)zﬂ =0 mod 9 holds, then we
reset £ = 27 + 7''. If 4 NAX Ell‘b’m2 - (=% - 1)m)2£| =0
mod 9, then we have 1 — 2X( — 1)m= 0 mod 9 from (¢, 3) = 1.
Then we take again ¥ = 37+ 27''. If 4°Nd, =|4b'm* = (7 —X( - 1)
m)"€| = 0 mod 9, then 1 +X( — 1)m =0 mod 9 must hold. This is
a contradiction., By i),., we have e g2 and e' g 1.

Next we estimate the case of even conductor. At first we
consider the case of X =)<Lw9tg % , n=16/m, /m= 1 mod 2,

w) pX~1/2 (x*~1)/8
where %:(x) = (=1) i

biquadratic characterswith conductor 16 for ¥ = 0 and 1

are the even and the odd

respecti‘vely, and % , §/fm are the biquadratic, the quadratic

characters with conduétors / , m respectively. From X((n/2) + 1)
. 2 ((m/2)+1)x

= — 1, it follows that 7'' = 0’(7{) = % g,, = —;Z:

= —7. However it is known that {1, 7, 7', VT/Z} is an integral

basis of K, where d(K) = fn® and f = 8! is the conductor of-

Q(V8l) [3]. Then for % = x7+ y7' + z(Y£/2) we obtain Ind § =

IcNKfl, where &5 = cm + d(YE/2), c = - 2xy(a = b) + (x* = y*) x

(a + 2b), d = 2z* = X( - 1)(x* + y*)m. For 3%, §==7, we have

Ind 3, = |a + 2b/m*|(a + 2b)* = 2§| =1 mod 2. If a+ 2b= + 3mod 9
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and m# 0 mod 3, then Ind§ =+ 3 mod 9. If a + 2b =+ 3 mod ¢
(resp. Z#0 mod 3) and m =0 mod 3, then for %, = 7 + (V£/2)
we get IndZ, = |a + 2b||(a + 2b)*m* - 8l | =+ 3 mod 9 (resp.
#ZOmod 3). If a+2b=0mod 9 and m= 0 mod 3, then a — 2b
#0 mod 3 holds. Thus for g, = 7+ 7' + (Y£/2) we have 1Ind %,
=2|a - 2b|{ # 0 mod 3. 1In the case of (a + 2b)m # 0 mod 3,
~we have Ind%, #0mod 3 for a#-b mod 3, and put ¥ = 7+ ’Z',
then Ind¥ =+ 3mod 9 for a=-bmod 3. If a+ 2b=0mod 9
and mz#* 0 mod 3, then we have Indfgy # 0 mod 9. Therefore we
obtain e = 0 and e' £ 1. Secondly we treat the case of |
X=Xo¥my m -—-/m, m =0 mod 2. In this case the set
{1, 7 ﬂ(', 7"} is also not an integral basis of K. But
{l, 7 7', (1 + V?)/Z} is an integral basis, where d(K) = fn%,
£ =¢[3]. Then for ¥ = x7 + y7' + 2(1 + {7)/2 we have Ind%
= |cNay|, where Af= cm + dVE, c = - xya + (x* -= y*)2b,
d= (x*+y)(@/2) —X( = 1)z*. For %, =7+ 7" + (1 +Y])/2
we get IndfZ =1 mod 2. Put %, = 7+ 7'. If abm %0 mod 3,
then Ind%,% 0 mod 3. We choose 2, =7, §“= 7 + (1 + ¥P)/2.
If a =0 mod 3, then fr.om b;éO mod 3 we have Ind ;3“:" + 3
mod 9 for m#O mod 3 and Indfy ZOmod 3 for m =0 mod 3.
If b=0mod 3, then from a #0 mod 3 we obtain Ind%, £0
mod 3 for m#Omod 3 and Ind% =+ 3 mod 9 for m =0 mod 3.
Thus we have e = 0 and e’ < 1. |

ii) The non-cyclic cases. Without loss of generality we can
set K = Q(ym,, ¥fm,), where /m,m,_ is a square-free integer
and{> C. For brevity we denote (1 + YZm;)/2, (1 + V7/m,)/2

({¢ém, + Ym,m,)/2 by Ky Ry Y respectively. ii), If /m,s 1,
{m,= 2, 3 mod 4, then {1, «, 28 -1, 3/} is an integral basis
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of K and the field discriminant d(K) = lG[szmi holds. For

5, =d = (2= 1) + 2/ we can compute Ind%,= {m? =1 mod 2.

If (/ -—m,)m, 20 mod 3, then Ind §, 0 mod 3 follows. If

m, = 0 mod 3, then for 3, =A + (28 — 1) we have Ind%, = [z-mz
#O0mod 3. If / - m,= 0 mod 3, then !mzséo mod 3. We can
restrict m, # 0 mod 3. In the case of - m,= 0 mod 9, we have
{ - 4tm, 20 mod 9. Then Ind ¥, 0 mod 9. In the case of 7/ — m,
=+ 3mod 9, for 5,6 =o+ (2/3— 1) + ¥ we get Ind 3,

=|(f - m,)m?| = + 3 mod 9. Thus we obtain e =0 and e' < 1.

if {m= 3, /m,= 2 mod 4, then {1, 24 -1, 28-1, &}

ii),

2

is an integral basis and d(K) = 648'm’m?. By /= 1 mod 2,

/~m =2mod 4 for %, =) we have Ind ¥, =1 mod 2. Next if
(/-m)m,£0mod 3, then Ind%, # 0 mod 3 holds. If m,= 0
mod 3, then for 2, = (24— 1) + (28~ 1) we have Ind %,

= | (40) (4my = m,)] 0 mod 3. If l=m, =0 mod 9, then Zm, 0
mod 3. We can restrict m,# O mod 3. For 3,=2(28-1) + v
Ind%, = | (- m,)(25¢ - m,)(25m;)| = + 3 mod 9 holds. If ¢ - m,
=+ 3mod 9, then Ind%, = + 3 mod 9. Therefore we have

e=0 and e' g l, ii), If {m,= /m, = 1 mod 4, then

{1, 0,8, apt (L= 1)/8)2F=2p+ 1)) for {=m=m= 1mod 4
and {1, «, 3, «4p+ (1/2) F (({ - 1)/6)(26'= 28+ 1) | for

/=m = m, = 3 mod 4 are integral bases, where the sign is
positive if and only if m, <0 and m, < 0. For any integer 3
in K we have IndZ = 0 mod 2. >Moreover in the case of m, — m,
= 4 mod 8 (resp. =0 mod 8), for %, =a + 3 (resp. 24 +/3)

we get Ind 2, = 4 mod 8. If /(m, - m;) 0 mod 3, then Ind £,
# 0 mod 3. We denote by & the fourth numbers of the integral
bases. If /E 0 and m, - m,%# 0 mod 3, then for ?2, =X+ﬂﬁ + 26.
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we have Ind%, =|mm,(m - m2)| #£0mod 3. If /#0 and

m, -—m, = 0mod 9, then mm, % 0 mod 3 holds. If for §, = 20 +%
Ind %, = ]422(m2 — 4m,)| = 0 mod 9, then we have 3m,= 0 mod 9.
This is a contradiction. If ¢ # 0 mod 3 and m, = m, =+ 3 mod 9,
then IndZ = + 3 mod 9. Next if ! =0 mod 3 and m, -m,= + 3
mod 9, then Ind fz =+ 3 mod 9. Finally if / =0 mod 3 and

m ~m, =0 mod 9, then for £ =4+ 25 we have Ind § =+ 3

mod 9. The estimates of ii), , imply 1 <e<?2 and e' < 1.

Therefore we have proved Lemma 1.

3. Results. Works related to the problem of Hasse are found
in [1], [4], [5] and the references mentioned in [7]. From [6]
and [7] we have

Theorem 1. There exist infinitely many non-cyclic but abelian
(resp. exist cyclic) biquadratic fields over Q whose integer rings

have a power basis.

In our case by Lemma 1 the index m(K) is not larger than 12.

In fact it follows

Theorem 2. There exist infinitely many such abelian biquadratic
fields K over Q thatb the index is equal to 12 (resp. 6) and
that neither {1, o, &2, [3} nor {1, o, B, 0(.3} (resp.

{1, o, B 0(3}) for any o, A in K forms (resp. does not form)
an integral basis of K.
The method of a proof of this theorem is the same as in [6].

i) The cyclic case. Let n be the conductor o»f the field K.
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We choose n = a’ + ,722, a=5mod 12 (resp. n=a* + 122,
a=1mod 12). Since the set {1, 7 7', 7("} with the Gauss
period 7 makes an integral basis of K, we may put %
= x7+ y?(' + 27" for any integer % in K. Then we obtain
Indg = |cN«,| where «&»x is the same number of Q(Yn) as in
the previous section. By virtue of A =a + 72i and
(x = 2)*y* = (xy + yz + zx)* mod 3
No(,,z{ ; | } (resp.
2(x+y+ 2)(x+ 2)y = (x=y)(z - y)xz mod &
(x = 2)*y? = (xy + yz + 2zx)* mod 3} ‘
0 mod 2 )
we have Ind% =0 mod 12 (resp. Ind£=0mod 6 and Ind7 =2

A= a + 12i and Na(,,E{

mod 4). Then by Lemma 1 we get m(K) = 12 (resp. m(K) = 6).
xX(2) = -1
X3 = 1
67(7)* = 67%(7) mod 2]

. . } ). Since
iy = 69(7) mod 3

Moreover by X(2) = 1 (resp. { } ) we can see

If

6‘5(7()” = 6"(7) mod 2 | (resp. {

Ind £ is equal to the absolute value of the determinant of the
transformation matrix for {1, ¥, ¥°, Zs} with respect to

an integral basis {l, 7, ’7', 7("}, we can see that any three
rows in the matrix are 1ihear1y dependent modulo 2 (resp.

the second and the fourth rows are so modulo 3). Then none of

{ 1, o, A%, /3} nor {1, a, @, 0(3} (resp. {1, «, A, o(s}) for all
integers &, A can make (resp. can not make) a Z-basis of OK.

Finally our parametrization satisfies the next lemma.

Lemma 2[6]. For a>0, b, c€ 2, a=b, ¢c =1 mod 2, set
n(t) = at® + bt + c.

Let the congruences n(t) = 0 mod q* have at most two solutions
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for every prime q within 1 < t < q®. Then the number n(t)

is square-free for infinitely many t € Z,

ii) The non-cyclic case. For a field K = Q(\7m,, V7m,) assume
/m,= /m,= 1 mod 24. Then using Lemma 1 we have m(K) = 12,
Next we choose /m,s fm;:* 1 mod 3, ZES mod 8 and
m,= m,= 1 mod 16. Then we can see Ind%= O mod 6 for any
integer ¥ in K. Also for 2, = ((L + VZm)/2) + ((1 + VZm;) x
(1 + VZm;)/4) + (({-1)/4)Ym;m, it follows Ind% = 2 mod 4.
Thus we obtain m(K) = 6. Under this parametrization we can
perform the samé argument as in the case i). Therefore we obtain

Theorem 2.

Remark 1. Among the fields K with even conductor there does

not exist any K which satisfies the properties in Theorem 2.

Theorem 3. There exist infinitely many non-cyclic but abelian
biquadratic fields K which have the index 1 and still whose
minimum indices are greater than N for any given integer N.
Consequently the integer rkings Ok have not a power basis.

Proof. We consider the field K, = Q(Y/m,, Y/m;) with
{m, =1,¢m,= -1 mod 12. Then from Lemma 1 the index m(K,)
is odd. Under the same notations as in the proof 1'.'1)1 of Lemma 1
for a number ¥ = xqo + yp + z) we obtain
Ind £ = |(x1€' - z'm,) (2*m— 2y + .z)zé)(xzm, - (2y + z)zm,_)‘/l&.

Thus it holds that Ind(¥ +8) %0 mod 3. Then m(Ke) = 1 holds.
In an imaginary case we select 0 >m, =1, 0<-m, =1, 0 < l =1

mod 12. Then Ind £ > é holds for any primitive element % in @KE'
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In a real case set 0 < / = =1 mod 12. We estimate the factor
I =xm, - (2y+2)m, of Ind%¥. For any integer N > 0 we can
find the following primes p, = -1, q, = 1 mod 12 and p, # ?

for 1gigN., Put m,=p, and m,6 =q, such that

x*p, P, 1 * :
——| =|—| # |—]|, where | — | denotes the Legendre symbol.
q, q, q ‘ p

Then I # + 1. Next for a prime q, > q,, there exists an integer

N a, 2 - p, mod q,
a, with [—/#(—) . We select p, such that p,= .
: q, q, ’ a, mod q,
Reset m, =p , m, 6 = q,9,: then I =+ 1, + 2. Successively we
P., mod q,... q”_,}

can choose primes P,» 9, such that Py EE{
' a, mod q,

ith a [\ 4 al F - =
wit qQ, >q,., an ;— . . or m, Py » mv2 q,.f. q”
N N : ,

define the biquadratic field K, = Q(V?m,, V/m,), then it holds

that M(K,) > N. Therefore we have proved Theorem 3.
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