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Finite Biautomata on Two-way Infinite Words

(Preliminary Report)
JulksEs R (Takeshi Hayashi)

College of Gemeral Education, Kyushu University

Abstract

The classes of two-way infinite languages accepted by finite biau-
tomata through several acceptance conditions are studied. A two-way
infinite word is a two-way infinite sequence of symbols of finite kinds.
A finite biautomaton is a pair of finite automata, one of which runs
leftward infinitely while the other runs rightward infinitely starting

at some point of a two-way infinite word.  This paper deals with the
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classes characterized by finite biautomata under four types of accept-

ance conditions which have been used to study behaviours of finite

automata on w-words.

1. Introduction

A two-way infinite word is a two-way infinite sequence of symbols of
finite kinds whose left/right shift denotes the same two-way infinite
word. Finite biautomata on this kind of words was firstly investigated
by Nivat and Perrin [4]. A biautomaton is a pair of finite automata, one
of which runs leftward infinitely while the other runs rightward infini-

tely starting at some point of a two-way infinite word.

Nivat and Perrin defined both nondeterministic and deterministic

biautomata through Buchi type acceptance condition [1]. The class of
two-way infinite languages accepted by -nondeterministic biautomata can
be considered as an extension of w-regular languages [3] to two-way

infinite case, They have shown that nondeterministic. models define a

larger class than deterministic ones. - It has been . also shown that

nondeterministic class is the Boolean closure of deterministic one.
These results are regarded as extensions of the corresponding results
for w-languages and require more difficult arguments.

In this paper we consider nondeterministic and deterministic biau-
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tomata on two-way infinite words through other acceptance conditions
which have been used to study behaviours of finite automata on w-words

[5,6] and characterize classes they define.

2, Preliminaries

Definition: Let A be a finite alphabet, and A? denote the set of mapping
x ¢ {0,1,2,...} = A. We call the mapping x an w-word, and write
X=ajaja,... where x(n)=a  (n=0,1,2,...).

Let AP=A" u AY where A* stands for the set of finite words over A.
We call the members of A% 0O-words(infinitary words). For an OO-word w
and n 2 0, we write

w(0)w(1l)...w(n-1) if w is in AY,
wlnl={
agayesedj_q if w=agaj...a;_; and izmin{n,m}

where ag,ajsw.a;_y are in A. In this paper unless otherwise stated, we
assume that u,v,w stand for arbitrary OO-words, X,y,z for w-words, f,g.,h
for finite words, W,U,V for OO-languages (subset of AOO),X,Y,Z for
languages(subset of A%),a,b for symbols in A, and n,m,i for natural
numbers(20).

We define a partial order £ in A® by

w < v iff w=v or w=v[n] for some n,

and write

yw={f in A* | £ < w}={wlnl|n20}.

For an OO-language W, we write

tW=uf{iw | we Wi={wlnl| w € W, n=0}.

For an increasing sequence

w05w15w2$w3s...

of elements w, in A%°, the supremum of (w;) is denoted by sup(w;).
Given an OO-language W, sup(W) denotes the set of supremums of increas-
ing sequences whose elements are in W.

Now we extend the regular operations to OO-languages. First we
extend the concatenation operatiom in A* to A by

wv(0)v(1)v(2)... if weA™ and veA?,

w if weA? and vero,
and define WV and W* as usual. That is,
WV

w*

{wv | weW, veVly

{e JUNUWWUWWWU...

1t
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Here e stands for the empty word. We define the w-power of an co-
language W as \

WY = {wowlwz... ] VoW sWosees € W-{e}}
where wywwy... means the w-word w such that wowye..w < w for all n.
For an OO-language W,

Wé8 = {winAY | ywc+W}.
We define another operation L® for a language L c A* by

L® = {w in AY | +w n L is infinite}= sup(L) n A%,
We call (u,v) in APxA%® a bi-word. Over the set of bi-words APxA®, we
define an equivalence relation denoted by ~ as

(usv) ~ (u'sv') iff there exists f in A* such that v=£v' and u'=fRu
or v'=fv and u=fRu', where R is the reverse operator of A*.

We say an equivalence class of bi-words under ~ a bilateral word.

The set of bilateral words is denoted by ©p®  and the canonical sur-

jection from APxA%P onto PP is denoted by p.y
A bi-word (u,v) is said to be

finite if u, v € A*,

right-infinite if u € A, v € A%,

left-infinite if u € AY, v e A%,

two-way infinite (biinfinite) if u, v € AY.
We can identify the set of finite bilateral words with A*. 1f (f,g) €
A*XA*, we can make correspondence with_ng. And we have (f,g) ~ (f',g")
iff ng=f'R ', Therefore we are allowed to d‘enote ng the class p(f,g).

In the same way the set of right-infinite bilateral words can be
identified with AY by making correspondence of (f,y) € A*xAY with the w-
word fRy € AY,

We denote the set of left-infinite bilateral words by ?A. One can
define a bijection

x € YA xR ea?
in association with the identification of a bi-word (u,g) € AYxA* with
the w-word gRu € AY,

We can also define the product of a word in “A with a word in AR by
assoclating for x € YA, v e A witn the equivalence claés of (XR,V).
The corresponding element in OOAOO‘is denoted by xv. We also use the
following notation: \

For an ©O-language W,
3y = {w in YA | +(R) c 4RI,
For a language L © A*,
€L = {w in “A |-+(WR) a LR is infinitel.

For a language L A*,
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Y1, is a subset of YA defined by: (“L)} = (1R)e,

If the word is two-way infinite bilateral, then we call it simply
biinfinite. The set of biinfinite words over A is denoted by
WAL (AW AW /)

The set AOQXAOO

of bi-words is naturally ordered by
(usv) < (u'yv') 1ff u £ u' and v £ v'
where £ is the relation already defined on A%,

For an increasing sequence (un,vn) of bi-words, the supremum denoted
by sup(un,vn) equals to (sup(un),sup(vn)).

For a language W c A*, we associate a biinfinite language
eWe‘—'{p(Sup(fn,gn)) e YAY | (f,, g,) are strictly increasing sequences of
bi-words such that flégn € W for all n }.

For a language W c A*, we associate a biinfinite language 2W2={(x,y)
e AYxAY | x[n]Ry[m] € C(W) for all n,m20}/~, where C(W) denotes the set
of subwords occurring in W, that is C(W)={g € A* | fgh € W for some f,h
e A¥}.

Definition: A finite automaton is a 5-tuple M=(Q,A,T,D,F), where

(1) Qis a finite set of states.

(2) A is a finite alphabet.

(3) T is a subset of QxAxQ such that the set T(q,a)={pl(q,a,p) 1is
in T} is not empty for q in Q and a in A. Elements in T are called
transitions.

(4) D is a subset of Q called the set of initial states.

(5) F is a subset of Q called the set of final states.
A finite automaton said to be deterministic if [D|=1 and [T(q,a)l=1 for
all g in Q and a in A.

For a finite automaton M, a finite word f:aOal“'aﬁ—l’ and two
states p and q in Q, we write ’

o . N g in M

if there exists a finite consecutive sequence of transitions
(qo,ao,ql), (ql,al,qz),...,(qn_l, an—l’qn) such that qp=p and q,=q.

For a finite automaton M, L,(M) denotes the language accepted by M,

L*(M)z{feA* | There exist peD and qe€F such that p —£ q in M }.

Given an infinite word x and an automaton M, a computation a is an
infinite consecutive sequence of transitions (qO,aO,ql),
(ql,al,qz),..., (qn—l’an—l’qn)"“’ where qy is in D and x=agjajag...
We denote the set of computations of M for x by R(M,x). For a computa-

tion ¢, we define
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(1) I(e)={q | state q occurs in « iﬁfinitely many times},

(2) 0(e)={q | state q occurs in a}.
For a finite automaton M=(Q,A,T,D,F) and x in AY, we say that M accepts
x in the sense of C; (i=l,...,4) if there exists a computation « in
R(M,x) satisfying the condition C;, where

(cy) 1(a)nF=g.

(c,) 1(a)<F.

(C3) O(a)nFzg.

(c,) o(a)cF. , |
We call o an accepting computation of M on x in the sense of C;, respec-
tively. For i=l,...;4 ,‘we denote by Li(M) the set of w—wqrd# accepted
by M in the sense of C;, further to clarify the initial state of o, we
use the notation L;(M;d) for the set of w-words accepted by M in the
sense of C; with accepting computations beginning at the initial state
d. Therefore Li(M):UdeD Li(M;d). We say that M recognizes an w-language
L in the sense of C; if L=L,(M).

Definition: For i=l,....4, we define

(1) Ny = {L;(M) | M is a nondeterministic finite automaton} ,

(2) p; = {L;(M) | M is a deterministic finite automaton}.

The classes D; and N; (i=15...54) have been characterized .in terms
of general topology and the representations of the w-languages in these
classes have been obtained by applying several operations to regular
languages [5,6]. Table I summarizes the known results on deterministic
and nondeterministic finite automata on w-words. The classes concerned,
denoted by w-R, GR, FR, Gg and Fg, are defined as follows:

(1) w-R: An w-language in w-R is of the form U?=1Xin for some
regular languages X and Y. w-R is called the class of w-regular lan-
guages [3].

(2) 6% an w-language in GR

is of the form XAY, where X is a
regular language. |

(3) F:  An w—langﬁage in F® is described as X? for some regular
language X.

(4) G%: An w-language 1in GR is written as X for some regular

$
language X.
(5) Fﬁ; An w-language in F§ is of the form U?leiYg for some

regular languages X; and Y;.

[ &)
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TABLE I

R R R R
b, & F ¢ F
N, «-R F]é & |®

Definition: A finite biautomaton is a 3-tuple M=(M_,M,,S), where

(1) M_ and M, are finite automata with

M_=(Q_,A,T_,D_,F_) and M,=(Q,,A,T,,D,,F,) .

(2) S is a subset of D_xD,.
For a biautomaton M=(M_,M,,S), the set of bi-words accepted by M in the
sense of C;, demoted L;(M) is defined as

Li(M)={(x,y) € AYxAY | There exists (d_sd,) in S such that x is in
Li(M_;d_) ana y is in Li(M+;d+)L
For i=ls...54, we define

Ni(waAw)= {L;(M) | M is a biautomaton}.

A biautomaton M is said to be bilateral in the sense of C; if L;(M)
is closed under the relation ~. If M is bilateral in the sense of C;»
the set of biinfinite words recognized by M, denoted B;(M) is defined as

B, (M)=p(L;(M)).

For a biinfinite language L c %A%

» L is said to be C;-recognizable
if there exists a bilateral biautomaton M such that L=B,(M). The classes
of C;-recognizable biinfinite languages are denoted by BN, respectively
for i=1l,....4.

A biautomaton M=(M_,M,,S) is said to be strictly deterministic, if
it satisfies:

(1) Both M_ and M, are deterministic finite automata.

(2) s={(d_»,d,)}, where d_ is the unique initial state of M_ and d,
is the unique initial state of M,.
A deterministic biautomaton is a finite union of strictly deterministic
biautomata., For a deterministic biautomaton M={Ml, '"’Mn}’ the set of
bi-words accepted by M in the sense of C,» denoted Li(M) is defined as

Li(M)zuj;‘lLi(Mj).

For i=1l,...54, we define

Di(AwXAw)= {L;(M) | M is a deterministic biautomaton}.

A deterministic biautomaton M is said to be bilateral in the sense
of C; if L;(M) is closed under the relation ~. For i=l,....4, BD. are
the classes of biinfinite languages recognizable by deterministic bilat-

eral biautomata in the sense of Ci’ that is,

B
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BD]-_={L c WpY L=p(Li(M)) for some deterministic bilateral biautoma-
ton M}.

3, Characterization of BN.'s
Theorem 1 (Nivat and Perrin [4]). For L « YA%, the following conditions
are equivalent,

(1) L e BN;. _

(2) L is a finite union of sets of the form Uxyz?® where X,Y,Z €
R(the class of regular sets).

(3) There exists L' in Nl(waAw) such that L=p(L').

(4) p (L) € N (A9xAY).
Proof. (1) => (2). Let L=B;(M). Then L=p(L;(M)) and L;(M) is a finite
union of the sets of the form (UV?,Wz¥) with U,V,W,Z € RB. If we set X=VR
and Y=URW, then p(UV¥,wz?)=9xyz%.
(2) => (3). Since Nl(A“’XAw) is clearly closed under union, it sufficies
to show that (2) implies (3) for a set of the form L=Y“XYz% with X,Y,Z ¢
R. Let M, be an automaton such that Ll(M+)=YZw and M_ be an automaton:
such that Ll(M_):(XR)w. 1f we choose S=D_xD_, then the biautomaton M=(M_
»M,sS) has the property that Ll(M)=((XR)“’,Yzw) and Lip(Ll(M)).
(3) => (1). Let M=(M_,M,,S) be a biautomaton such that L=p(Ll(M)). We
define a biautomaton M' as follows:

Q'_=Q',=D'_=D',=Q_uQ,u{$}, where $§ is a new state,

F'_=F_, F',=F,,

S'=5u{(qsq)| q € Q_uQ,};

For p,q € Q_uQ, and a € A, (p,a,q) € T'_ if (p,asq) € T_ or (q,a,p)
€ T, or there exists r € Q_ such that (r,a,q) € T_ and (r,p) € S. For p
€ Q_uQ, and a € A, if such q does not exist in Q_uQ, then (p,a,$) is in
T'_. And ($,2,%) is in T'_ for each a in A. In the same way (psa,q) €
T', if (p,a,q) € T, or (q,asp) € T_ or there exists r € Q, such that
(ra,q) € T, and (p,r) € S. If such q does not exist, then (p,a,$) is in
T',. And ($,a,$) is in T',. | ,
It is easily seen that if Q,nQ_=%, the automaton M' is bilateral and
L=B1(M'). (This process of making biautomaton bilateral is called bilat-
eralization.) Therefore L is in BN;.

(1) <=> (4), Evident. D
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Theorem 2. For L c¢ YAY?, the following conditions are equivalent.

(1) L e BR,.

(2) L is a finite union of sets of the form 2XYZ? where X,Y,Z € R.

(3) There exists L' in NZ(A(‘JXA(") such that L=p(L").

(4) p (L) € N, (a9xa%),
Proof. (1) => (2). Let L=B2(M). Then L=p(L2(M)) and LZ(M) is a finite
union of the sets of the form (UVZ,Wz?) with U,V,W,Z € R. If we set X=y}
and Y=URW, then p(UV3,wz2)=3xyz3, |
(2) =>(3). Since Nz(waAw) is clearly closed under union, it sufficies
to show that (2) implies (3) for a set of the form L=2XYz? with X,Y,Z €
R. Let M_ be an automaton such that LZ(M_,_)=YZa and M_ be an automaton
such that LZ(M__)=(XR)3. 1f we choose S=D_xD_, then the biautomaton M=(M_
,M,,S) has the property that L,(M)=((x®)2,v2%) and L=p(L,(M)).
(3) =>(1). By bilateralization which preserves the condition C,.
(1) <=> (4). Evident. [

Theorem 3. For L ¢ “A?, the following conditions are equivalent.

(1) L e BNj.

(2) L is of the form “AXAY where X € R.

(3) There exists L' in Hj(A“JXA“') such that L=p(L').

(4) p L(L) € N, (AYxAY),
Proof. (1) => (2). Let L=B3(M). Then L=p(L3(M)) and L3(M) is of the
form (UAY,VAY) with U,V € R. If we set X=UNV ,then p(UAY,VAY)= “axaY,
(2) => (1), Let L=YAXAY with X € R. Let M=(Q,A,T,D,F) be a finite
automaton such that X=L (M). Then evidently we have XAw=L3(M). From M we
can easily construct three types of biautomata M;, M, and M; such that:

L, (M;)=(a%,4%x8%),

Ly(M,)=(4*xRa% 4%),

Ly(M3)={(fx,gy) | ng € X, x and y € AY}.
We can construct a biautomaton M' from Mis M, and Mg such that
L3(M')=Ui=31 Ly(M;). It is easily seen that M' is bilateral and
L=p(L5(M")).
(2) => (3). Let L=“AXA% with X € R. Let M, be an automaton such that
L3(M+):XA‘" and M_ be an automaton such that I_.3(M_)'=Aw. If we choose S=D_
xD,, then the biautomaton M=(M_,M,,S) has the property that L3(M)=(Aw,
XAY) and L=p(L5(M)).
(3) => (2). Along the same line as done in (1) => (2).
(1) <=> (4). Evident. [
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Theorem 4. For L ¢ YAY, the following conditions are equivalent.

(1) L € BN,.

(2) L is of the form 2X® where X € R.

Proof. (1) => (2). Let L=B4(M) and M=(M_,M_,S). Then L=p(*L4(M)). Put

v=(A*-L, (M_))R(A* -1, (1,)) 0L, (M_))R(A*-L, (M) ) u(A*-L, (M_))RL, (M,)
and X=A*-A*YA*. We will prove that L=2X2. Notice that C(X)=X where C(X)
is the set of subwords occurring in X. Let z € L, then z can be written
as xRy such that x € L4(M-) and y € L,(M,). The acceptance condtion Cy
implies that x[n] € L,(M_) and y[m] € L,(M,) for all n and m. Therefore
for all n and m, x[n]Ry[m] € (L*(M_))R(L*(M+)). This implies that
x[n]Ry[m] ¢ A*YA* since M is bilateral. Thus we have x[n]Ry[m] € X=C(X)
for all n and m. Therefore z=ny is in 2X2, Conversely, let z be in 3x3.
There exists (x,y) € AYxA% such that z=x"y and x[nl®y[m] € C(X)=X for
all n and m. Since x[n]Ry[m] ¢ A*YA*, x[n] € L,(M_) and y[m] € L,(M,)
for all n and m. Thus x is in L4(M_) and y is in L4(M+). Therefore z is
in B,(M). ’ .
(2) => (1). Let X be in R, then there exists a (deterministic) finite
automaton M=(Q,A,T,{d},F) such that C(X)=L,(M). From M ,we can easily
construct finite automata M_ and M, such that (L*(M_))RL*(M+)=C(X) with

M_=(Q_,A,T_,D_,F_) and
M,=(Q,,A,T,,D,,F,).
Set M'=(M_,M+,D_XD+); We will show that L4(M’)=p—1(axa).

Let (x,y) be in L,(M'). Then x is in Ly(M_) and y is in L,(M,).
Therefore x[nl] is in L,(M_) for all n and y[m] is in L,(M,) for all m.
Thus we have x[nl®y[m] is in (L*(M_))RL*(M+)=C(X) for all n and m.
Therefore p(x,y) is in 2X2,
Conversely, if p(x,y) is in 2X? and let (x',y') be a bi-word such that
(x,y)~(x',y") with (x'[n1)®y'[m] € C(X) for all n and m. Suppose there
there exists £ in A* such that ygfy' and x'=fR®x. The other case is
symmetric. '

For all m large enough, we have £ < y[m]. Put y[m]l=fy'[m-]£]]. (For
f in A*, |f| denotes the length of f.) Since x[n]Ry[m]=x[n]Rfy'[m~
1£17=CeRx[a DRy m-1£11=(x'[n* €1 DRy [m-[£]] € C(X) for all n and m
large enough. This implies x[n]Ry[m] is in C(X) for all n and m. There-
fore x[n] is in L,(M_) for all n and y[m] is in L (M) for all m.
Therefore (x,y) 1is in L4(M') and the inclusion pnl(aXa) c L4(M') has

been demonstrated. [J

Remark, The class BN4 has been studied under the name of sofic systems

by Weiss et al. [2,7].
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4., Characterization of BD.'s

Theorem 5 (Nivat and Perrin [4]). For L « %A%, the following conditions
are equivalent,

(1) L e BD;.

(2) L is of the form ®X® where X € R.

Proof. (2) => (1). Let X be in R, then there exists a deterministic
finite automaton M=(Q,A,T,{d},F) such that X=L_(M). Remark that if M is
deterministic, then (L*(M))e=L1(M). For each q in Q, we can make a
deterministic automaton Mq_=(Qq_,A,Tq_,{dq_},Fq_) such that

Ly(Mg)={eR | d —fs g in ¥ }.

And we set Mq+=(Q,A,T,{q},F). Then the biautomaton

Mq=(Mq_,Mq+,{(dq_,q)})
is strictly deterministic. The automaton M':quQ Mq is a deterministic
biautomaton. We will show that Ll(M')=p_l(eXe).

Let (x,y) be in Ll(M'). There exists q in Q such that (x,y) is in
Ll(Mq)‘ Then x is in Ll(Mq_) and y is in Ll(Mq+). Since these automata
are deterministic, we have Ll(Mq_) =L*(Mq_)e and Ll(Mq+) = L*(Mq+)e.
There also exist strictly increasing sequences (fn) and (gn) such that
x=sup(f ), y=sup(g,) with

d -—fRn-> q and q --&n-> t, for t in F.
eye

Then we have f%gn € X. Therefore p(x,y) is in
Conversely, if p(x,y) is in ®X®, and let (f,»8,) be a strictly increas-
ing sequence of bi-words such that (x,y)~(x',y') with x'=sup(f)) ,
y'=sup(g ). and f%gn € X for all n. Suppose there exists f in A* such
that y=fy' and x'=fRx, The other case is symmetric,

For all n large enough, we have f < f,« Put £ =fh . Since
hﬁngn:f%gn € X for all n, there exists a state q in Q such that there
hold:

d ——bﬁ—> q and q —-ngn—> t, €F
for infinitely many n. Thus we have x=sup(hn) € L*(Mq_)e=L1(Mq_) and
y=sup(ngn) € L*(Mq+)e:L1(Mq+). Therefore (x,y) is in Ll(Mq) and the
inclusion p_l(eXe) c L;(M") has been demonstrated.

(1) => (2). Let M be a bilateral deterministic automaton such that
L=B1(M). Then M=Uni:l M, and each M; is a strictly deteministic biautoma-
ton. We will prove that L=°X® where

x=ul_; (L O DR, ().

In fact we have
L=ul_; (101 DR ()
Ul (L, (5 )ORM, (e

10
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Thus L © ©X® holds. Conversely, let z be in ©X®, There exists an in-
R

creasing sequence of bi-words (f ,g, ) such that £

g, € X and

z=sup(f_)Rsup(g_). By choosing an a ropriate subsequence, we can as-
p(f,)"sup(g ). By g PP q

a € (L*(Mi_))RL*(Mi+). Then we have sup(fn) € Ll(Mi_) and

sup(g,) € Ly(M;,). Thus z is in By(M). I

sume fgg

Theorem 6. For L c YAY
(1) L e BD,.

(2) L is a finite union of sets of the form 2XYZ? where X,Y,Z € R.
(3) There exists L' in Dz(waAw) such that L=p(L').

(4) p H(L) € D,(49xAY),

Proof. (1) => (2). Let L=B2(M).Then L=p(L2(M)) and M is a finite union

s the following conditions are equivalent.

of strictly deteministic biautomata. For each component automaton M,
L,(M;) is a finite union of the sets of the form (uv3,wz?) with U,V,W,Z
€ R. If we set X=VR and Y=URW, then p(UV3,Wz2)=2xyz2.
(2) =>(3). Since D2(waAw) is clearly closed under union, it sufficies
to show that (2) implies (3) for a set of the form L=2XYZ2 with X,Y,Z ¢
R. Let M, be a deterministic automaton such that LZ(M+)=YZa and M_ be a
deterministic automaton such that Lz(M_)=(XR)a. If we choose S$={(d_
»d,)}s then the biautomaton M=(M_,M,,S) is strictly.deterministic and
has the property that .
L,(M)=((x})3,72%) and L=p(L,(M)).

(3) => (1). By modification of bilateralization for deterministic autom-
ata as shown below which preserves the condition Cy. Let M=(M_,M+,S) be
a strictly deterministic biautomaton such that L=p(L,(M)). (Strictly
speaking, we must assume that M is deterministic biautomaton which is a
finite union of strict ones. But the proof is along the same line.)
Without loss of generality we can also assume that the initial state of
M_ has in-degree 0 when M_ is viewed as a directed graph because it can
be easily transformed to satisfy without changing the accepting language
if it does not. The same assumption is also made on M,. For each q in Q_
-{d_}, where d_ is the initial state of M_, we define a biautomaton
Mo =(M oMy

Mq_=(Q_,A,T,,{q},F_).

To define Mg+ to be deterministic, we make use of subset construction

+’Sq) as follows:

method to simulate finite behaviours of M_ backwardly. Qq+=Q+U{ P|Pis
a subset of Q_.},

Dq+={q},

L

11



194
4, Characterization of _l}l)_i'_s_

Theorem 5 (Nivat and Perrin [4]). For L < “A%, the following conditions
are equivalent.

(1) L e BD;.

(2) L is of the form ©X® where X € R.
Proof. (2) => (1). Let X be in R, then there exists a deterministic
~ finite automaton M=(Q,A,T,{d},F) such that X=L,(M). Remark that if M is
deterministic, then (L,(M))®=L;(M). For each q in Q, we can make a
deterministic automaton Mq_=(Qq_,A.Tq_,{dq_},Fq-)« such that

L*(Mq_)={fR | 4 —f->q in ¥ }.
And we set Mq+=(Q,A,T,{q},F). Then the biautomaton

Mq=(Mq_,Mq+,{(dq_sq)})

is strictly deterministic. The automaton M'=y is a deterministic

qeQ Mq
biautomaton. We will show that Ll(M')=p—1(eXe).

Let (x,y) be in L;(M'). There exists q in Q such that (x,y) is in
Ll(Mq)’ Then x is in Ll(Mq_) and y is in Ll(Mq+)' Since these automata
are deterministic, we have Ll(Mq-) =L*(Mq__)e and Ll(Mq+) = L*(Mq_,_)e.
There also exist strictly increasing sequences (fn) and (g,) such that
x=sup(f_ ), y=sup(g,) with

d -—fRn—> q and q -~&n-> t, for t in F.
Then we have fﬁgn € X. Therefore p(x,y) is in ©X&.
Conversely, if p(x,y) is in €X€, and let (fﬁ,gn) be a strictly increas-
ing sequence of bi-words such that (x,y)~(x',y'") with x'=sup(fn) ’
y'=sup(g ), and f%gr1 € X for all n. Suppose there exists f in A* such
that y=fy' and x'=fR%, The other case is symmetric.

For all n large enough, we have f < f . Put f =fh_ . Since
thRgn=f§gn € X for all n, there exists a state q in Q such that there
hold:

d --t\%—> q and q ~-ngn~> t, €F
for infinitely many n. Thus we have x=sup(h ) € L*(Mq_)e=L1(Mq_) and
y:sup(ngn) € L*(Mq+)e:Ll(Mq+)' Therefore (x,y) is in Ll(Mq) and the
inclusion p_l(eXe) c Ll(M') has been demonstrated.

(1) =>(2). Let M be a bilateral deterministic automaton such that
L=B;(M). Then M=Ur-£:l M; and each M; is a strictly deteministic biautoma-
ton. We will prove that L=°X® where
x=ul_; (L1 NRL (M ).
In fact we have
L=uf_) (L Q; DRLy (i)
=uTop (L )OR@, ()8,

10



L=p(Ly(M)).
(3) => (2). Along the same line as done in (1) => (2).
(1) <=> (4). Evident. [

Corollary 2. BN3=BD3.
Proof. From Theorem 3 and Theorem 7. [J

Theorem 8. For L ¢ YA?, the following conditions are equivalent.
(1) L € BD,. }
(2) L is of the form 2x2 where X € R.
Proof. (1) => (2). Along the same line as in the proof of Theorem 4. Let
L=B,(M). Then L=p(L,(M)) and M is a finite union of strictly determinis-
tic automata. For each component automaton M;, let Y;=
* ; Ry, * R,,* * R.
(A™-L,(M; )7 (A™-L, (M; ))u(L, (M; )" (AT-L, (M, ))u(A™-L, (M; )L, (M, ).
Let Y=U2:1Yi and X=A*-A*YA*.We can easily shown that L=2X3,
(2) => (1). Along the same line as in the proof of Theorem 4. Let X be
in R, then there exists a deterministic finite automaton M=(Q,A,T,{d},F)
such that C(X)=L,(M). For each q in Q, we can make a deterministic
automaton Mqif(Qq_,A,gq_,{dq_},Fq_) such that
L*(Mq_)={f | d —"->q in M }.
And we set Mq+=(Q,A,T,{q},F). Then the biautomaton
qu(MQ"MQ'I'"{(dq”q)})
is strictly deterministic. The automaton M':quQ Mq is a deterministic
biautomaton. We can easily show that L4(M0=p—l(axa) by using the fact
- R ’
that c(x)-quQ (L*(Mq_)) L*(Mq+). a
Corollary 3. BN,=BD, .
Proof. From Theorem 4 and Theorem 8. [

13
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