<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>Paths and Edge-Connectivity (Problems in Combinatorics)</td>
</tr>
<tr>
<td>著者</td>
<td>Okamura, Haruko</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (1984), 521: 1-23</td>
</tr>
<tr>
<td>発行日</td>
<td>1984-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/98455</td>
</tr>
<tr>
<td>型</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>横断</td>
<td>publication</td>
</tr>
<tr>
<td>日本文献</td>
<td>数理解析研究所講究録 (1984), 521: 1-23</td>
</tr>
<tr>
<td>電子版</td>
<td>京都大学</td>
</tr>
</tbody>
</table>
Paths and Edge-Connectivity in Graphs

大阪市大工 岡村治子 (Haruko Okamura)

1. INTRODUCTION

We consider finite undirected graphs passably with multiple edges but without loops. Let G be a graph and let $V(G)$ and $E(G)$ be the sets of vertices and edges of G respectively. For two distinct vertices x and y, let $\lambda_q(x,y)$ be the maximal number of edge-disjoint paths between x and y, and let $\lambda_q(x,x) = \infty$. For an integer $k \geq 1$, let $\Gamma(G,k)$ be

$$(X \subseteq V(G) \mid \text{For each } x, y \in X, \lambda_q(x,y) \geq k).$$

Let $(s_1, t_1), \ldots, (s_k, t_k)$ be pairs of vertices of G. When is the following statement true?

(1.1) There exist edge-disjoint paths P_1, \ldots, P_k such that P_i has ends $s_i, t_i (1 \leq i \leq k)$.

Seymour [8] and Thomassen [9] characterised such graphs when $k=2$, and Seymour [8] when $|\{s_1, \ldots, s_k, t_1, \ldots, t_k\}|=3$.

For integers $k \geq 1$ and $n \geq 2$, set

$$g(k) = \min \{m \mid \text{If } G \text{ is } m\text{-edge-connected, then (1.1) holds}\},$$

$$\lambda^*(k,n) = \min \left\{ m \mid \begin{array}{l}
\text{If } |\{s_1, \ldots, s_k, t_1, \ldots, t_k\}| \leq n \text{ and } \\
(s_1, \ldots, s_k, t_1, \ldots, t_k) \in \Gamma(G,m), \text{ then (1.1) holds}
\end{array} \right\}.$$
\[\lambda(k,n) = \min \left\{ m \left| \begin{array}{l} \text{If } l(s_1, \ldots, s_k, t_1, \ldots, t_k) \leq n \text{ and} \\ \lambda_q(s_i, t_i) \geq m \ (1 \leq i \leq k), \text{ then (1.1) holds} \end{array} \right. \right\}, \]

and set

\[\lambda'(k) = \lambda'(k, 2k) = \lambda'(k, m) \ (m > 2k) \text{ and } \lambda(k) = \lambda(k, 2k). \]

Then for each \(k \geq 1, \)

\[\lambda'(k, 3) = \lambda(k, 3) \text{ and } \lambda(k) \geq \lambda'(k) \geq g(k) \geq k. \]

For \(n \geq 4 \) and even integer \(k \geq 2, \)

\[g(k) \geq k \text{ and } \lambda(k) \geq \lambda(k, n) \geq \lambda'(k, n) \geq k \]

(see Figure 1 in which \(k/2 \) represents the number of parallel edges).

Figure 1.

Thomassen [9] gave following Conjecture 1, and we give following Conjecture 2 slightly stronger than Conjecture 1.

CONJECTURE 1. For each integer \(k \geq 1, \)

\[g(k) = \begin{cases} k & \text{if } k \text{ is odd} \\ k+1 & \text{if } k \text{ is even} \end{cases}. \]

CONJECTURE 2. For each integer \(k \geq 1, \)

\[\lambda(k) = \begin{cases} k & \text{if } k \text{ is odd} \\ k+1 & \text{if } k \text{ is even} \end{cases}. \]
It easily follows from Menger's theorem that $\lambda(k) \leq 2k-1$; thus $\lambda(1)=1$ and $\lambda(2)=3$. Cypher [1] proved $\lambda(4) \leq 6$ and $\lambda(5) \leq 7$, and $\lambda(3)=3$ was announced in [5] and proved in [6] by the author. Enomoto and Saito [2] proved $g(4)=5$, and independently Hirata, Kubota and Saito [3] proved $\lambda(k) \leq 2k-3$ ($k \geq 4$).

Our main results are the following.

THEOREM 1. Suppose that $k \geq 2$ is an integer, G is a graph, $(a_1,a_2) \subseteq T \subseteq V(G)$, $|T| \leq 3$ and $T \in \Gamma(G,k)$. Then there exists a path P between a_1 and a_2 such that $T \in \Gamma(G-E(P),k-1)$.

THEOREM 2. Suppose that $k \geq 5$ is an odd integer, G is a graph, $(a_1,a_2,a_3) \subseteq T \subseteq V(G)$, $a_i \neq a_j$ ($1 \leq i < j \leq 3$), $|T| \leq 5$ and $T \in \Gamma(G,k)$. Then

1. If $|T| \leq 4$, then there exists a path P between a_1 and a_2 such that $T \in \Gamma(G-E(P),k-1)$.

2. For $m=2,3$ if $|T| \leq 4$ and for $m=3$ if $|T| = 5$, there exist edge-disjoint paths P_i between a_1 and a_2 and P_2 between a_1 and a_m such that $T \in \Gamma(G- \bigcup_{i=1}^{m-2} E(P_i),k-2)$.

THEOREM 3. For each integer $k \geq 1$,

$\lambda(k,3)=k$ and $\lambda(k,4)=\lambda(k,5)=\begin{cases} k & \text{if } k \text{ is odd} \\ k+1 & \text{if } k \text{ is even}. \end{cases}$

In Theorem 2(2) if $m=2$ and $|T|=5$, then the conclusion does not always hold. Figure 2 gives a countexample with $k=7$.

3
Figure 2.

When \(k \) is odd and \(\{s_1, \ldots, s_k, t_1, \ldots, t_k\} \geq 4 \), if for some \(1 \leq i \leq k \),

\[\lambda_G(s_i, t_i) \leq k, \]

then (1.1) does not always hold. Figure 3 gives a counterexample.

Figure 3.

Notations and Definitions. Let \(X, Y \subseteq V(G) \), \(F \subseteq E(G) \), \((x, y) \subseteq V(G) \) and \(e \in E(G) \). We often denote \((x) \) by \(x \) and \((e) \) by \(e \). The subgraph of \(G \) induced by \(X \) is denoted by \(\langle X \rangle_G \) and the subgraph obtained from \(G \) by deleting \(X \) (\(F \)) is denoted by \(G-X \) (\(G-F \)). \(\partial_G(X, Y) \) denotes the set of edges with one end in \(X \) and the other in \(Y \), and \(\partial_G(X) \) denotes \(\partial_G(X, V(G)-X) \). \(\lambda_G(X, Y) \) denotes the maximal number of edge-disjoint paths with one end in \(X \) and the other in \(Y \). \(\partial_G(X) \)
is called an n-cut if $|\partial_G(X)|=n$ and $\langle X \rangle_G$ and $\langle V(G)-X \rangle_G$ are both connected. An n-cut $\partial_G(X)$ is called nontrivial if $|X| \geq 2$ and $|V(G)-X| \geq 2$, trivial otherwise. $d_G(x)$ denotes the degree of x and $N_G(x)$ denotes the set of vertices adjacent to x. We regard a path and a cycle as subgraphs of G. A path $P=P[x,y]$ denotes a path between x and y, and for $x',y' \in V(P)$, $P(x',y')$ denotes a subpath of P between x' and y'.

2. PROOF OF THEOREM 1

For a vertex $w \in V(G)$ and $b,c \in N_G(w)$, we let G^b,c_w be the graph $(V(G), E(G) \cup e-(f,g))$, where e is a new edge with ends b and c, $f \in \partial_G(w,b)$ and $g \in \partial_G(w,c)$. We require the following lemmas.

LEMMA 2.1 (Mader [4]). Suppose that w is a non-separating vertex of a graph G with $d_G(w) \geq 4$ and with $|N_G(w)| \geq 2$. Then there exist $b,c \in N_G(w)$ such that for each $x,y \in V(G)-w$,

$$\lambda^b,c_{G_w}(x,y)=\lambda_G(x,y).$$

Now we prove Theorem 1 by induction on $|E(G)|$. We may assume that $a_1 \neq a_2$ and $|T|=3$. If G has a nontrivial k-cut $\partial_G(X) (X \subseteq V(G))$ separating T, then let $H(K)$ be the graph obtained from G by contracting $V(G)-X$ (X) to a new vertex u (v). Set $T_H=(X \cap T) \cup u$ and $T_K=(T-X) \cup v$. We may
let \(|T \cap X| = 2 \). By induction for \(H \) and \((T \cap X) \cup \{u\}\) instead of for \(G \) and \(T \), the result holds. Thus the result follows. Hence we may assume that each edge is incident to a vertex of \(T \).

Case 1. There exists \(x \in V(G) - T \).

If \(d_G(x) \geq 4 \), then by Lemma 2.1 there exists \(b, c \in N_G(x) \) such that for each \(y, z \in V(G) - x \),

\[
\lambda_{G^b}^{x} (y, z) = \lambda_{G}^{y, z}.
\]

By induction the result holds in \(G_x \). Thus we may assume that \(d_G(x) = 3 \) and clearly that \(N_G(x) = T \). Now the path \(P[a_1,a_2] \) with \(E(P) \subseteq \partial G(x) \) is a required path.

Case 2. \(V(G) = T \).

The result easily follows.

3. PROOF OF THEOREM 2.

We call a graph \(G \) is elemental for \(V_1 \subseteq V(G) \) if \(V(G) = V_1 \cup V_2 \), \(V_1 \cap V_2 = \emptyset \) and for each \(x \in V_2 \), \(d_G(x) = 3 \), \(\{V_1 - \partial G(x) \subseteq V_1 \). We call a graph \(G \) is elemental for \(V_1 \subseteq V(G) \) and an integer \(k \geq 1 \) if \(G \) is elemental for \(V_1 \) and for each \(x \in V_1 \), \(d_G(x) = k \). For integers \(p \geq 0 \) and \(q \geq 0 \), we call a graph \(G \) is \(G(p,q) \) if \(G \) is elemental for some \(V_1 = (x_1,x_2,x_3) \subseteq V(G) \), \(|V(G) - V_1| = q \) and \(|\partial G(x_i,x_j)| = p \) \((1 \leq i < j \leq 3)\). Let \(G \) be an elemental graph for \(V_1 \subseteq V(G) \). We call a subgraph \(S \) an elemental star if \(V(S) \subseteq V_1 \), \(|V(S)| = 2 \) and \(|E(S)| = 1 \), or if for some \(x \in V(G) - V_1 \), \(V(S) = N_G(x) \cup x \) and \(E(S) \subseteq \partial G(x) \).
We require the following lemmas.

LEMMA 3.1 (Okamura [7]). Suppose that \(k \geq 4 \) is an integer, \(G \) is a graph, \((s,t) \subseteq T \subseteq V(G) \) and \(T \in \Gamma(G,k) \). Then

1. For each non-separating edge \(e \) incident to \(s \), there exists a path \(P \) between \(s \) and \(t \) passing through \(e \) such that \(T \in \Gamma(G-E(P),k-2) \) and \((s,t) \in \Gamma(G-E(P),k-1) \).

2. For each vertex \(a \) of \(T-(s,t) \) with fewer degree than \(2k \) and for each edge \(f \) incident to \(a \), there exists a path \(P \) between \(s \) and \(t \) not passing through \(a \) such that \(T \in \Gamma(G-E(P),k-2) \), \((s,t,a) \in \Gamma(G-E(P),k-1) \), and

\[(s,a) \text{ or } (t,a) \in \Gamma(G-E(P)-f,k-1). \]

3. For each non-separating edges \(e \) and \(e' \) incident to \(s \), there exists a cycle \(C \) passing through \(e \) and \(e' \) such that \(T \in \Gamma(G-E(C),k-2) \).

LEMMA 3.2 (Okamura [7]). Suppose that \(n \geq 4 \) is an integer and \(k \geq 3 \) is an odd integer. If for each odd integer \(1 \leq m \leq k \),

\[\lambda'(m,n) = m, \]

then

\[\lambda(k,n) = k \quad \text{and} \quad \lambda(k+1,n) = k+2. \]

LEMMA 3.3. Suppose that \(k \geq 3 \) is an integer, \(G \) is an elemental graph for \(T \subseteq V(G) \) and \(k \), \(T \in \Gamma(G,k) \), \(G \) has no nontrivial \(k \)-cut separating \(T \), and that \(S_1, S_2, S_3 \) are elemental stars of \(G \). If \(V(S_1) \cap V(S_2) \cap V(S_3) = \emptyset \), then
\[T \in \Gamma(G - \bigcup_{i=1}^{3} E(S_i), k-2). \]

Proof. Assume that \(X \subseteq V(G) \), \(|X| \leq |V(G) - X| \) and \(X \) separates \(T \). Set \(G' = G - \bigcup_{i=1}^{3} E(S_i) \). If \(|X| = 1 \), then let \(X = \{x_0\} \).
Since \(d_{G'}(x) \geq d_G(x) - 2 = k - 2 \), we have \(|\partial G'(X) | \geq k - 2 \). If \(|X| \geq 2 \), then \(|\partial G(X) | \geq k + 1 \), and so \(|\partial G'(X) | \geq k - 2 \). Now Lemma 3.3 is proved.

Lemma 3.4. Suppose that \(k \geq 2 \) is an integer, \(G \) is an elemental graph for \(T = (x_1, x_2, x_3, x_4) \subset V(G) \) and \(k \), \(|T| = 4 \) and \(T \in \Gamma(G, k) \). Then

1. One of the following holds.
 1. \(\partial G(x_1, x_2) \neq \emptyset, \partial G(x_1, x_3) \neq \emptyset \), or for some \(y \in V(G) - T \), \(N_G(y) = (x_1, x_2, x_3) \).
 2. \(k \) is even, \(|\partial G(x_2, x_3) | = \frac{k}{2} \), and \(|\{y \in V(G) - T \mid N_G(y) = (x_i, x_1, x_4) \}| = \frac{k}{2} \) \((i=2, 3)\).

2. One of the following holds.
 1. For each \(1 \leq i < j \leq k \), \(G \) has an elemental star \(S \) containing \(x_i \) and \(x_j \).
 2. \(k \) is even and \(G \) is the graph obtained from a four cycle by replacing each edge by \(k/2 \) parallel edges.

3. If \(G \) has no nontrivial \(k \)-cut separating \(T \), then
 1. \(\partial G(x_1, x_2) \neq \emptyset \) or \(G \) has two elemental stars containing \(x_1 \) and \(x_2 \).
 2. One of the following holds.
 1. \(G \) has edge-disjoint paths \(P_1[x_1, x_2] \) and \(P_2[x_1, x_3] \) such that for \(i = 2 \) or \(4 \),
(x_i, x_3) \in \Gamma(G - \bigcup_{i=1}^{2} E(P_i), k-1) \) and \(T \in \Gamma(G - \bigcup_{i=1}^{3} E(P_i), k-2) \).

(b) For each edge in \(\partial G(x_3) - \partial G(x_3, x_2) \), \(G \) has edge-disjoint paths \(P_1[x_1, x_2] \) and \(P_2[x_1, x_3] \) such that \(e \in E(P_2) \) and \(T \in \Gamma(G - \bigcup_{i=1}^{3} E(P_i), k-2) \).

Proof. For \(1 \leq i, j \leq 4 \), set
\[
\begin{align*}
p_i, j &= |\partial G(x_i, x_j)|, \\
R_i &= \{ y \in V(G) - T \mid N_G(y) = T - x_i \}, \\
r_i &= 1 \overline{R_i}.
\end{align*}
\]

(1) Assume \(p_1, 2 = p_1, 3 = r_4 = 0 \). Then
\[
\begin{align*}
d_G(x_1) &= k = p_1, 4 + r_2 + r_3, \\
d_G(x_4) &= k = p_1, 4 + p_2, 4 + p_3, 4 + r_1 + r_2 + r_3
\end{align*}
\]

Thus
\[
p_2, 4 = p_3, 4 = r_1 = 0.
\]

Since \(T \in \Gamma(G, k) \), we have
\[
|\partial G((x_2, x_3))| = r_2 + r_3 \geq k.
\]

Thus
\[
p_1, 4 = 0.
\]

By comparing \(d_G(x_i) \) with \(d_G(x_j) \) for \(1 \leq i < j \leq 3 \), we have
\[
r_2 = r_3 = p_2, 3.
\]

Now (ii) follows.

(2) Assume \(p_1, 2 = r_3 = r_4 = 0 \). Then by comparing
\[
d_G(x_1) + d_G(x_2) \) with \(d_G(x_3) + d_G(x_4) \), we have
\[
r_1 = r_2 = p_3, 4 = 0.
\]

Now by comparing \(d_G(x_3) = k = p_1, 3 + p_2, 3 \) with \(d_G(x_i) \) for \(i = 1, 2 \), we have
\[p_{1,4} = p_{2,3} \text{ and } p_{2,4} = p_{1,3}. \]

Moreover
\[1 \partial G((x_1,x_4)) \leq p_{1,3} + p_{2,4} = 2p_{1,3} \geq k, \]
\[1 \partial G((x_1,x_3)) \leq p_{1,4} + p_{2,3} = 2p_{1,4} \geq k. \]

Thus
\[p_{1,3} = p_{2,3} = p_{2,4} = p_{1,4}, \]

and so (ii) follows.

(3) (i) We assume \(p_{1,2} = r_4 = 0 \), and then prove \(r_3 \geq 2 \).

Since any cut separating \((x_1, x_3)\) and \((x_2, x_4)\) or separating \((x_1, x_4)\) and \((x_2, x_3)\) has more than \(k \) edges we have

\[(3.1) \; p_{1,4} + p_{2,3} + p_{3,4} + r_1 + r_2 + r_3 \geq k + 1, \]

and

\[(3.2) \; p_{1,3} + p_{2,4} + p_{3,4} + r_1 + r_2 + r_3 \geq k + 1. \]

By comparing \(d_G(x_3) + d_G(x_4) \) with \((3.1) + (3.2)\), we have

\[r_3 \geq 2. \]

(ii) If there exists \(f \in \partial G(x_1, x_3) \), then by Lemma 2.1 \(G \) has a path \(P[x_3, x_2] \) such that \(f \in E(P) \),
\((x_3, x_2) \in \Gamma(G - E(P), k - 1)\) and \(T \in \Gamma(G - E(P), k - 2) \), and so (a) follows. Thus we may let

\[p_{1,3} = p_{1,2} = 0, \]

then by (1)

\[r_4 > 0. \]

If \(r_3 > 0 \), then for \(y_1 \in R_4 \) and \(y_2 \in R_3 \),
\((x_3, x_4) \in \Gamma(G - \bigcup_{i=1}^{2} \partial G(y_i), k - 1)\) and \(T \in \Gamma(G - \bigcup_{i=1}^{2} \partial G(y_i), k - 2) \),

and so (a) follows. Thus we may let
\[r_3 = 0. \]
Then by (1) and (3)

$p_1,A>0$ and $r_A \geq 2$.

Let y be another end of e, then $y=x_A$ or $y=R_i$ $(i=1,2 \text{ or } A)$. In each case (b) easily follows.

Lemma 3.5. Suppose that $k \geq 3$ is an odd integer, G is a graph, $(x_1,x_2,x_3) \subseteq T \subseteq V(G)$, $x_i \neq x_j$ $(1 \leq i < j \leq 3)$, $T \in \Gamma(G,k)$ and $e \in E(G)$. If following (i) or (ii) holds, then for $m=2,3$, G has edge-disjoint paths $P_1[x_1,x_2]$ and $P_2[x_1,x_m]$ such that $e \in E(P_1) \cup E(P_2)$ and $T \in \Gamma(G- \bigcup_{i \neq j} E(P_i),k-2)$.

(i) $e \in \partial_G(x_1,x_2)$,

(ii) $e \in \partial_G(x_1,y)$ for some $y \in V(G)-T$ with $d_G(y)=3$ and $N_G(y) = (x_1,x_2,x_3)$.

Proof. Assume that (i) holds. By Theorem 1 if $m=2$, then G has a cycle C such that $e \in E(C)$ and $T \in \Gamma(G-E(C),k-2)$, and if $m=3$, then G has a path $P[x_2,x_3]$ such that $e \in E(P)$ and $T \in \Gamma(G-E(P), k-2)$.

Assume that (ii) holds. We may assume that G is 2-connected. If $d_G(x_3)=d>k$, then we replace x_3 by d vertices of degree k (Figure 4 gives an example with $d=8$ and $k=5$), producing a new graph G'. In G' we assign x_3 on $N_G'(y)-(x_1,x_2)$. If the result holds in G', then clearly the result holds in G, and so we may assume that $d_G(x_3)=k$. Let $f \in \partial_G(x_3)-\partial_G(y,x_3)$. By Lemma 3.1
Figure 4.

G has a path $P[x_1, x_2]$ such that $x_3 \notin V(P)$, $T \in \Gamma(G-E(P), k-2)$, $(x_1, x_2, x_3) \in \Gamma(G-E(P), k-1)$ and $(x_i, x_j) \in \Gamma(G-E(P) - f, k-1)$ ($i=1$ or 2). Then $y \notin V(P)$, because $d_0(x_3) = k$ and $d_0(y) = 3$.

Moreover $T \in \Gamma(G-E(P) - y, k-2)$. Thus the result follows.

Now we prove Theorem 2. We may assume that G is 2-connected, $d_0(x) = k$ for each $x \in T$ (see the proof of Lemma 3.5 and Figure 4, in this case we can assign x on any vertex of new $d_0(x)$ vertices of degree k) and that $d_0(y) = 3$ for each $y \in V(G) - T$ (see Case 1 in the proof of Theorem 1). We proceed by induction on $|E(G)|$. If $|T| \leq 3$, then the result follows from Theorem 1. Thus let $|T| \geq 4$.

Case 1. G has a nontrivial k-cut $\partial G(X) = \{e_1, \ldots, e_k\}$ ($X \subseteq V(G)$) separating T.

We define H, K, u, v, T_H and T_K similarly as in the proof of Theorem 1. If $|X \cap T| = 1$, then the results hold in K, and so in G. Thus let $|X \cap T| \geq 2$ and $|T - X| \geq 2$.

We require the following.

(3.3) If G has a nontrivial k-cut $\partial G(Y) = \{f_1, \ldots, f_k\}$
(Y \subseteq X) separating T, then we may assume that \((X-Y) \cap T \neq \emptyset\).

Proof. Assume \((X-Y) \cap T = \emptyset\). Let \(b_1, c_i\) be the end of \(e_i\) (if \(i\)) in \(Y \subseteq V(G) - X\) \((1 \leq i \leq k)\). We may assume that the graph obtained from \(X-Y \subseteq G\) by adding \(b_1, \ldots, b_k, c_1, \ldots, c_k, e_1, \ldots, e_k, f_1, \ldots, f_k\) has edge-disjoint paths \(P_1[b_1, c_1], \ldots, P_k[b_k, c_k]\). Let \(G'\) be the graph obtained from \(G-(X-Y)\) by adding new edges \(g_1, \ldots, g_k\), where \(g_i\) has ends \(b_i\) and \(c_i\) \((1 \leq i \leq k)\). Then \(|E(G')| < |E(G)|\), and the results of Theorem 2 hold in \(G'\), and so in \(G\). Now (3.3) is proved.

(3.4) If \(|X-T| = 2\) \((|T-X| = 2)\), then we may assume that \(H (K) = G(p, q) (G(p', q'))\) for some integers \(p\) and \(q\) \((p'\) and \(q'\)).

Proof. Assume \(|X \cap T| = 2\). If \(H\) has a nontrivial \(k\)-cut \(\partial H (Y) (Y \subseteq V(H)-u)\) separating \(T_H\), then by (3.3) \((X-Y) \cap T \neq \emptyset\), and so \(|T \cap Y| = 1\). Then by taking \(Y\) instead of \(X\) the results of Theorem 2 hold. Thus we may assume that an end of each edge of \(H\) is in \(T_H\). Hence the result easily follows.

We return to the proof of Theorem 2. By Lemma 3.5 we may assume the following.

(3.5) \(\partial G(a_1, a_i) = \emptyset\) \((i = 2, m)\) and for each \(y \in V(G)-T\), \((a_1, a_2, a_m) \not\subseteq N_G(y)\).
Let \(a_1 \in X \).

(1) Now \(|X-T| = |T-X| = 2 \). If \(a_2 \in X \), then by (3.4) the result easily follows. Thus let \(a_2 \in V(G)-X \). Since
\[
p + q \geq (k+1)/2 \quad \text{and} \quad p' + q' \geq (k+1)/2,
\]
for some \(1 \leq i \leq k \), \(H \) has an elemental star \(S_1 \) containing \(a_i \) and \(e_1 \) and \(K \) has an elemental star \(S_2 \) containing \(a_2 \) and \(e_1 \). Then \(T \in \Gamma(G - \bigcup_{i=1}^{k} E(S_i), k-1) \).

(2) Subcase 1-1. \((a_2, a_m) \subseteq X \).

\(H \) has required paths. If one of them passes through \(u \), then we can deduce the result by using Lemma 3.1(3) on \(K \).

Subcase 1-2. \((a_2, a_m) \subseteq V(G)-X \) and \(|X \cap T| = 2 \).

Set \(X \cap T = \{ a_1, a_5 \} \). By (3.4) \(H \) is \(G(p,q) \). Thus if following (3.6) or (3.7) holds, then the result follows.

(3.6) For some \(e_i \in \partial H(u,a_1) \), \(K \) has edge-disjoint paths \(P_1[v,a_2] \) and \(P_2[v,a_m] \) such that \(e_i \in E(P_1) \cup E(P_2) \) and \(T \subseteq \Gamma(K - \bigcup_{i=1}^{k} E(P_i), k-2) \).

(3.7) For some \(e_i, e_j \in \partial H(u)-\partial H(u,a_5) \), \(K \) has edge-disjoint paths \(P_1[v,a_2] \) and \(P_2[v,a_m] \) such that \(\langle e_i, e_j \rangle \subseteq E(P_1) \cup E(P_2) \) and \(T \subseteq \Gamma(K - \bigcup_{i=1}^{k} E(P_i), k-2) \).

If \(p = 0 \), then \(\partial H(u,a_5) = \emptyset \), and so (3.7) follows. Thus let \(p > 0 \). If \(|T-X| = 2 \), then by (3.4) \(K \) is \(G(p',q') \), and so (3.6) follows. Thus let \(|T-X| = 3 \) and \(m = 3 \). Set \(T \cap X = \{ a_2, a_3, a_4 \} \).

Subcase 1-2-1. \(K \) has nontrivial \(k \)-cut \(\partial K(Y) \) (\(Y \subseteq V(K)-v \)) separating \(T \).

By (3.3) we may let \(|Y \cap T| = |T \cap Y| = 2 \). Let \(K_1 \) and \(K_2 \) be the graphs obtained from \(K \) by contracting \(Y \) and \(V(K)-Y \) to a vertex respectively. Then similarly as (3.4)
K_i is $G(p_i, q_i)$ for some integers p_i and q_i $(i=1, 2)$

Let M be

$$\{ (x_1, x_2) \in V(K) - T_k \mid \partial K(x_1, x_2) \neq \emptyset \},$$

and let M' be

$$\{ x \mid \text{For some } N \in M, \ x \in N \}.$$

For each $N \in M$, $N \cap V(K_i) \neq \emptyset$ $(i=1, 2)$,

$$d_{K-N}(a_j) = d_{K-N}(v) = k-1 \ (j=2, 3, 4) \text{ and } T_k \in \Gamma(K-N, k-1).$$

If $k=1M1$, then $p_1 = p_2 = 0$ and the result easily follows,

and so let $k > 1M1$. $K-M'$ is elemental for T_k and $K-1M1$.

Assume that $k-1M1$ is even and $K-M'$ is the graph obtained

from four cycle by replacing each edge by $(k-1M1)/2$ parallel

edges. For each cycle C of $K-M'$ such that $|V(C)|=|E(C)|=4$,

we have $T_k \in \Gamma(G-E(C), k-2)$. If $\partial G(a_1, a_4) \neq \emptyset$, then

(3.6) follows, and if not, then by (3.5) a_1 is adjacent to

p vertices of M'. If $1M1 \geq 2$, then (3.6) follows. Thus

assume $1 \geq 1M1 \geq p \geq 1$. Since $(k-1M1)/2 \geq (5-1)/2 = 2$, for some

$1 \leq i < j \leq k$,

$$\{ e_i, e_j \} \subseteq \partial_H(u) - \partial_H(u, a_5),$$

and K has a four cycle C such that $|V(C)|=|E(C)|=4$ and

$$\{ e_i, e_j \} \subseteq E(C).$$

Hence (3.7) follows.

By Lemma 3.4(2) we may assume that for each two vertices

d of T_k, $K-M'$ has an elemental star containing them. Set

$a_0 = v$, and for $i, j = 0, 2, 3, 4$, set

$$p_i, j = \left| \partial K(a_i, a_j) \right|,$$

$$r_i = \left| \{ x \in V(K) - T_k \mid N_k(x) = T_k - a_j \} \right|.$$

For $i, j = 0, 2, 3, 4$, since $\left| \partial K(a_i, a_j) \right| \geq k,$

15
If \(a_1 \) is adjacent to a vertex of \(M' \) in \(G \), then (3.6) follows. If for some \(x \in V(G)-T, N_G(x) = (a_1, a_i, a_4) \) \((i=2 \text{ or } 3) \), then (3.6) follows. Thus and by (3.5) we may assume that

\[|\partial G(a_1, a_4)| = p. \]

If \(a_4 \in Y \), then (3.6) easily follows, and thus let

\(T_{H-Y} = (a_0, a_4) \). Since \(p_0, 4 \geq |\partial G(a_1, a_4)| = p > 0 \), by Lemma 3.4(1) we have

\[p_4, 2 > 0, p_4, 3 > 0, \text{ or } r_0 > 0, \]

and

\[p_0, 2 > 0, p_0, 3 > 0, \text{ or } r_4 > 0. \]

If \(r_0 > 0, r_4 > 0, p_0, 2 + p_3, 4 > 0 \), or \(p_0, 3 + p_2, 4 > 0 \),

then (3.6) follows (note that \(K_i = G(p_i, q_i) \) for \(i=1, 2 \)).

Thus we may assume that

\[(3.8) \ p_0, 2 > 0, p_2, 4 > 0 \text{ and } r_0 = r_4 = p_0, 3 = p_3, 4 = 0. \]

Assume \(|M| = 0 \). Then

\[d_G(a_3) = p_2, 3 + r_2 \text{ and } p_2, 3 \leq (k-1)/2, \]

and so

\[(3.9) \ r_2 \geq (k+1)/2 \geq p+1. \]

By comparing \(d_G(a_2) \) with \(d_G(a_4) \) we have

\[p_0, 2 + p_2, 3 = p_0, 4 + r_2. \]

Thus

\[(3.10) \ p_0, 2 > p_0, 4 \geq p. \]

From (3.9) and (3.10), (3.7) follows.

Now we may let \(|M| > 0 \). Since \((a_2, a_3) \subseteq Y\), we have
\[I^2 K(Y) = k = d_k(a_2) + d_k(a_3) - 2p_2,3 - 1MI = 2k - 2p_2,3 - 1MI, \]

and so
\[2p_2,3 + 1MI = k. \]

Since \(d_G(a_3) = k = p_2,3 + r_2 + 1MI \),
\[r_2 = p_2,3. \]

Since \(d_G(a_3) = 2r_2 + 1MI \), \(d_G(a_4) = p_0,4 + p_2,4 + r_2 + r_3 + 1MI \),
and \(p_2,4 > 0 \) (by (3.8)), we have
\[(3.11) \quad r_2 \geq a_0,4 + 1 \geq p + 1. \]

By comparing \(d_G(a_2) \) with \(d_G(a_4) \), we have
\[p_0,2 = p_0,4. \]

Thus
\[(3.12) \quad p_0,2 + 1MI \geq p + 1. \]

From (3.11) and (3.12), (3.7) follows.

Subcase 1-2-2. \(K \) has no nontrivial \(k \)-cut separating \(T_K \).

We may assume that an end of each edge of \(K \) in \(T_K \) and \(K \) is elemental for \(T_K \). The proof is similar as the case \(1MI = 0 \) in the proof of Subcase 1-2-1.

Subcase 1-3. \((a_2, a_m) \subseteq V(G) - X \) and \(1X \cap T = 3. \)

Now \(m = 3. \) By (3.4) \(K \) is \(G(p', q') \). Set \(X \cap T = \{a_3, a_4, a_5\} \)

If \(H \) has nontrivial \(k \)-cut \(\partial_H(Y) \) (\(Y \subseteq V(H) - u \)) separating \(T_H \), then we may let \(1Y \cap T = 2. \) Then for \(Y \) or \(V(G) - Y \)
instead of \(X \) Subcase 1-1 or Subcase 1-2 occurs. Thus we may assume that this is not the case and \(H \) is elemental for \(T_H \).

If following (3.13) or (3.14) holds, then the result follows.

(3.13) For some \(e_i \in \partial K(v) - \bigcup_{j=1}^{3} \partial K(v, a_i) \), \(H \) has edge-disjoint paths \(P_1[a_1, u] \) and \(P_2[a_1, u] \) such that
\(\text{For } i=1 \text{ or } 2 \text{ or } 3 \text{ and for some } e_i \in \partial K(v,x) \) and \(e_j \in \partial K(v) - \bigcup_{i=1}^{2} \partial K(v,x) \), \(H \) has edge-disjoint paths

\(P_1[a_1,u] \) and \(P_2[a_1,u] \) such that

\((e_i, e_j) \subseteq E(P_1) \cup E(P_2) \) and \(T_H \in \bigcup_{i=1}^{2} E(P_i), k-2 \).

Set \(a_0 = u \) and for \(i,j = 0,1,4,5 \) set

\[
P_i,j = l_{\partial H}(a_i,a_j), \
R_i = \{ x \in V(H) - T_H \mid N_H(x) = T_H - a_i \}, \]

\[
r_i = l_{R_i}.\]

By (3.5) \(p_{0,1} = 0 \).

Assume \(p_{1,4} = p_{1,5} = 0 \). If \(r_0 \leq (k-1)/2 \), then

\[
r_4 + r_5 = d_G(a_1) - r_0 \geq (k+1)/2 \geq p' + 1,\]

and so (3.13) or (3.14) follows. Thus let \(r_0 \geq (k+1)/2 \).

Since \(d_G(a_0) = p_{0,4} + p_{0,5} + r_1 + r_4 + r_5 \) and

\(d_G(a_5) = p_{0,5} + p_{4,5} + r_0 + r_1 + r_4 \), we have

\(p_{0,4} + r_5 = p_{4,5} + r_0 \).

Hence

\[
d_G(a_4) = k \geq p_{0,4} + r_0 + r_5 \geq 2r_0 \geq k,\]

a contradiction.

Now we may let \(p_{1,i} \geq 0 \) for \(i = 4 \) or \(5 \), say \(i = 4 \).

Since \(p_{0,1} = 0 \) and by Lemma 3.4(3), we have

\[
r_4 + r_5 \geq 2.\]

For each \(x \in R_4 \cup R_5 \), if \(x \) is adjacent to a vertex of

\(V(K) - T_K \) in \(G \), then (3.13) follows, thus assume that

\(\partial G(x,a_1) \neq \emptyset \) (\(i = 2 \) or \(3 \)). For each \(x,y \in R_4 \cup R_5 \), if

\(\partial G(x,a_2) \neq \emptyset \) and \(\partial G(y,a_3) \neq \emptyset \), then (3.14) follows,

thus assume that for \(i = 2 \) or \(3 \), \(\partial G(x,a_i) = \partial G(y,a_i) = \emptyset \), say \(i = 3 \),
and that $r_4+r_5 \leq p'$.

Assume $r_4 > 0$. For some $e_i \in \partial_K(v) - \partial_K(v, a_2)$, e_i is incident to a_4 or a vertex of R_1 in G, because $p' + q' \geq (k+1)/2 > p_0, 5$.

Thus (3.14) follows.

Now we may assume that $r_4 = 0$, $r_5 > 0$ and $p_{1,5} = 0$.

Thus $p_{0,1} = p_{1,5} = r_4 = 0$, contrary to Lemma 3.4(1).

Subcase 1-4. $a_2 \in X$ and $a_m \in V(G) - X$.

Now $m = 3$.

Subcase 1-4-1. $|X \cap T| = 2$.

By (3.4) $H = G(p, q)$, and by (3.5) $p = 0$. Since $|T_K| \leq 4$, by induction K has a path $p[v, a_3]$ such that $T_K \in \Gamma(K - E(p), k-1)$. Let $e_1 \in E(p)$. H has an elemental star S_1 containing a_1 and e_1. Let S_2 be another elemental star of H. Then $T_H \in \Gamma(H - \bigcup_{i=1}^2 E(S_i), k-2)$, and so the result follows.

Subcase 1-4-2. $|X \cap T| = 3$ and $|T - X| = 2$.

Assume that H has a nontrivial k-cut $\partial_H(Y) = (f_1, \ldots, f_k)$ ($Y \subseteq V(H) - u$) separating T_H. Then we may assume that $|Y \cap T_H| = 2$, $a_2 \in Y$ and $a_1 \in X - Y$. Let H_1 (H_2) be the graph obtained from H by contracting $V(H) - Y$ (Y) to a new new vertex u_1 (u_2). Then similarly as (3.4) H_i is $G(p_i, q_i)$ for some integers p_i and q_i ($i = 1, 2$). If $p_2 = 0$, then the result easily follows. If $p_2 > 0$, then we may let $(f_1, e_1) \subseteq \partial G(a_1)$ and we can easily deduce the result.

Now we may assume that H has no nontrivial k-cut.
separating T_H and H is elemental for T_H. Set
$X \cap T = (a_1, a_2, u, a_4)$ and $T - X = (a_3, a_5)$. For $a_1, a_2,$
u, a_4$ instead of x_1, x_2, x_3, x_4, (a) or (b) of
Lemma 3.4(3) holds. If (a) holds, then the result easily
follows, thus assume that (b) holds. Since
$|\partial_H(u) - \partial_H(u, a_2)| \geq (k+1)/2$ and $p' + q' \geq (k+1)/2$, for some
$1 \leq i \leq k,$
e_i \in \partial_H(u) - \partial_H(u, a_2)$ and $e_i \in \partial_K(v) - \partial_K(v, a_5),$
and so the result follows.

Case 2. G has no nontrivial k-cut separating T.

We may assume that G is elemental for T. If $|T| = 4$, then
by Lemma 3.3 the result follows. Thus let $|T| = 5$ and $m = 3.$
Set $T = (a_1, a_2, a_3, a_4, a_5)$ and for $1 \leq i, j, l \leq 5,$ set
$p_i, j = |\partial G(a_i, a_j)|,$
$R(i, j, 1) = \{ x \in V(G) - T | Ng(x) = (a_1, a_j, a_4) \},$
$r(i, j, 1) = |R(i, j, 1)|.$
We require the following.

(3.15) For each distinct $1 \leq i, j, l \leq 5$, G has an elemental
star containing (a_1, a_j) or (a_i, a_1).

Proof. Assume that each elemental star of G does not
contain (a_1, a_2) nor (a_1, a_3). Then
$deg(a_1) = p_1, 4 + p_1, 5 + r(1, 4, 5).$
Since $p_i, j \leq (k-1)/2$ for each i, j, we have $r(1, 4, 5) > 0.$
Let F be a cut of G separating (a_1, a_4, a_5) and (a_2, a_3),
then
|F| = d_G(a_4) + d_G(a_5) - (p_{1,4} + p_{1,5} + 2r(1,4,5)) < k,

a contradiction. Now (3.15) is proved.

We return to the proof of Theorem 2. By (3.5)

\[p_{1,2} = p_{1,3} = r(1,2,3) = 0. \]

If \(r(1,2,i) > 0 \) and \(r(1,3,j) > 0 \) \((i,j=4 \text{ or } 5) \), then the result follows. Thus and by (3.15) we may assume that

\[r(1,2,4) > 0 \text{ and } r(1,3,i) = 0 \ (i=4,5). \]

By (3.15)

\[p_{1,5} + r(i,5,2) + r(i,5,4) > 0 \ (i=1,3). \]

If \(p_{1,5} > 0 \), \(p_{3,5} > 0 \), \(r(1,5,2) \cdot r(3,5,4) > 0 \), or

\(r(1,5,4) \cdot r(3,5,2) > 0 \), then by Lemma 3.3 the result follows.

Thus we may assume that for \((i,j)=(2,4) \) or \((4,2) \),

\[p_{1,5} = p_{3,5} = 0, \ r(1,5,i) = r(3,5,i) = 0, \]

and

\[r(1,5,j) \cdot r(3,5,j) > 0. \]

Assume \(r(1,5,2) = r(3,5,2) = 0 \). Then

\[d_G(x_1) = p_{1,4} + r(1,2,4) + r(1,4,5), \]

and

\[d_G(x_4) \geq p_{1,4} + r(1,2,4) + r(1,4,5) + r(3,4,5) > k, \]

a contradiction. Thus

\[r(1,5,4) = r(3,5,4) = 0. \]

Since \(r(1,2,5) > 0 \), by the same argument we have

\[p_{1,4} = p_{3,4} = 0. \]

Thus

\[d_G(x_1) = r(1,2,4) + r(1,2,5) \]

and
\[d_G(x_2) \geq r(1,2,4)+r(1,2,5)+r(2,3,5) > k,\]
a contradiction.

4. PROOF OF THEOREM 3.

Suppose that \(k \geq 1\) is an integer, \(G\) is a graph, \(T=(s_1, \ldots, s_k, t_1, \ldots, t_k) \subseteq V(G)\) and \(T \in \Gamma_g(G,k)\). We prove that if \(|T|=3\), or if \(k\) is odd and \(|T|=4\) or \(5\), then (1.1) holds by induction on \(k\).

Assume \(|T|=3\). By Theorem 1 \(G\) has a path \([s_k, s_k]\)
such that \(T \in \Gamma_g(G-E(P),k-1)\). By induction for \(k-1\), (1.1)
holds in \(G-E(P)\), and so for \(k\), (1.1) holds.

Assume that \(k \geq 5\) is odd and \(|T|=4\) or \(5\). For some
\(1 \leq i < j \leq k\), if \(|T|=4\), then
\[s_i=s_j \text{ or } t_j,\]
and if \(|T|=5\), then
\[s_i=s_j \text{ or } t_j \text{ and } (s_i, t_i) \notin (s_j, t_j),\]
say for \(i=k-1\) and \(j=k\). By Theorem 2 \(G\) has edge-disjoint
paths \(P_1(s_{k-1}, t_{k-1})\) and \(P_2(s_k, t_k)\) such that
\(T \in \Gamma_g(G-\bigcup_{i=1}^{2} E(P_i),k-2)\). By induction for \(k-2\), (1.1)
holds in \(G-\bigcup_{i=1}^{2} E(P_i)\), and so for \(k\), (1.1) holds in \(G\).

Thus for integer \(k \geq 1\),
\[\lambda'(k,3)=\lambda(k,3)=k,\]
and for odd integer \(k \geq 1\),
\[\lambda'(k,4)=\lambda'(k,5)=k.\]
By Lemma 3.2 for odd integer \(k \geq 1\),
\[\lambda(k,4)=\lambda(k,5)=k \text{ and } \lambda(k+1,4)=\lambda(k+1,5)=k+2.\]

Now Theorem 3 is proved.
REFERENCES

