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1. Introduction

In the field of control engineering the problem of identification or system
parameter estimation has attracted much interest and has been investigated in
many references. The identifiability,‘as a necessary step in the modelling
Process, becomes an impoftant fesearch subject. This problem is a kind of
inverse problem and is nonlinear in parameters whenever the system is linear,
so that it is difficult and interesting. When the system is described by a
l—dimensioﬁal heat equation with an unknown potential, this problem is connec-
ted with the Gel'fand-Levitan theory and ie studied to a great extent. In the
aspect we refer to a Qork by Suzuki [1,2] who has solved the problem in a
satisfactory manner (see also [3],[4],[5]).

In this paper we study the identifiability problem in the case where the
system is described by a linear fu;ctional differential equation of retarded
type. In the retarded syStem the unknown parameters are coefficient matrices,
delays and a kernel function of retardation. To identify the parameters we
use a method which depends on semigrouo epproach on the product space Z2 =
R x L2(—h, 0; Rn). Using an abstract identifiability result in general
Banach spaces and the spectral decomposition on Z_, we establish some identi-
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fiability criteria for such parameters. The results are stated in terms of



the generalized eigenfunctions of the transposed system and the structural
operator F (see [7]) assuming that the system of generalized eigenfunctions

is complete in Z2

2. Spectral Analysis of Linear Retarded Systems
We consider the system described by the linear autonomous functional differ-

. . n
ential equation in R :

y(t) L(Yt) + £(t) a.e. for t > 0, (2.1)
(RS)

y (0)

0 1 _
Yo y(s) = yo(’s)‘ s§ [-h, 0), (2.2)

loc

2% 'R and L : c(I-h, 0]

0 1
where yg € R, y () € L_(-h, 0; R"), £(*) € L
0 2
; Rn) + R is a linear operator given by
0
CL(y,) = f dn(s)y(t+s). (2.3)
t -h

Here N is an n X n matrix function of bounded variation on [-h; O] and
the integral in (2.3) means the Stieltzes integral in R. The notation Y,

denotes the t-translated state (or t-segment) of (RS), i.e.,
yt(s) = y(t+s) s € [-h, 0] (cf. Hale [111).

Throughout this paper we suppose that N in (2.3) is given by

k 0

n(s) = - Aono(s) - X2AnNn (s) - [ B(u)du, (2.4)
_, rr J
r=1 s

where n is the characteristic function of the interval (-%, —hr], (r = 0,1,
r

**, k), 0=h_X< hl < h2 < ... < hk < h are non-negative constants, Ar

(r = 0,1,---, k) are n X n matrices and B(-)  is an n X n matrix function

. X .
in L2(—h, 0; R n). Then (2.1) can be written as



(enge}
ot R

k {0
y(t) = ¥ A y(t-h ) + J B(s)y(t+s)ds + £(t) a.e. t > 0. (2.5)
r r
r=0 ~-h :
We study the system (RS) in the space 22 = r" x Lz(—h, 0; Rn). The element
. : 0 1
y € 22 will be denoted by (yo,yl), y € Rn, y € L2(—h, 0; Rn) and the space
22 is a Hilbert space with inner product
0
1 1
<y,z> = <y0,zo> n 4—[ <y (s),z (s)>_n ds
Z R R
2 -h
0 1 0 1
for any y=(y ,vy), z=(2,2) ¢ Zz" (2.6)
where <, >Rn denotes the inner product in Rn. So that the norm of Z2 is
given by
y _ 02 1 2 1/2
1711z, = A5+ P O I G o, )
for y € 2,- (2.7)
If yO = (yg,yé) € 22 and f(-) € L;OC(R+; Rn), then there exists a unique
. . (1) + n
solution y(t) = y(t; yo,f), t 20 of (RS) in the space W2 loc(R ; RY)
~r

{(see Delfour and Mitter [6, Thm. 3.1]). Moreover the following continuous
dependence holds ;

For any fixed t > 0, there exists a contant Kt > 0 such that

0
Iy yo’f)”w;l)(o, £ RY S Kt(lly Ilzz + | f(')”L2(o, g; ®Y) - (2-8)

Here W(l)(a, b; Rp) denotes the Sobolev space of y in L2(a, b; RP) with

2
. . , . . . n (1)
distributive derivative y in L_(a, b; R') and W
2 2,1oc
(1)

the set of all y which belong to W2 (0, t; R") for all t > 0.

+ _n
(R ; R) denotes

We now define the operator Ts(t) : Z2 - 22 for t 2 0 by

TS(t)yO = (y(t; yO,O), yt(-; Yo 0)) for each Vg € Z2. (2.9)

The following results are well-known. For proofs and details, see [8],[91,[10],



(111 and [7].

(I) The family of operators { Ts(t); t=20} is a Co—semigroup on 22 and

Ts(t) is compact for all t 2 h ;

(11) The infinitesimal generator AS of Ts(t) is given by (2.10f
0 1 1 1
pay) = {x= 6o ¥ ) e w P, 0 B ana xM@ ==} (2.11)
and 0 1
1l
A x = ( an(s)x (s), gﬁ—\) for x = (xo,xl) € D(A.). (2.12)
S -h ds S

By (2.4) the first coordinate of Asx is given by

0 k 1 ° 1
on + ZAXx (-h) + I B(s)x (s)ds ; (2.13)
r r
r=1 -h :

(L) Define the characteristic matrix  A(A) by
0
A
A(A) = A1 - I an(s)e”®. (2.14)
-h
Then O(AS) is the point spectrum and is given by O(AS) ={ A: det A(}) =01}.
Since the characteristic function det A(A) is an entire function of A, all

zeros of det A(A) = 0 are of finite order. For each A € G(AS), we denote’

by MX the generalized eigenspace of AS corresponéing to A. It is well
known that MA is finite dimensional and there exists a natural number kA
such that M, = Ker (X - AS)kX and

Z, = Ker ( A - AS)kA() m (A - As)kl (direct sum). (2.15)

The subspace MA is also represented by the range of projection operator

1
= —| R(uy; A , € , 2.16
P)\¢ 2niJ (u S)q)du P z, ( )
D)
where T is any closed rectifiable curve containing A inside and all other

A

points of O(AS) outside. To give a basis of MA we use the following nota-



n

tion introduced by Delfour and Manitius [7]. Define the operator EA : R~
Z b
5 Y
A
Exé = (&, e °E) « Z, for £ e R'. (2.17)
Put dim My = my. Then a basis { ¢1'..."¢ml} of M, 1is given by
mx“l 1 dj i
o= T g == EBELL, i=1l00,m, (2.18)
1 J=O J' d)\ j

where gt = (Ei,gé,---,gg ) € R X ++- XR, i=1,""", my satisfy the
linear equations
o) 1 a’l
o1 GhT 3T

A(A)laj =0, L=1,---, m, (2.19)

and { Ei, 52

Pty Em } is a set of linéar independent solutions of (2.19).

, - . y .
Since ASMX My , there exists a my X m, matrix AA such that

At

As®k= QAAX and TS(t)QA = le A for t 20, (2.20)
where @k-= (¢l,---°, ¢ﬁi).
(IV) For each A € p(AS) =C - O(AS), the resolvent  R(A; AS) can be repre-
sented by
s
ROG 2 (), x () = (A0 TR’ MLl - f AWy aw,
0
where 0 s (2.21)

ao = xO - f J eA(S_U)dn(s)xl(u)du.
-h’0

Since the integral operators in (2.21) are compact (Rn is finite dimensional)
we see easily that R(A; AS) is compact for any A € O(AS). It follows from
(2.19) that the order of a pole A of the resolvent R(A; AS) equals to that
of a zero of det A(A) = 0.

(V) In this paragraph we state the converse statement of (II). - Let AS ‘be



the closed linear operator defined by (2.11) and (2.12). Then AS dgenerates
+
a Co—semigroup TS(t) on Zz. If ﬁ(') € L;OC(R ; Rn) and Vg € Z2, then

the first component of

t
TS(t)yO + J Ts(t—u)(f(u),O)du, t20 ‘ (2.22)
0
satisfies the equation (2.1). The second component'of (2.22) is the t-segment

of the solution of (2.1).

(VI) We give here some conditions for the completeness of the generaiized eigen-
functions of AS due to Manitius [9]. Let ﬁ(s) =N (s) +.AOXO(S)’ where N (s)
is given in (2.4). Define the linear bounded operator H : L2(—h, 0; Rn) >

L,(~h, 0; R by
(Hz) (s) = J dﬁ(ulz(u-s), s € [-h, 0] for =z eALz(—h, 0; Rp). (2.23)
-h

The system of generalized eigenfunctions of AS is said to be complete in 22

if span { :Ae 0(A)}=2Z_. The completeness holds if and only if
" s 2 Y

Ker H* = {0}. (2.24)

The condition (2.24) is equivalent to that the equation

S

[ anT(u)z(u-s) = 0 for a.e. s e [-h, O] (2.25)
-h

admits the only one trivial solution z(s) =0 a.e. in [-h, 0], where the
T ) _

symbol denotes the transpose operation. If B(s) =0 a.e. s e [-h, O]

and hk=11, then a necessary and sufficient condition for the completeness in

22 is that

det Ak # 0, ; (2.26)

which is a consequence from (2.24). For other useful criteria for complete-

ness, see Delfour and Manitius [7,Sec. 51].



According to [7] define the structural operator F : Z2 > Z2 by F=|I 0].
O H
It is evident that F is bounded. We shall give a useful expression of the
e . T :
projection operator P, in (2.106) . Let TN (s) Dbe the transposed matrix of
+ . . o .
N(s). We denote by Ts(t) the CO—semlgroup in Z2 corresponding to (RS)
T + .. . . .
with N =N, Let AS be its infinitesimal generator. It is shown in ([7]
) A T + ) ) - + k
that if € c(AS), then € O(AS) and dim M; = dim Ker (X - AS) A= my .

Let { Wl,---, wm } be a basis of Ker ( X - Ag)kx. Then the projection P,

A

is given by the formula

my ,
Pyd = ISU PO >0, ¢ € 2
i=1 2

57 (2.27)

1 ,
where { ¢l,---, ¢m } is the basis in (2.18). If ¢ = (¢O, ¢) satisfies
A

¢l € c([-h, 0]; R and ¢1(0) = ¢o, then the coefficient <¢i,F¢>Z in
2
(2.27) 1is written by
0
<¢i,F¢§2 = <¢i(0), ¢(0)>Rn + I_hfu<wi(u-s)dn(u),¢(S)>Rn ds, (2.28)

which corresponds to the bilinear form described by Hale [11, Sec. 7.3].

3. Abstract results on Controllability and Identifiability
In this section we give two abstract results needed later.

Let X and U be separable Banach spaces. Consider the control system on X
(p, B) : x(t) = Ax(t) + Bu(t), t >0, : (3.1)

where x(t) € X, A generates a Co-semigroup T(t) on X, B is a bounded

linear operator from U into X and u((t) 1is a control function defined on U

with values in X. The system (A, B) 1is called approximately controllable if
u T(t)BU = X, (3.2)
t20



where the upper bar denotes the closure in X.

In this section we assume that A satisfies the following assumption
H.: A 1is a closed linear operator with compact resolvent.

pifferently from Triggiani [12] the selfadjointness or normality of A is not

assumea. By a familiar theorem [13, Thm 6.29], the assumption Hl implies

that the spectrum O0(A) of A is a countable set and consists entirely of

discrete eigenvalues with finite multiplicities. We put 0o(A) ={ kn: n==l,2,--°}.
The following decomposition resulté hold:

(VII) For each Xn € 0(A) define the operator

-1 .
Pn = S JF R(A; A)dA, (3.3)

n

where Fn is a rectifiable, closed curve containing An only, and put Mn =P X.

. . . . . 2 .
Then P is the cannonical eigenprojector on X, i.e., P =P and PnP' 0
n n n

J

if n# j, A commutes with Pn and M is A-invariant, i.e., AM c M,
; n n n

dim Mn < © and the operator A restricted to Mn' denoted by An, is bounded
on Mn and O(An) = {An}. The closed subspace Mn is called the generalized
eigenspace corresponding to the eigenValue Xn. Any element in Mn is called
the generalized eigenfunction of A corresponding to An [13, p.181].

(vim)  T(t), t = 0 commutes with Pn and - Mn is T(t)-invariant, i.e.,
T(t)Mn c Mn for each n =1,2,--- . (3.4)

(IX) 1I1f An is a pole of order dn of R(A; A7), then

M =Ker ( A - A)dn , dim M =m < (3.5)
n n n n

and

X = Ker ( Xn - A)dn®1m ( An - A)dn . (3.6)

Let { ¢nl,---, ¢nm } be a basis in Mn. Then by (VII) and (VII), there exists
n



curve Iﬂ: containing Kx but not containing any of O(A) U (O(Am) —{X:})

inside. Then by (3.3) and (3.17), we have

[
me, = l_ R(A; Am)x‘dA
N i 271 rm 1
N
1|
= - R ; A .dX = ’ i = Y . .
2mi |pm (A )xl A 0 i l» P (3.23)
‘N
m v
Note that FN does not contain any pole of R(A; A) inside. The conditions

(3.23) and (3.18) imply that Mg = {O} , a contradiction. Therefore Xg €

o(a). Then there exists a natural number N%* (for fixed N) such that

A= A

N N and (3.24)
p®x = —= | R(\; A)x,dA = P_.x i=1,-- (3.25)
NG 2w N* i Tt B :

N
It follows from (3.25) and (3.18) that

MM, | (3.26)

oo} oo
Hence we have from (3.24) and (3,26) that {X:}nzl < {An}n—l and the inclusions

M: = Mn* hold for all n. Since Am satisfies H2, we see that
X = span { Mn*: n=12,.--}% span { Mn: n=12,---}= X; (3.27)
that is, A also satisfies HZ' It follows from (3.27) and (3.5) that {n} =

m m m
{n*} , so that A =X and M =M for all n. In fact if M Eé M , the
n n n n n n

m m
1 f A . Si M = = PR
completeness for does not hold ince N Mn span { ®nl' ’ @nKn} ’
we have by (3.4) and (3.10) that
Nm ~
At _ At
@777 O Jem ( €1, | T @pprrrre o dem g Ly
n n
Ex i E. .
Knll Kn,l



/i

an W X mn constant matrix Anv such that
n

~

(Aq)nlr'.'r A(bnmn) = (¢nlr'°'l (bnmn)An- i (3.7)

rurthermore we have that for each x ¢ Mn' there exists a column vector & =

€, om0 S )T such that
l n
mn X
x= I ¢ .E., (3.8)
PERLEE
Ax = (@ e b )En (3.9)
n
and ~
T(t)x = (O, 0e0 b yelnt . (3.10)
n

so that T(t) can be extended for all t € R on Mn'
Let X* be the dual space of X. Since the adjoint operator A* satisfies

H., similar decomposition results as above hold for A*. Moreover the follow-

lI
ing fact holds:

(x) If Xn is a pole of order dn of R(A; A), then X;‘ is a pole of order

— d
d of R(A; A*) and M* = Ker ( A - A*) n, dim M =dim M* =m . - In add-
n n n n n n
ition
— a — a
X* = Ker ( Xn - A*) n@®Im ( Xn - A*) 'n . (3.11)
and
d 1 —
Im (A -A) n=XQOM =M = (Ker (A -~ A*)dn)l. (3.12)
n n n n

where 1 denotes the orthogonal complement.

The system (A, B) is called spectrally controllable if all systems (An,PnB)
are approximately controllable on Mn’ n=1,2,---. It can be verified that

the spectral controllability of (A, B) 1is equivalent to that

PnBU =M, n=1,2,--°. (3.13)

10



We next suppose that A satisfies the assumption

H2: The system of generalized eigenfunctions of A 1is complete, i.e.,

span { Mn: n=1,2,---.- } = x. (3.14)

PROPOSITION 3.1. Let A satisfy Hl and H2. Then (A, B) 1is approxima-

tely controllable if and only if (A, B) is spectrally controllable. Moreover

if u=cP and B : U > X is given by

1
x.N., x, € X, N, €C, (3.15)
ii i i

™Mo

B(N.,---, N ) =
1 Poia

then the (spectral) controllability condition (3.13) is equivalent to that

span { P Xyttt anp } = M, n=1,2,--- . | (3.16)
Proof. If A is normal, A satisfies H2.‘ Hence this proposition extends
Theorem 3.8 of Triggiani [12]. The detailed proof is omitted, since it can

be carried as in Fattorini [15, Cor. 3.2].

m .
For the given operator A, we consider the model operator A which generates
. m s e m m
a Co—semlgroup T (t) and satisfies Hl. For A we denote the spectrum og(a )

by { A:: n=12,-*1}. Let M: be the generalized eigenspace corresponding

. m . . . : .
to the eigenvalue An and P: be the associated eigenprojector, i.e.,

m
- —lf—l R(A; A)dA, (3.17)
n 2mi m
r
n
m — . m m m
where Fn is a rectifiable closed curve containing An only. Put Mn = P X,
‘ n
dim M" = K and let {® ,---, &} Dbe a basis of M . We denote a basis
n n nl nKn n
m
of M:* by { @;1,---, @;Kn} , where Mn* is the generalized eigenspace corr-

. m
esponding to Ah for AMx.

11
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The following Proposition is fundamental and is an extension of Nakagiri [4,

Thm. 5.11.
PROPOSITION 3.2. Let A and A" satisfy H and let (x,---, X ) € <P
p
=X X =+ X X, 1f A" satisfies H2 and
m m m
span { anl,---, anp } o= Mn’ n=12,---, (3.18)
then A 1is identifiable, i.e.,
T(E) (% ,-++, x) = T(£)(x ,--+, x) in X for t > O (3.19)
ll 14 p ll 14 p -
implies
m
A=A, : . _ (3.20),

Remark 3.1. Let B be given by (3.15). Proposition 3.1 implieé that the
condition (3.18) is equivalent to the approximate controllability of the system

(Am, B). The condition (3.18) is also equivalent to the rank condition

i->1,..-- ' ‘
< * > . Y r P = K f = ce e .21
rank ( xi,an X, X* S Lyeen-, Kn) N or all n = 1,2, ’ (3.21)
where < , % gk is the duality pairing between X and X*. A similar rank
, : :

condition to (3.21) for abstract stabilizability is given by Suzuki and. Yamamoto

(14].

Proof of Proposition 3.2. Let (3.19) and (3.19) be satisfied. Then by taking

Laplace transforms of (3.19), we have
R(A\; B) (X ,-+-, x) = R(A; A (x,,-++, x) (3.22)
1 p 1 p

for Re A sufficiently large. Since the resolvent operator is analytic on its
domain, we see by analytic continuation that (3.22) holds for all X € C - (0(A)

m
v U(Am)). Let N be fixed. If AN ¢ 0(A), we can choose a rectifiable closed

12



£t >0, i=1,-"", p, (3.28)

K
m . ~m o~
where P x, =P x, = P &, ., i=1,--, p and A, A are the K x K
n"i n i =1 nj’j,1i n n n n

matrices given in (IX). Differentiating (3.28) and letting t ¥ 0, we obtain

that
@ oo+, & _)Y@A“-A)E = (0,--+, 0), (3.29)
nl nK n n
n
o i~>1l,--+, P . = _ .
where == (&, . ). Since rank Z = K by (3.18), (3.29) imp-
Js1 jvl,---, Kn n »
1i o -, A'-2A) = (0,--+, 0), and h A" = a That i
ies ( ni’ ’ nKn)(An n) = , ' . n ence n T AL at is
A m=a"=a] =aA forall n=1,2,--- . (3.30)
Mn n Mn n

By the completeness of generalized eigenfunctions of A" and (3.30), we conclude

that A = Am, which proves (3.20).

4. Identifiability of Linear Retarded Systems
Consider the following linear retarded system with p-numbers of initial values

and initial functions and forcing functions :

0
k f
v(t) = I A y(t-h ) + J B(s)y(t+s)ds + £,.(t) a.e. for t > O, (4.1)
r=0 r o -h * ‘
(RS)
F .o — (s) =yt .(s) [-h, 0) (i=1,--- 5 (4.2)
Y()"YO,i' ys_yO,iS S € ’ 1= 4, lp’ .

yO,i = ), i =1,--", p, satisfy

Here A , hr’ r=20,1,---, k, B(-), (Yo,i’ Yo,1
the assumptions in Section 2.
Throughout this section we suppose the following conditions
(XI) The n X n matrices Ar' r =0,1,---, k (k is known), are unknown except
that Ar # 0 for each r =0,1,---, k and the matrix function B(-) is unknown
nxXn

except that B(-) € L2(—h, 0; R )

‘ e - 0] 1 . :
XII) The initial conditions Yo ;1 = Vg 40 Yo i) € Z2,, i=1,---, p, are known;
’ ’ I

13



(XDE) The delay. times hr' r =1,-+-, k, are unknown but known that

0 = hO < hl < h2 < eere < hk < h

and h> 0 is known;
loc,_+ _n

(XIV) The forcing functions fi(-) € L2 (R; R), i=1,---, p, are known.

A (r=0,1,---, k), hr (r=1,---, k), B(+) are parameters in (RS)p to be
r
jdentified. Under the above conditions there exist unique solutions yi(t; Yo, 57
£), i=1,--", p, of (RS) .
i p

By the model system (RS)E we understand the system (4.1), (4.2) in which Ar,

m m, m .
B(*) and hr are replaced by Ar' B (-) and hr' respectively. The corres-
o .

ponding model states are denoted by yi(t; Yo i,fi), i=1,""", p. The corres-
ponding kernel function in (2.4) is denoted by nm(s). all quantitiés subscri-
pted by m are assumed to be known.

We shall say that Ar, r=0,1,---, k, B(s) and/or hr' r=1,---, k are

identifiable if

A = A, °*ecese R A]( = Ak’ (4.3)

By = Bor By 1’
B(s) = B'(s) for a.e. s ¢ [-h, 0], ' (4.4)
— m ..... - m N
and/or hl = hl' ',hk hk (4.5)

.follow from the relations

m
= i g f) - v, (E; L) o= in : i = e ,p.
ei(t) yi(t yo,l i) yl(t ,fl) 0 in R, t >0, i 1, /P

Y0,1i
_ (4.6)
Let TZ(t) be the semigroup relating to the model system (Rs)g which is

given in Section 2. The infinitesimal generator of Tg(t) is denoted by Ag.
m m i . m
We denote o(AS) = { An: n=1,2,-""1%}. In this case O(As)r1{A :Re \>6 }
. .. m N m -m D -
1s finite (may be empty) for any § € R. Let M = Ker (»An - AS) n be the

14



: m . m
generalized eigenspaces corresponding to An‘ We denote the basis of Mn by

{®n1'."' ®nK } (which can be choosen as in (2.18)). Let | Wnl,...' WnK }

n <in m, + D m n
be a basis of Ker ( An - (AS) )’ n  and let H Dbe the operator given in (2.23)
corresponding to n(s). - The cannonical eigenprojector of Ag corresponding

to A" is denoted by P:. Then we have the following theorem by using Propo-
n

sition 3.2.

'THEOREM 4.1. Let £,(-) =0 in L~ (R; R) , i=1,---, p. If

2 "w

i kKer (H)* = {0} and ' o (4;7);

]

ii) the set of initial conditions { Yo 10770 Yy o } satisfies ‘
’ ’

i>1,.-. P 4

<‘i‘ >oc . ’ 12 =K £ _ 2 .- ' |

rank. ( nj,Fyori Zz J v 1,.--, Kn ) i n or.all n 1,2 ’ (4.8).

then all Ar, B(s) and hr are identifiable.

Proof. Let the assumption in this theorem and (4.6) be satisfied. Then

by the definition of translation semigroups, we have

p

(t) Y ) = To(t) ( - ) in X > |
TS t (yo’l, r Yg,i! = Tg YO,l'_ ' yO,p in for t 0. (4.9)

Observe that the equation (4.9) for O < t < h requires the observability of .

ces i Z._. Put X =2 in P iti 2. i
y0’1, , yO,p in 2 2 roposition 3.2 It is easy to

verify that (4.8) is equivalent to the span condition (3.18). Then by Pro-

position 3.2 it follows that the conditions (4.7), (4.8) and (4.9) imply that
Ax = Agx for any x € D(AS). (4.10)

The equation (4.10) implies that (by considering the first component of 22)
1 S o ’ 1
on (0) + 2 A x (-h.) + B(s)x (s)ds
r r -h

r=1

0]

A%t -n®) + J 8™ (s) x’ (s)ds
Y Y .

m 1 k
= AOX (0) + g
- -h

r=1
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(1)

for any x () € w'l(-h, 0; RY). (4.11)

2

et & ¢ R” and € > 0 be fixed. Let wv_(s) be a function in Wél)(-h, 0;
Rn) such that

= = i - < < -

- VE(O) £, VE(S) 0 if h s €
and 0 7
2 2 '
f lv.(s) [“as < €. | | (4.12)
-h

Then for each € € (0, min (hl’ hT)), we can apply (4.11) to VE(S) to obtain
’ 0
AE - ANE = J (8"(s) - B(s))v,(s)ds. o (4.13)
-h ’

By (4.12), (XI) and the Schwartz inequality, we have
' 0 : 0
2 1/2 2 1
(J I|Bm(s) - B(s)v” ds) / ( J |VE(S)| ds) /2
-h -h

IA

m
| af- Ayt |

. : % ' )
L,(-h, 0; RS ). (4.14)

IA

el By - B() ]

Letting € > 0, we obtain from (4.14) that

A0€= Agg for any £ € R, (4.15)

This shows AO = Az. We consider the second step. We shall show hl = hT

by contradiction. Assume contrary that hl # hT, say --hl < —hT. we now
. m . N .
consider a function Wg(s) satisfying WE(-hl) = g, We(s) vanishes outside

the €-neighborhood of —hT and satisfying the condition (4.12), where & is

n . .
an any vector in R . Then applying similar method as above we see that AT

= 0, which contradicts the assumption in (XI). Hence hl = hT is proved.

So that Al = AT. Continuing this process, we can verify (4.3) and (4.5).

Finally we shall prove (4.4). From the above arguments, it follows by (4.11)

that



- &
(G4

0
. ) 1 1
{ (B(s) - Bm(s))xl(s)ds =0 for any x ¢ Wé )(~h, 0; Rn). (4.16)
-h |
. (1) n . . n, _ 1
Since W2 (-h, 0; R') 1is dense in L2(—h, 0; R), (4.16) holds for any x
in L2(—h, 0; Rn). * This means B(s) = Bm(s) for a.e. s ¢ [-h, 0]. Thus theﬁ

proof is completed.

Remark 4.1. If the basis { @nl,---, ¢nK } is choosen to be orthonormal
n
system in Z2 (that is possible by Schmidt's orthogonalization), the condition

(4.8) can be replaced by

l,"',p )
= £ =1,2,°"". .
1 .- K ) Kn or all n 1,2 (4.17

< > M .
. ( llyo,i ! n .l Z I

THEOREM 4.2. Let vy. ., =0 in Z i=1,--", and let f£.(t), i =1,---,
0,1 P i : .

n
p, be of the forms gi(t)gi, gi € R and the coefficient time functions gi(t)
- _loc, + 5 s . . e . ’
are members of L2 (R; R). If the condition (4.7) is satisfied and if

. 1 + . '
i) g.(-) #0 in L2OC(R iR, i=1,""*, p and (4.18)

ii) the set { Bttty Ep } in R© satisfies

-> ]_'....’

1 p — - .
rank ( <an(o),gi>Rn : SV 1, X ) = Kn for all n = 1,2, , (4.19)

4 ’ n

then all Ar, B(s) and hr are identifiable.
Proof. Put
t

v, (t) = f T (t—s)(f,(s),O)ds; S i=1,""°, p. (4.20i
1 0 S 1 ‘

' 1
Then by Webb [16,p.73] we see that the second component of vi(t), say Vi(t)'

satisfies
0] if t+s £ 0
1 .
(v, (t)) (s) =
t 0
Vi(t+s) = yl(t+s; O'fi) if  t+s = O (4.2
0 . m i
vi(t) denotes the first component of vi(t). vi(t) can be defined similarly



Let the assumptions in this theorem and (4.18),(4.19) be satisfied. Then

’ m
.22) and (4.21) the zero output r . = vy.lt; D A N G o .
py (2.22) ( : ) e ze utput errors el(t) ,yl(t 0,fl) yl(t Q,fl)

-0 in Rn,‘ t>0, i=1,---, p, implies that Vi(t) = v?(t) in Z2,
t > 0, i=1,""°, p, i_-e-r
t
g, (t-u) (T_(u) (€, ,0) - Tx(u)(€.,0))du =0 in 2., t> 0,
o i S i’ S i 2
i=1,""", p. (4.22)
gence for any x in 22 it follows from (4.18) that
t . .
[ g, (t-u)R, (u)du = 0 in R, t>0, 1i=1,-*°, p, (4.23)
JO 1 1 i
where
= < -—
Ri(t) fl_'s(t) (Ei,o) To(t) (;:0), x>, . (4.24)

2
Since (4.18) is satisfied, we have by (4.23) and Titchmarsh's theorem on convo-

lution equations [17,Thm. 15] that
Ri(t) =0 for a.e. t >0, i=1,""", p. (4.25)

Since x € 22 can be choosen arbitrary, (4.25) implies that

een- = cenn i P
Ts(t)((El,O), " (EP.O)) TS(t)((Sl,O), ’ (EP.O)) in X
for t > O. (4.26)
In this case the corfesponding rank condition to (4.8) is given by (4.19). + Thus

as in the proof of Theorem 4.1, the conclusion of this theorem follows.

Remark 4.2. Put BO = (gl,---,gp), an n X p matrix, and define a bounded
linear operator B : rE > 22 by Bu =‘(Bou,0). We can verify easily that the

system (Az, B) 1is spectrally controllable if and only if (4.19) is satisfied.

Hence by Pandlfi [18], the condition (4.19) can be replaced by

rank [ Am(k), BO] =n for all X € C, (4.27)
0

where Am(A) = AI - f dnm(s)e)\s and B_ = (gl,---}g ).
-h

0 p
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5. Examples

In this section we give some examples which illustrate the status of this

paper.

eigenvalues and eigenfunctions of the model system.

of different nature in the following examples.

Example 5.1.

y(t) = Ao,ey(t) + Aly(t—l),
where - ( 1 o 3 ) A
A e 1
Ol [ o __2
0 0 1+€
Then we have
Ay = [ ree 0
Ar2+34e )
—2e_k

and det A()\) =

It can be easily verified that if O < Iel =

A-3
0

A—(1+€)—e_x

-A -AL . )\ '
(A=1-e ") (M+2+3e ) (A-(1+€)-e ") = Pl(A)P3(A)P1+€(A).

To apply Theorems 4.1, 4.2 in Section 4, we need exact informations on

We give such quantities

. . . . . 3
Consider the following delay-differential equation on R :

(5.1)

(5.2)

(5.3)

(5.4)

1, then all roots of det A(A) =0

are simple and are the union of the roots of Pl(X) = 0, P3(k)

= 0.

and the roots of Pz(l) =0

First we consider the case where

(2)y © _ . _ (3= _ oy

D p={r:p, 0 =01} ana {277} L ={x:P.
A @)
n n

mate root values

(1)
AZ ’
X(l)

4

’

A(3)
n

If € = 0, then the roots of Pl(l) =0

are simple roots.

_ ()y o ={x: P (M) = o0}
g=1. put { An }n=l 1

n

are:

1.27846

-1.58832

-2.41763

19

=0

and P (\)

1+e

are double roots of det A(A) = 0

+ 4.15531 i

+ 10.686

i

0 }.

Approxi-



The corresponding generalized

by:

AW
6 7

A(l) X(l)
8 9

A1) (L)
10 ' 11
etc.;

A(2)
1

'A(2)'. A(Z)
2 3

2(2) 5(2)
4 ' 5
(2) (2)

-As ' A?

A(2) (@)
8 "9

A(Z) X(Z)
10’ 11
etc.;

(3 3
1 2
A (3)
3

(3)
r Ay
(3) 43
AT A

A(3) 5 (3)
7 " 8
(3) ,(3)

A9 ! AlO

(3)

(3)
All ! >\12

etc.

X(l)s )
Mk(l) = span { e'n 1
'n o
\ 0
‘ (2)  (4(2)
Mk(z) = span { e)‘n s | A 0
n
L

- 2.8615 + 17.0561 i

-3.16775

~3.40194

2.12003
-1.689
-2.44163
-2.87267
-3.17431

-3.4063

-0.01035
-0.986369
-1.55292
-1.91812
-2.18595

-2.3972

I+

1+

14+

t+ I+ I+ 1+

1+

23.3856 i

29.698 i

3.96275 i
10.5987 i
16.9996 i
23.3438 i

29.6649 i

2.28682 i
7.98032 i
14.1687 i
20.4244 i

26.6966 i

32,9747 i

eigenspaces are all one dimensional and are given

20



3

124

A(3)

M)\(3) = span { e n ( : 3()\:13)"3) } ’ n = 11213l'°'
n
20\(3)_1)
n
P42y @3y
\ n n J

Observe that the above generalized eigenspaces consist of a complete system in
3 3 ' T
R™ X Lz(—l, 0; R7) (det Al # 0). Let p=1 and yO 1= ((1, o, )", O,
. 14
then the condition (4.8) in Theorem 4.1 is satisfied, which is verified easily
by using (4.27).
Next consider the case where € = O. In this case the generalized eigen-

spaces corresponding to A;l) are two dimensional and are given by

(1) (1 (1)
Mx(l) = span { exn Sl ' eAn 5f o + seAn s 1 }
n 0 0
o —A(l) : 0
n

n=1,2,3,+--- .

. . . . 3 . .
The rest generalized eigenspaces corresponding to Ai ) are one dimensional

and are given by

(3)
MX(3) = span { eln s f v3(Aé3)—3) )

n

}, n=1,2,3,--- .

n

20342y @3y
L S n

n J

Let p=2 and y, , = ((1, 0, 0T, 0), =((0, 0, 1)T, 0), then the condi-

¥o,2
tion (4.8) in Theorem 4.1 is satisfied. Hence if the equatioh (5.1) is adopted
as the model system equation, it requires at least two zero output errors when

€ = 0 and requires at least one zero output error when O < IEI <€ 1 to solve

the identifiability problem. But in both cases the multiplicity of the model

21 §



and A_. In

system is not larger than the size 3 of the matrices AO € 1
¢ r

general, however, there is no relation between the multiplicity and the size

of matrices. This example 5.1 also shows that the multiplicity is a disconti-
tion of the data { a a.}. That i A > 2 as € *0

nuous function 0, M S, 0, 0,0

in the matrix norm, but the multiplicity jumps at € = 0.

Example 5.2. Here we give an example which is a scalar equation with the

multiplicity 2. Consider the following scalar equation
y(t) = y(t) - y(t-1). ' (5.5)

: A ,
Then A(A) = A-l+e and the one real root of det A(X) = 0 is 0 and this
root is a double root. Other roots are all simple and have nonzero imaginary

parts. These approximate root values are:

Al = 0
Az, A3 = - 2.0884 + 7.46149 i
14, AS = - 2.66407 + 13.8791 i
A, A= - 3.0263 + 20.2238 i
6 7 : g .- .
AB! Ag = - 3.29168 + 26.5432 i
klo, All = - 3.50127 + 32.8507. i
etc.

- The corresponding eigenspaces are

My = span {1, s}, MA span { exns }, n=2,3,°"°-.
1 n

Note that dim M)\l = 2. If p= 2, yO,l = (1, 0), y0,2 = (0, s), then the

condition (4.8) in Theorem 4.1 is satisfied.

22
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