<table>
<thead>
<tr>
<th>Title</th>
<th>Paths and Edge-Connectivity in Graphs (Problems in Combinatorics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Okamura, Haruko</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1984), 521: 1-23</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1984-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/98455</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Paths and Edge-Connectivity in Graphs

大阪市立大学 岡村 治子 (Haruko Okamura)

1. INTRODUCTION

We consider finite undirected graphs possibly with multiple edges but without loops. Let \(G \) be a graph and let \(V(G) \) and \(E(G) \) be the sets of vertices and edges of \(G \) respectively. For two distinct vertices \(x \) and \(y \), let \(\lambda_q(x,y) \) be the maximal number of edge-disjoint paths between \(x \) and \(y \), and let \(\lambda_q(x,x) = \infty \). For an integer \(k \geq 1 \), let \(\Gamma(G,k) \) be \(\{ X \subseteq V(G) \mid \text{For each } x,y \in X, \lambda_q(x,y) \geq k \} \).

Let \((s_1, t_1), \ldots, (s_k, t_k) \) be pairs of vertices of \(G \). When is the following statement true?

\[(1.1) \text{There exist edge-disjoint paths } P_1, \ldots, P_k \text{ such that } P_i \text{ has ends } s_i, t_i (1 \leq i \leq k).\]

Seymour [8] and Thomassen [9] characterised such graphs when \(k = 2 \), and Seymour [8] when \(|(s_1, \ldots, s_k, t_1, \ldots, t_k)| = 3 \).

For integers \(k \geq 1 \) and \(n \geq 2 \), set

\[g(k) = \min \{ m \mid \text{If } G \text{ is } m \text{-edge-connected, then (1.1) holds} \}, \]

\[\lambda'(k,n) = \min \left\{ m \left| \begin{array}{l}
\text{If } |(s_1, \ldots, s, t, \ldots, t)| \leq n \text{ and } \{s_1, \ldots, s_k, t_1, \ldots, t_k\} \in \Gamma(G,m), \text{ then (1.1) holds.}
\end{array} \right. \right\}, \]
\(\lambda(k,n) = \min \left\{ m \mid \text{If } 1(s_1, \ldots, s_k, t_1, \ldots, t_k) \leq n \text{ and } \lambda_q(s_i, t_i) \geq m \ (1 \leq i \leq k), \text{ then (1.1) holds} \right\} \)

and set

\(\lambda'(k) = \lambda'(k, 2k) = \lambda'(k, m) \ (m > 2k) \) and \(\lambda(k) = \lambda(k, 2k) \).

Then for each \(k \geq 1 \),

\(\lambda'(k, 3) = \lambda(k, 3) \) and \(\lambda(k) \geq \lambda'(k) \geq g(k) \geq k \).

For \(n \geq 4 \) and even integer \(k \geq 2 \),

\(g(k) > k \) and \(\lambda(k) \geq \lambda(k, n) \geq \lambda'(k, n) \geq k \)

(see Figure 1 in which \(k/2 \) represents the number of parallel edges).

Figure 1.

Thomassen [9] gave following Conjecture 1, and we give following Conjecture 2 slightly stronger than Conjecture 1.

CONJECTURE 1. For each integer \(k \geq 1 \),

\(g(k) = \begin{cases}
 k & \text{if } k \text{ is odd} \\
 k+1 & \text{if } k \text{ is even}
\end{cases} \)

CONJECTURE 2. For each integer \(k \geq 1 \),

\(\lambda(k) = \begin{cases}
 k & \text{if } k \text{ is odd} \\
 k+1 & \text{if } k \text{ is even}
\end{cases} \).
It easily follows from Menger's theorem that $\lambda(k) \leq 2k-1$; thus $\lambda(1)=1$ and $\lambda(2)=3$. Cypher [1] proved $\lambda(4) \leq 6$ and $\lambda(5) \leq 7$, and $\lambda(3)=3$ was announced in [5] and proved in [6] by the author. Enomoto and Saito [2] proved $g(4)=5$, and independently Hirata, Kubota and Saito [3] proved $\lambda(k) \leq 2k-3$ ($k \geq 4$).

Our main results are the following.

THEOREM 1. Suppose that $k \geq 2$ is an integer, G is a graph, $(a_1,a_2) \subseteq T \subseteq V(G)$, $|T| \leq 3$ and $T \in \Gamma(G,k)$. Then there exists a path P between a_1 and a_2 such that $T \in \Gamma(G-E(P),k-1)$.

THEOREM 2. Suppose that $k \geq 5$ is an odd integer, G is a graph, $(a_1,a_2,a_3) \subseteq T \subseteq V(G)$, $a_i \neq a_j$ ($1 \leq i < j \leq 3$), $|T| \leq 5$ and $T \in \Gamma(G,k)$. Then

(1) If $|T| \leq 4$, then there exists a path P between a_1 and a_2 such that $T \in \Gamma(G-E(P),k-1)$.

(2) For $m=2,3$ if $|T| \leq 4$ and for $m=3$ if $|T| = 5$, there exist edge-disjoint paths P_i between a_1 and a_2 and P_2 between a_1 and a_m such that $T \in \Gamma(G- \bigcup_{i=1}^{2} E(P_i),k-2)$.

THEOREM 3. For each integer $k \geq 1$,

$$\lambda(k,3)=k \text{ and } \lambda(k,4)=\lambda(k,5)=\begin{cases} k & \text{if } k \text{ is odd} \\ k+1 & \text{if } k \text{ is even.} \end{cases}$$

In Theorem 2(2) if $m=2$ and $|T|=5$, then the conclusion does not always hold. Figure 2 gives a counterexample with $k=7$.
Figure 2.

When \(k \) is odd and \(|s_1, \ldots, s_k, t_1, \ldots, t_k| \geq 4\), if for some \(1 \leq i \leq k \),

\[\mathcal{A}_G(s_i, t_i) < k, \]

then (1.1) does not always hold. Figure 3 gives a counterexample.

Figure 3.

Notations and Definitions. Let \(X, Y \subseteq V(G) \), \(F \subseteq E(G) \), \((x, y) \subseteq V(G) \) and \(e \in E(G) \). We often denote \(\langle x \rangle \) by \(x \) and \(\langle e \rangle \) by \(e \). The subgraph of \(G \) induced by \(X \) is denoted by \(\langle X \rangle_G \) and the subgraph obtained from \(G \) by deleting \(X \) (\(F \)) is denoted by \(G-X \) (\(G-F \)). \(\mathcal{V}_G(X, Y) \) denotes the set of edges with one end in \(X \) and the other in \(Y \), and \(\mathcal{V}_G(X) \) denotes \(\mathcal{V}_G(X, V(G)-X) \). \(\mathcal{A}_G(X, Y) \) denotes the maximal number of edge-disjoint paths with one end in \(X \) and the other in \(Y \). \(\mathcal{V}_G(X) \)
is called an n-cut if \(|\partial_Q(X)|=n\) and \(\langle X \rangle_Q\) and \(\langle V(G)-X \rangle_Q\) are both connected. An n-cut \(\partial_Q(X)\) is called nontrivial if \(|X| \geq 2\) and \(|V(G)-X| \geq 2\), trivial otherwise. \(d_Q(x)\) denotes the degree of \(x\) and \(N_Q(x)\) denotes the set of vertices adjacent to \(x\). We regard a path and a cycle as subgraphs of \(G\). A path \(P=PX, y]\) denotes a path between \(x\) and \(y\), and for \(x', y' \in V(P)\), \(P(x', y')\) denotes a subpath of \(P\) between \(x'\) and \(y'\).

2. PROOF OF THEOREM 1

For a vertex \(w \in V(G)\) and \(b, c \in N_Q(w)\), we let \(G_{\partial_Q}^{b,c}\) be the graph \((V(G), E(G)\cup e-(f,g))\), where \(e\) is a new edge with ends \(b\) and \(c\), \(f \in \partial_Q(w, b)\) and \(g \in \partial_Q(w, c)\). We require the following lemmas.

LEMMA 2.1 (Mader [4]). Suppose that \(w\) is a non-separating vertex of a graph \(G\) with \(d_Q(w) \geq 4\) and with \(|N_Q(w)| \geq 2\). Then there exist \(b, c \in N_Q(w)\) such that for each \(x, y \in V(G)-w\),

\[\lambda_{G_{\partial_Q}^{b,c}}(x,y) = \lambda_Q(x,y).\]

Now we prove Theorem 1 by induction on \(|E(G)|\). We may assume that \(a_1\neq a_2\) and \(|T|=3\). If \(G\) has a nontrivial k-cut \(\partial_G(X) (X \subseteq V(G))\) separating \(T\), then let \(H (K)\) be the graph obtained from \(G\) by contracting \(V(G)-X (X)\) to a new vertex \(u (v)\). Set \(T_H=(X \cap T) \cup u\) and \(T_K=(T-X) \cup v\). We may
let $|T \cap X| = 2$. By induction for H and $(T \cap X) \cup u$ instead of for G and T, the result holds. Thus the result follows. Hence we may assume that each edge is incident to a vertex of T.

Case 1. There exists $x \in V(G) - T$.

If $d_G(x) \geq 4$, then by Lemma 2.1 there exists $b, c \in N_G(x)$ such that for each $y, z \in V(G) - x$,

$$\lambda_{G^b}^{bc}(y, z) = \lambda_G(y, z).$$

By induction the result holds in G_x. Thus we may assume that $d_G(x) = 3$ and clearly that $N_G(x) = T$. Now the path $P[a_1, a_2]$ with $E(P) \subseteq \partial G(x)$ is a required path.

Case 2. $V(G) = T$.

The result easily follows.

3. **PROOF OF THEOREM 2.**

We call a graph G is elemental for $V_1 \subseteq V(G)$ if $V(G) = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ and for each $x \in V_2$, $d_G(x) = 3$, $|N_G(x)| = 3$ and $N_G(x) \subseteq V_1$. We call a graph G is elemental for $V_1 \subseteq V(G)$ and an integer $k \geq 1$ if G is elemental for V_1 and for each $x \in V_1$, $d_G(x) = k$. For integers $p \geq 0$ and $q \geq 0$, we call a graph G is $G(p, q)$ if G is elemental for some $V_1 = (x_1, x_2, x_3) \subseteq V(G)$, $|V(G) - V_1| = q$ and $|\partial_G(x_i, x_j)| = p$ ($1 \leq i < j \leq 3$). Let G be an elemental graph for $V_1 \subseteq V(G)$. We call a subgraph S an elemental star if $V(S) \subseteq V_1$, $|V(S)| = 2$ and $|E(S)| = 1$, or if for some $x \in V(G) - V_1$, $V(S) = N_G(x) \cup x$ and $E(S) = \partial_G(x)$.

6
We require the following lemmas.

LEMMA 3.1 (Okamura [7]). Suppose that $k \geq 4$ is an integer, G is a graph, $(s, t) \subseteq T \subseteq V(G)$ and $T \in \Gamma(G, k)$. Then

1. For each non-separating edge e incident to s, there exists a path P between s and t passing through e such that $T \in \Gamma(G-E(P), k-2)$ and $(s, t) \in \Gamma(G-E(P), k-1)$.

2. For each vertex a of $T-(s, t)$ with fewer degree than $2k$ and for each edge f incident to a, there exists a path P between s and t not passing through a such that $T \in \Gamma(G-E(P), k-2)$, $(s, t, a) \in \Gamma(G-E(P), k-1)$, and (s, a) or $(t, a) \in \Gamma(G-E(P)-f, k-1)$.

3. For each non-separating edges e and e' incident to s, there exists a cycle C passing through e and e' such that $T \in \Gamma(G-E(C), k-2)$.

LEMMA 3.2 (Okamura [7]). Suppose that $n \geq 4$ is an integer and $k \geq 3$ is an odd integer. If for each odd integer $1 \leq m \leq k$,

$$\lambda'(m, n) = m,$$

then

$$\lambda(k, n) = k \quad \text{and} \quad \lambda(k+1, n) = k+2.$$

LEMMA 3.3. Suppose that $k \geq 3$ is an integer, G is an elemental graph for $T \subseteq V(G)$ and k, $T \in \Gamma(G, k)$, G has no nontrivial k-cut separating T, and that S_1, S_2, S_3 are elemental stars of G. If $V(S_1) \cap V(S_2) \cap V(S_3) = \emptyset$, then
\(T \in \gamma(G - \bigcup_{i \neq 1} E(S_i), k - 2) \).

Proof. Assume that \(X \subseteq V(G) \), \(|X| \leq |V(G) - X| \) and \(X \) separates \(T \). Set \(G' = G - \bigcup_{i \neq 1} E(S_i) \). If \(|X| = 1 \), then let \(X = \{x\} \).

Since \(d_{G'}(x) \geq d_G(x) - 2 = k - 2 \), we have \(|\partial_{G'}(x)| \geq k - 2 \). If \(|X| \geq 2 \), then \(|\partial_G(X)| \geq k + 1 \), and so \(|\partial_{G'}(X)| \geq k - 2 \). Now Lemma 3.3 is proved.

Lemma 3.4. Suppose that \(k \geq 2 \) is an integer, \(G \) is an elemental graph for \(T = \{x_1, x_2, x_3, x_4\} \) \(V(G) \) and \(k \), \(|T| = 4 \) and \(T \in \gamma(G, k) \). Then

1. One of the following holds.
 (i) \(\partial_G(x_1, x_2) \neq \emptyset, \partial_G(x_1, x_3) \neq \emptyset \), or for some \(y \in V(G) - T \), \(N_G(y) = \{x_1, x_2, x_3\} \).
 (ii) \(k \) is even, \(|\partial_G(x_2, x_3)| = k/2 \), and
 \(|\{y \in V(G) - T \mid N_G(y) = \{x_1, x_1, x_4\}\}| = k/2 \) (\(i = 2, 3 \)).

2. One of the following holds.
 (i) For each \(1 \leq i < j \leq k \), \(G \) has an elemental star \(S \) containing \(x_i \) and \(x_j \).
 (ii) \(k \) is even and \(G \) is the graph obtained from four cycle by replacing each edge by \(k/2 \) parallel edges.

3. If \(G \) has no nontrivial \(k \)-cut separating \(T \), then
 (i) \(\partial_G(x_1, x_2) \neq \emptyset \) or \(G \) has two elemental stars containing \(x_1 \) and \(x_2 \).
 (ii) One of the following holds.
 (a) \(G \) has edge-disjoint paths \(P_1[x_1, x_2] \) and \(P_2[x_1, x_3] \) such that for \(i = 2 \) or \(4 \),

\[8 \]
$(x_i, x_3) \in \Gamma(G - \bigcup_{i=1}^{2} E(P_i), k-1)$ and $T \in \Gamma(G - \bigcup_{i=1}^{2} E(P_i), k-2)$.

(b) For each $e \in \partial G(x_3) - \partial G(x_3, x_2)$, G has edge-disjoint paths $P_1[x_1, x_2]$ and $P_2[x_1, x_3]$ such that $e \in E(P_2)$ and $T \in \Gamma(G - \bigcup_{i=1}^{2} E(P_i), k-2)$.

Proof. For $1 \leq i, j \leq 4$, set

$p_{i, j} = |\partial G(x_i, x_j)|$,

$R_i = \{y \in V(G) - T \mid N_G(y) = T - x_i\}$,

$r_i = |R_i|$.

(1) Assume $p_{1, 2} = p_{1, 3} = r_4 = 0$. Then

$d_G(x_1) = k = p_{1, 4} + r_2 + r_3$,

$d_G(x_4) = k = p_{1, 4} + p_{2, 4} + p_{3, 4} + r_1 + r_2 + r_3$

Thus

$p_{2, 4} = p_{3, 4} = r_1 = 0$.

Since $T \in \Gamma(G, k)$, we have

$|\partial G(x_2, x_3)| = r_2 + r_3 \geq k$.

Thus

$p_{1, 4} = 0$.

By comparing $d_G(x_i)$ with $d_G(x_j)$ for $1 \leq i < j \leq 3$, we have

$r_2 = r_3 = p_{2, 3}$.

Now (ii) follows.

(2) Assume $p_{1, 2} = r_3 = r_4 = 0$. Then by comparing $d_G(x_1) + d_G(x_2)$ with $d_G(x_3) + d_G(x_4)$, we have

$r_1 = r_2 = p_{3, 4} = 0$.

Now by comparing $d_G(x_3) = k = p_{1, 3} + p_{2, 3}$ with $d_G(x_i)$

for $i = 1, 2$, we have
\[p_{1,4} = p_{2,3} \text{ and } p_{2,4} = p_{1,3}. \]

Moreover
\[1 \mathcal{G}(\langle x_1, x_4 \rangle) = p_{1,3} + p_{2,4} = 2p_{1,3} \geq k, \]
\[1 \mathcal{G}(\langle x_1, x_3 \rangle) = p_{1,4} + p_{2,3} = 2p_{1,4} \geq k. \]
Thus
\[p_{1,3} = p_{2,3} = p_{2,4} = p_{1,4}, \]
and so (ii) follows.

(iii) We assume \(p_{1,2} = r_4 = 0 \), and then prove \(r_3 \geq 2 \). Since any cut separating \((x_1, x_3) \) and \((x_2, x_4) \) or separating \((x_1, x_4) \) and \((x_2, x_3) \) has more than \(k \) edges we have

\[(3.1) \quad p_{1,4} + p_{2,3} + p_{3,4} + r_1 + r_2 + r_3 \geq k + 1, \]
and

\[(3.2) \quad p_{1,3} + p_{2,4} + p_{3,4} + r_1 + r_2 + r_3 \geq k + 1. \]

By comparing \(d_G(x_3) + d_G(x_4) \) with (3.1)+(3.2), we have \(r_3 \geq 2 \).

(ii) If there exists \(f \in \mathcal{G}(x_1, x_3) \), then by Lemma 2.1 \(G \) has a path \(P[x_3, x_2] \) such that \(f \in E(P) \), \((x_3, x_2) \in \Gamma(G - E(P), k - 1) \) and \(T \in \Gamma(G - E(P), k - 2) \), and so (a) follows. Thus we may let
\[p_{1,3} = p_{1,2} = 0, \]
then by (1)
\[r_4 > 0. \]

If \(r_3 > 0 \), then for \(y_1 \in R_4 \) and \(y_2 \in R_3 \),
\[(x_3, x_4) \in \Gamma(G - \bigcup_{i=1}^{2} \mathcal{G}(y_i), k - 1) \text{ and } T \in \Gamma(G - \bigcup_{i=1}^{2} \mathcal{G}(y_i), k - 2), \]
and so (a) follows. Thus we may let
\[r_3 = 0. \]
Then by (1) and (3)
\[p_1,4 > 0 \text{ and } r_4 \geq 2. \]
Let \(y \) be another end of \(e \), then \(y = x_4 \) or \(y \notin R_i \) (i=1,2 or 4).
In each case (b) easily follows.

LEMMA 3.5. Suppose that \(k \geq 3 \) is an odd integer, \(G \) is a graph, \((x_1,x_2,x_3) \subseteq T \subseteq V(G) \), \(x_i \neq x_j \) (1 \leq i < j \leq 3),
\(T \in \Gamma(G,k) \) and \(e \in E(G) \). If following (i) or (ii) holds, then
for \(m=2,3 \), \(G \) has edge-disjoint paths \(P_1[x_1,x_2] \) and \(P_2[x_1,x_m] \) such that \(e \in E(P_1) \cup E(P_2) \) and
\(T \in \Gamma(G- \bigcup_{i=1}^{2} E(P_i), k-2) \).

(i) \(e \in \partial_G(x_1,x_2) \),

(ii) \(e \in \partial_G(x_1,y) \) for some \(y \in V(G)-T \) with \(d_G(y)=3 \) and with \(N_G(y)=(x_1,x_2,x_3) \).

Proof. Assume that (i) holds. By Theorem 1 if \(m=2 \), then
\(G \) has a cycle \(C \) such that \(e \in E(C) \) and \(T \in \Gamma(G-E(C), k-2) \), and
if \(m=3 \), then \(G \) has a path \(P[x_2,x_3] \) such that \(e \in E(P) \) and
\(T \in \Gamma(G-E(P), k-2) \).

Assume that (ii) holds. We may assume that \(G \) is
2-connected. If \(d_G(x_3)=d > k \), then we replace \(x_3 \) by \(d \)
vertices of degree \(k \) (Figure 4 gives an example with \(d=8 \) and
\(k=5 \)), producing a new graph \(G' \). In \(G' \) we assign \(x_3 \) on
\(N_G'(y)-(x_1,x_2) \). If the result holds in \(G' \), then
clearly the result holds in \(G \), and so we may assume that
\(d_G(x_3)=k \). Let \(f \in \partial_G(x_3) \cap \partial_G(y,x_3) \). By Lemma 3.1
Figure 4.

G has a path $P[x_1,x_2]$ such that $x_3 \not\in V(P), T \in \Gamma(G \setminus E(P), k-2)$, $(x_1,x_2,x_3) \in \Gamma(G \setminus E(P), k-1)$ and $(x_i,x_3) \in \Gamma(G \setminus E(P) \setminus f, k-1)$ $(i=1 \text{ or } 2)$. Then $y \not\in V(P)$, because $d_G(x_3)=k$ and $d_G(y)=3$. Moreover $T \in \Gamma(G \setminus E(P) \setminus y, k-2)$. Thus the result follows.

Now we prove Theorem 2. We may assume that G is 2-connected, $d_G(x) = k$ for each $x \in T$ (see the proof of Lemma 3.5 and Figure 4, in this case we can assign x on any vertex of new $d_G(x)$ vertices of degree k) and that $d_G(y) = 3$ for each $y \in V(G) \setminus T$ (see Case 1 in the proof of Theorem 1). We proceed by induction on $|E(G)|$. If $|T| \leq 3$, then the result follows from Theorem 1. Thus let $|T| \geq 4$.

Case 1. G has a nontrivial k-cut $\partial_G(X) = (e_1, \ldots, e_k)$ $(X \subseteq V(G))$ separating T.

We define H,K,u,v,T_H and T_K similarly as in the proof of Theorem 1. If $|X \cap T| = 1$, then the results hold in K, and so in G. Thus let $|X \cap T| \geq 2$ and $|T \setminus X| \geq 2$.

We require the following.

(3.3) If G has a nontrivial k-cut $\partial_G(Y) = (f_1, \ldots, f_k)$
(Y \subseteq X) separating T, then we may assume that \((X-Y) \cap T \neq \emptyset\).

Proof. Assume \((X-Y) \cap T = \emptyset\). Let \(b_1, c_1\) be the end of \(e_i, f_i\) in \(Y \setminus V(G) - X\) \((1 \leq i \leq k)\). We may assume that the graph obtained from \((X-Y)_G\) by adding \(b_1, \ldots, b_k, c_1, \ldots, c_k, e_i, \ldots, e_k, f_i, \ldots, f_k\) has edge-disjoint paths \(P_1[b_1, c_1], \ldots, P_k[b_k, c_k]\). Let \(G'\) be the graph obtained from \(G-(X-Y)\) by adding new edges \(g_1, \ldots, g_k\), where \(g_i\) has ends \(b_i\) and \(c_i\) \((1 \leq i \leq k)\). Then \(|E(G')| < |E(G)|\), and the results of Theorem 2 hold in \(G'\), and so in \(G\). Now (3.3) is proved.

(3.4) If \(|X-T| = 2\) \((|T-X| = 2)\), then we may assume that \(H\) \((K)\) is \(G(p, q)\) \((G(p', q'))\) for some integers \(p\) and \(q\) \((p',and q')\).

Proof. Assume \(|X \cap T| = 2\). If \(H\) has a nontrivial \(k\)-cut \(\partial_H(Y) \subseteq V(H) - u\) separating \(T_H\), then by (3.3) \((X-Y) \cap T \neq \emptyset\), and so \(|T \cap Y| = 1\). Then by taking \(Y\) instead of \(X\) the results of Theorem 2 hold. Thus we may assume that an end of each edge of \(H\) is in \(T_H\). Hence the result easily follows.

We return to the proof of Theorem 2. By Lemma 3.5 we may assume the following.

(3.5) \(\partial_G(a_1, a_i) = \emptyset\) \((i = 2, m)\) and for each \(y \in V(G) - T\), \((a_1, a_2, a_m) \notin N_G(y)\).
Let \(a_1 \in X \).

(1) Now \(|X-T|=|T-X|=2 \). If \(a_2 \in X \), then by (3.4) the result easily follows. Thus let \(a_2 \in V(G)-X \). Since
\[
p+q \geq (k+1)/2 \quad \text{and} \quad p'+q' \geq (k+1)/2,
\]
for some \(1 \leq i \leq k \), \(H \) has an elemental star \(S_1 \) containing \(a_1 \) and \(e_i \) and \(K \) has an elemental star \(S_2 \) containing \(a_2 \) and \(e_i \). Then \(T \in \Gamma(G-\bigcup_{i=1}^{2} E(S_i),k-1) \).

(2) Subcase 1-1. \((a_2,a_m) \subseteq X \).

\(H \) has required paths. If one of them passes through \(u \), then we can deduce the result by using Lemma 3.1(3) on \(K \).

Subcase 1-2. \((a_2,a_m) \subseteq V(G)-X \) and \(|X \cap T|=2 \).

Set \(X \cap T=\{a_1,a_5\} \). By (3.4) \(H \) is \(G(p,q) \). Thus if following (3.6) or (3.7) holds, then the result follows.

(3.6) For some \(e_i \in \partial H(u,a_1) \), \(K \) has edge-disjoint paths \(P_1[v,a_2] \) and \(P_2[v,a_m] \) such that \(e_i \in E(P_1) \cup E(P_2) \) and \(T \in \Gamma(K-\bigcup_{i=1}^{2} E(P_i),k-2) \).

(3.7) For some \(e_i,e_j \in \partial H(u)-\partial H(u,a_5) \), \(K \) has edge-disjoint paths \(P_1[v,a_2] \) and \(P_2[v,a_m] \) such that \(\{e_i,e_j\} \subseteq E(P_1) \cup E(P_2) \) and \(T \in \Gamma(K-\bigcup_{i=1}^{2} E(P_i),k-2) \).

If \(p=0 \), then \(\partial_H(u,a_5)=\emptyset \), and so (3.7) follows. Thus let \(p>0 \). If \(|T-X|=2 \), then by (3.4) \(K \) is \(G(p',q') \), and so (3.6) follows. Thus let \(|T-X|=3 \) and \(m=3 \). Set \(T-X=\{a_2,a_3,a_4\} \).

Subcase 1-2-1. \(K \) has nontrivial \(k \)-cut \(\partial_K(Y) \) \((Y \subseteq V(K)-v) \) separating \(T \).

By (3.3) We may let \(|Y \cap T|=|T-Y|=2 \). Let \(K_1 \) and \(K_2 \) be the graphs obtained from \(K \) by contracting \(Y \) and \(V(K)-Y \) to a vertex respectively. Then similarly as (3.4)
K_i is $G(p_i, q_i)$ for some integers p_i and q_i ($i=1,2$)

Let M be

$\{ (x_1, x_2) \in V(K) - T_K \mid \partial K(x_1, x_2) \not\subseteq \emptyset \}$,

and let M' be

$\{ x \mid \text{For some } N \subseteq M, x \in N \}$.

For each $N \subseteq M$, $N \cap V(K_i) \not= \emptyset$ ($i=1,2$),

distance $d_{K-N}(a_j) = d_{K-N}(u_j) = k-1$ $(j=2,3,4)$ and $T_K \subseteq \Gamma(K-N, k-1)$.

If $k \not= 1M_1$, then $p_1 = p_2 = 0$ and the result easily follows,

and so let $k \not= 1M_1$. $K-M'$ is elemental for T_K and $K-1M_1$.

Assume that $k-1M_1$ is even and $K-M'$ is the graph obtained from four cycle by replacing each edge by $(k-1M_1)/2$ parallel edges. For each cycle C of $K-M'$ such that $|V(C)| = |E(C)| = 4$,

we have $T_K \subseteq \Gamma(G-E(C), k-2)$. If $\partial G(a_1, a_4) \not= \emptyset$, then

3.6 follows, and if not, then by (3.5) a_1 is adjacent to

p vertices of M'. If $1M_1 \not= 2$, then (3.6) follows. Thus

assume $1 \geq 1M_1 \geq p \geq 1$. Since $(k-1M_1)/2 \geq (5-1)/2 = 2$, for some

$1 \leq i < j \leq k$,

$$(e_i, e_j) \subseteq \partial_H(u) - \partial_H(u, a_5),$$

and K has a four cycle C such that $|V(C)| = |E(C)| = 4$ and

$(e_i, e_j) \subseteq E(C)$. Hence (3.7) follows.

By Lemma 3.4(2) we may assume that for each two vertices of T_K, $K-M'$ has an elemental star containing them. Set

$a_0 = u$, and for $i, j = 0, 2, 3, 4$, set

$p_i, j = |\partial K(a_i, a_j)|$,

$r_i = |\{ x \in V(K) - T_K \mid N_K(x) = T_K - a_0 \}|$.

For $i, j = 0, 2, 3, 4$, since $|\partial K(a_i, a_j)| \geq k$,
If a_1 is adjacent to a vertex of M' in G, then (3.6) follows. If for some $x \in V(G)-T$, $N_G(x)=(a_1,a_i,a_4)$ $(i=2$ or $3)$, then (3.6) follows. Thus and by (3.5) we may assume that

$|\partial G(a_1,a_4)|=p$.

If $a_4 \in Y$, then (3.6) easily follows, and thus let $T_{H-Y}=(a_0,a_4)$. Since $p_0,4 \geq |\partial G(a_1,a_4)|=p>0$, by Lemma 3.4(1) we have

$p_4,2>0$, $p_4,3>0$, or $r_0>0$,

and

$p_0,2>0$, $p_0,3>0$, or $r_4>0$.

If $r_0>0$, $r_4>0$, $p_0,2+p_3,4>0$, or $p_0,3+p_2,4>0$,
then (3.6) follows (note that K_i is $G(p_i,q_i)$ for $i=1,2$)

Thus we may assume that

(3.8) $p_0,2>0$, $p_2,4>0$ and $r_0=r_4=p_0,3=p_3,4=0$.

Assume $|M|=0$. Then

$d_G(a_3)=p_2,3+r_2$ and $p_2,3 \leq (k-1)/2$,

and so

(3.9) $r_2 \geq (k+1)/2 \geq p+1$.

By comparing $d_G(a_2)$ with $d_G(a_4)$ we have

$p_0,2+p_2,3=p_0,4+r_2$.

Thus

(3.10) $p_0,2 \geq p_0,4 \geq p$.

From (3.9) and (3.10), (3.7) follows.

Now we may let $|M|>0$. Since $(a_2,a_3) \subseteq Y$, we have
\[l \mathcal{E}_K(Y) = k = d_K(a_2) + d_K(a_3) - 2p_2,3 - |M| \]

\[= 2k - 2p_2,3 - |M|, \]

and so

\[2p_2,3 + |M| = k. \]

Since \(d_G(a_3) = k = p_2,3 + r_2 + |M|, \)

\[r_2 = p_2,3, \]

Since \(d_G(a_3) = 2r_2 + |M|, \) \(d_G(a_4) = p_0,4 + p_2,4 + r_2 + r_3 + |M|, \)

and \(p_2,4 > 0 \) (by (3.8)), we have

\[(3.11) \quad r_2 > a_0,4 + 1 \geq p + 1. \]

By comparing \(d_G(a_2) \) with \(d_G(a_4) \), we have

\[p_0,2 = p_0,4. \]

Thus

\[(3.12) \quad p_0,2 + |M| \geq p + 1. \]

From (3.11) and (3.12), (3.7) follows.

Subcase 1-2-2. \(K \) has no nontrivial \(k \)-cut separating \(T_K \).

We may assume that an end of each edge of \(K \) in \(T_K \) and \(K \) is elemental for \(T_K \). The proof is similar as the case \(|M| = 0 \) in the proof of Subcase 1-2-1.

Subcase 1-3. \((a_2, a_m) \subseteq V(G) - X \) and \(|X \cap M| = 3 \).

Now \(m = 3 \). By (3.4) \(K \) is \(G(p', q') \). Set \(X \cap T = \{ a_2, a_4, a_5 \} \)

If \(H \) has nontrivial \(k \)-cut \(\mathcal{E}_H(Y) \) (\(Y \subseteq V(H) - u \)) separating \(T_H \), then we may let \(|Y \cap T_H| = 2 \). Then for \(Y \) or \(V(G) - Y \) instead of \(X \) Subcase 1-1 or Subcase 1-2 occurs. Thus we may assume that this is not the case and \(H \) is elemental for \(T_H \).

If following (3.13) or (3.14) holds, then the result follows.

\[(3.13) \quad \text{For some } e_i \in \partial K(v) - \bigcup_{i=1}^3 \partial K(v, a_i), \text{ H has edge-disjoint paths } P_1[a_1, u] \text{ and } P_2[a_1, u] \text{ such that} \]
\[e_i \in E(P_i) \cup E(P_2) \quad \text{and} \quad T_{H,e} \Gamma \left(H \cup \bigcup_{i=1}^{2} E(P_i), k-2 \right). \]

(3.14) For \(l=2 \) or \(3 \) and for some \(e_i \in \partial K(v, x_1) \) and \(e_j \in \partial K(v) - \partial K(v, x_1) \), \(H \) has edge-disjoint paths \(P_1[a_1, u] \) and \(P_2[a_1, u] \) such that \(\langle e_i, e_j \rangle \subseteq E(P_1) \cup E(P_2) \) and \(T_{H,e} \Gamma \left(H \cup \bigcup_{i=1}^{2} E(P_i), k-2 \right) \).

Set \(a_0 = u \) and for \(i, j = 0, 1, 4, 5 \) set
\[
\begin{aligned}
P_i, j &= \partial H(a_i, a_j), \\
R_i &= \{ x \in V(H) - T_H \mid N_H(x) = T_{H-a_i} \}, \\
r_i &= 1R_i.
\end{aligned}
\]

By (3.5) \(p_0, 1 = 0 \).

Assume \(p_1, 4 = p_1, 5 = 0 \). If \(r_0 \leq (k-1)/2 \), then
\[
r_4 + r_5 = d_G(a_1) - r_0 \geq (k+1)/2 \geq p' + 1,
\]
and so (3.13) or (3.14) follows. Thus let \(r_0 \geq (k+1)/2 \).

Since \(d_G(a_0) = p_0, 4 + p_0, 5 + r_1 + r_4 + r_5 \) and
\[
d_G(a_5) = p_0, 5 + p_4, 5 + r_0 + r_1 + r_4,
\]
we have
\[
p_0, 4 + r_5 = p_4, 5 + r_0.
\]
Hence
\[
d_G(a_4) = k \geq p_0, 4 + r_0 + r_5 \geq 2r_0 \geq k,
\]
a contradiction.

Now we may let \(p_{1, i} > 0 \) for \(i = 4 \) or \(5 \), say \(i = 4 \).

Since \(p_0, 1 = 0 \) and by Lemma 3.4(3), we have
\[
r_4 + r_5 \geq 2.
\]

For each \(x \in R_4 \cup R_5 \), if \(x \) is adjacent to a vertex of \(V(K) - T_K \) in \(G \), then (3.13) follows, thus assume that \(\partial G(x, a_1) \neq \emptyset \) (i=2 or 3). For each \(x, y \in R_4 \cup R_5 \), if \(\partial G(x, a_2) \neq \emptyset \) and \(\partial G(y, a_3) \neq \emptyset \), then (3.14) follows, thus assume that for \(i = 2 \) or \(3 \), \(\partial G(x, a_i) = \partial G(y, a_i) = \emptyset \), say \(i = 3 \),

\[\]
and that \(r_4 + r_5 \leq p' \).

Assume \(r_4 > 0 \). For some \(e_1 \in \partial K(u) - \partial K(u, a_2) \), \(e_1 \) is incident to \(a_4 \) or a vertex of \(R_1 \) in \(G \), because
\[
p' + q' \geq (k+1)/2 > p_0, 5.
\]
Thus (3.14) follows.

Now we may assume that \(r_4 = 0 \), \(r_5 > 0 \) and \(p_1, 5 = 0 \).

Thus \(p_0, 1 = p_1, 5 = r_4 = 0 \), contrary to Lemma 3.4(1). Subcase 1-4. \(a_2 \in X \) and \(a_m \in V(G) - X \). now \(m = 3 \).

Subcase 1-4-1. \(|X \cap T| = 2 \).

By (3.4) \(H = G(p, q) \), and by (3.5) \(p = 0 \). Since \(|T_K| \leq 4 \), by induction \(K \) has a path \(p[v, a_3] \) such that
\(T_k \in \overrightarrow{P}(K-E(P), k-1) \). Let \(e_1 \in E(P) \). \(H \) has an elemental star \(S_1 \) containing \(a_1 \) and \(e_1 \). Let \(S_2 \) be another elemental star of \(H \). Then \(T_{H} \in \overrightarrow{P}(H - \bigcup_{i=1}^{2} E(S_i), k-2) \), and so the result follows.

Subcase 1-4-2. \(|X \cap T| = 3 \) and \(|T - X| = 2 \).

Assume that \(H \) has a nontrivial \(k \)-cut \(\partial_H(Y) = (f_1, \ldots, f_k) \) (\(Y \subseteq V(H) - u \)) separating \(T_H \). Then we may assume that \(|Y \cap T_H| = 2 \), \(a_2 \in Y \) and \(a_1 \in X - Y \). Let \(H_1 \) (\(H_2 \)) be the graph obtained from \(H \) by contracting \(V(H) - Y \) (\(Y \)) to a new new vertex \(u_1 \) (\(u_2 \)). Then similarly as (3.4) \(H_1 \) is \(G(p_i, q_i) \) for some integers \(p_i \) and \(q_i \) (\(i = 1, 2 \)). If \(p_2 = 0 \), then the result easily follows. If \(p_2 > 0 \), then we may let \((f_1, e_1) \subseteq \partial g(a_1) \) and we can easily deduce the result.

Now we may assume that \(H \) has no nontrivial \(k \)-cut
Let F be a cut of G separating (a_1, a_5) and (a_2, a_3).

Since $p_{i,j,k}(k-1)/2$ for each i, j, k, we have $(1, 1, 1) > 0$.

Proof. Assume that each elemental star of G does not contain (a_1, a_2) nor (a_1, a_3). Then $d_G(a_1) = p_{i,4} + p_{i,5} + r(1, 1, 1) = 1$.

By Lemma 3.3, the result follows. Thus let $|T| = 5$ and $m = 3$.

We may assume that G is elemental for T. If $|T| = 4$, then $\varnothing(\mu) \neq \varnothing(\mu, u, v, w)$ and $e_i \in \varnothing(\mu, u, v, w, x, y, z)$, for some x, y, z. Instead of x, y, z, assume that u, v, w.

Case 2. G has no nontrivial k-cut separating T. Then the result follows.

So we require the following.

For each distinct $i, j, k, 1 \\leq i, j, k \\leq 5$, G has an elemental star containing (a_1, a_2) or (a_1, a_3).
\[|F| = d_\mathcal{G}(a_4) + d_\mathcal{G}(a_5) - (p_{1,4} + p_{1,5} + 2r(1,4,5)) < k, \]
a contradiction. Now (3.15) is proved.

We return to the proof of Theorem 2. By (3.5)

\[p_{1,2} = p_{1,3} = r(1,2,3) = 0. \]

If \(r(1,2,i) > 0 \) and \(r(1,3,j) > 0 \) (\(i,j = 4 \) or \(5 \)), then the result follows. Thus and by (3.15) we may assume that

\[r(1,2,4) > 0 \text{ and } r(1,3,i) = 0 \quad (i = 4,5). \]

By (3.15)

\[p_{1,5} + r(i,5,2) + r(i,5,4) > 0 \quad (i = 1,3). \]

If \(p_{1,5} > 0 \), \(p_{3,5} > 0 \), \(r(1,5,2) \cdot r(3,5,4) > 0 \), or

\[r(1,5,4) \cdot r(3,5,2) > 0, \]
then by Lemma 3.3 the result follows.

Thus we may assume that for \((i,j) = (2,4) \) or \((4,2) \),

\[p_{1,5} = p_{3,5} = 0, \ r(1,5,i) = r(3,5,i) = 0, \]

and

\[r(1,5,i) \cdot r(3,5,j) > 0. \]

Assume \(r(1,5,2) = r(3,5,2) = 0. \) Then

\[d_\mathcal{G}(x_1) = p_{1,4} + r(1,2,4) + r(1,4,5), \]

and

\[d_\mathcal{G}(x_4) \geq p_{1,4} + r(1,2,4) + r(1,4,5) + r(3,4,5) > k, \]
a contradiction. Thus

\[r(1,5,4) = r(3,5,4) = 0. \]

Since \(r(1,2,5) > 0 \), by the same argument we have

\[p_{1,4} = p_{3,4} = 0. \]

Thus

\[d_\mathcal{G}(x_1) = r(1,2,4) + r(1,2,5) \]

and
\[d_G(x_2) \geq r(1,2,4) + r(1,2,5) + r(2,3,5) > k, \]
a contradiction.

4. PROOF OF THEOREM 3.

Suppose that \(k \geq 1 \) is an integer, \(G \) is a graph, \(T = (s_1, \ldots, s_k, t_1, \ldots, t_k) \subseteq V(G) \) and \(T \in \Gamma(G,k) \). We prove that if \(|T| = 3 \), or if \(k \) is odd and \(|T| = 4 \) or \(5 \), then \((1,1)\) holds by induction on \(k \).

Assume \(|T| = 3 \). By Theorem 1 \(G \) has a path \(p s_k s_k \) such that \(T \in \Gamma(G-E(P),k-1) \). By induction for \(k-1 \), \((1.1)\) holds in \(G - E(P) \), and so for \(k \), \((1.1)\) holds.

Assume that \(k \geq 5 \) is odd and \(|T| = 4 \) or \(5 \). For some \(1 \leq i < j \leq k \), if \(|T| = 4 \), then
\[s_i = s_j \text{ or } t_i, \]
and if \(|T| = 5 \), then
\[s_i = s_j \text{ or } t_j \text{ and } (s_i, t_i) \notin (s_j, t_j), \]
say for \(i = k-1 \) and \(j = k \). By Theorem 2 \(G \) has edge-disjoint paths \(P_i [s_{k-1}, t_{k-1}] \) and \(P_j [s_k, t_k] \) such that \(T \in \Gamma(G - \bigcup_{i=1}^2 E(P_i),k-2) \). By induction for \(k-2 \), \((1.1)\) holds in \(G - \bigcup_{i=1}^2 E(P_i) \), and so for \(k \), \((1.1)\) holds in \(G \).

Thus for integer \(k \geq 1 \),
\[\lambda'(k,3) = \lambda(k,3) = k, \]
and for odd integer \(k \geq 1 \),
\[\lambda'(k,4) = \lambda'(k,5) = k. \]
By Lemma 3.2 for odd integer \(k \geq 1 \),
\[\lambda(k,4) = \lambda(k,5) = k \text{ and } \lambda(k+1,4) = \lambda(k+1,5) = k+2. \]
Now Theorem 3 is proved.
REFERENCES

