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ON SPECTRAL PROPERTIES OF PSEUDO-RATIONAL SYSTEMS

A

? k - g 2—{ ?’n'-\ (Yutaka Yamamoto)

1. Introduction

There have been various attemﬁts to extend the beautiful finite-dimen-
sional linear system theory to other categories, for example, to linear
infinite-dimensional systems, linear systems over commutative rings, etc.
(ri1, [(el, [81, [13], [16]). Among these has = been an approach, especially
in the context of systems over rings, in which one considers transfer functions
having an representation that is "quasi-rational™ ([2], [10]1, [14]). It is
only natural to speculate that such a class constitutes a nice generalization

J

of the familiar finite-dimensional theory because

i) T"rationality" somehow always corresponds to "finiteness";
ii) important systems, such as delay-differential systems, fall into
this category; and
iii) such representations have already proved to be useful also in control

of distributed parameter systems ([14]).

In this paper we shall see that such a representation is also very useful
for establishing the relationship between input/output behavior and its
canonical model - just like in the Fuhrmann realization ([5]) which has

been very successful in finite-dimensional linear system theory (see, e.qg.,

[41).



Let us begin with the following informal definition of input/output maps.
Let A be a pxm matrix whose entries are functions on [0, 00) which are

locally square integrable on [0, 00). Our (zero-initial state) input/output

map fA, associated to A, 1is given by
. _
(1.1) £,(w)(t) = §* a(t - Durmart.
A o

For example, let A(t) Dbe the impulse response of the following retarded

delay-differential system:

d
s x(t) = x(t - 1) + u(t),

y(t) = x{(t - 1).

Though its transfer function W(s) (i.e., the Laplace transform L[A]) is
certainly not rational, it still admits the following "quasi—rational“

expression:
(1.2) W(s). = 1/(se” - 1).

In the language of distribution theory, this means that A can be written
-l . . e .

as A = (Gll -8) *§, where Sa is the Dirac distribution at point a,

(8 := GO), 8&' its derivative, and * denotes convolution as usual. Note

also that the numerator and denominator of the above expression are coprime

in the following sense:
s
(se” - 1)-0+ 1-1 = 1.

We shall then prove that the state space of the canonical realization is
completely determined solely by the denominator seS -1 - as is precisely
the case for the finite-dimensional theory. To be more precise, the canonical

state space in this case is equal to the following space x P (@ = 811 - 8):

(1.3) x® = {ver?

1ocl0s 00 (8!, - B)*Y) = 0},
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where TC denotes the truncation (in the sense of distributions) to [0, 00)
(see Section 3 for details). One would readily notice that (1.3) is nothing

but a generalization of Fuhrmann's state space described in the time domain.

We will then see that the spectrum of the canonical realization is fully
determined by the denominator of the transfer function, i.e., it is the zeros
of the depominator of the transfer function (namely, se® - 1 in this case).
Needless to say, this fact is quite useful for the study of internal stability

of a canonical system via its transfer function.

An example is given, in terms of a retarded delay-differential system,

to demonstrate the realization method.

2. Systems and Input/Output Maps

In the sequel, k will denote a fixed field, either IR or €, with the
standard topology. Systems, functions, distributions. etc. are considered

over k.

Let L2[a, bl denote the space of square-integrable functions on (- 0o,
00) having support contained in [a, b]l. Lioc[o, 00) 1is the space of functions
which are square-integrable on every compact interval in [0, od). Suppose
that the present time is 0 and the systems we deal with are constant (time-
invariant). We then assume that each L2 inpuﬁ having compact support in
(o0, 0] 4is applied to the systém untii time Q and then we.start observing
the output of the system which'is locally LZ. Expressing these hypotheses

mathematically, we see that our input space @ -and output space |  must be

as follows:

(2.1) Q = (J L2[— n, oD™;
n>»0
F o= <L§ [0, 00))P.
oC



These spaces are naturally endowed with the following shift operators which

are strongly continuous semigroups:

(2.2) » (O‘to))(s) :=tw(s +t), s <-t,

0, s»-t, ss0, t=0, wea.
.<&t~{>(s> = 9Y(s +t), t, s =0, 7el.

For more details on these spaces, see [16]. ILet T be the truncation
mapping: WY := 44[0 ) ° The rigorous definition of our input/output maps is
) .

then given as follows:

(2.3) DEFINITION. Let A be a pxm matrix whose entries are functions

belonging to Lioc[o,‘OO). Then the constant linear input/output map fA

associated to A 1is given by

(2.4) £(W) = WA, o e

A 1is called the impulse response or weighting pattern of fA.
When input u is applied on [0, t), (2.4) clearly agrees with (1.1).

For any such A, 'fA gives a continuous.linear map of Q into T . Fur-
thefmore, fA commutes with the shifts defined in (2.2), and hence the term

"constant". For details, see [16].

The principal result in this framework is the existence and uniqueness
of canonical realizations ([16]). Of course, the whole thing relies on how
one interprets the notion of "canonical" here. Before giving it a clear

meaning, let us specify the notion of systems.

(2.5) DEFINITION. A constant linear (continuous-time) system is a quadruple

2 = (X, %, g, h) such that

i) the state space X 1is a complete locally convex space;
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ii) g: @-2>X, h: X—=»UT are continuous linear maps;
iii) %ﬁ(t)}tzo is a strongly continuous semigroup in X;

iv) g0, = $(t)g, hP(t) =%th for all t = 0.

We understand that the state-transition is given by

(2.6) Pp(t, x, u) :=P(t)x + g(c'%u)

where (t, x, u) denotes the state at time t = 0 starting from a given
initial state x at t = 0 wunder the application of input u; and (Gtu)(s)
:= u(s + t). The linear map h gives the correspondence: initial states >
future_oqtputs, under the hypothesis that the input is identically 0 - during
the observation (this conforms, of course, to our setting of input/output maps

(2.1) and (2.4)). The instantaneous readout map H may be defined by
(2.7) Hx := h(x)(0)

provided that the right-hand side makes sense (for example, when h(x) is
continuous). Note, however, that this - map H is often discontinuous for

distributed parameter systems while h is often continuous in many applications.

A constant linear system = is said to be quasi-reachable if its reachable

set is dense in the whole state space, i.e., g({)) is dense in X. It is

topologically observable if the initial state can be determined continuously
out of the observed data. In other words, there must exist a continuous
inverse

h l: im h— X.

2 is said to be canonical if it is both quasi—reachable and topologically
observable. Topological observability is evidently a much stronger property
than observability since the latter merely requires that ‘h be one to one.

Though the notion of canonical here is hence highly special, what is



important to recognize is that the existence and unigueness theorem holds with
this strong notion of canonicity ([16]). 1In fact, making the observability
stronger as above is thekey to this result. Otherwise, we would only have

'the existence but not uniqueness.([1]).

The definition of realization is as follows: Given an input/output map
f, we say that a system 3 = (X, #, g, h) 1is a realization of f if f

factors through =, i.e., £ = hg.

Abstractly, the canonical realization of an input/output map £ is
given by the following construction: First take im £, the closure of the

image of € wunder £ in I, as the state space. It is easy to see that

So we can take () ’

im £ is closed under the left shift operators {Ef{} «

£20°

resricted to im f, as the semigroup of the system. Then just take g to

be f itself (with the difference of codomain which is now im f instead
of ) and take h to be the natural inclusion Jj: im f »T. We denote

this system by Z_ = (im f, £, j). It is easy to see that 'Zf is guasi-

£

reachable since the image of f 1is dense in im f. Since the observability
map h is just the inclusion map, Eﬁf is trivially topologically observable.
Hence this system is canonical.

Actually, we can derive a differential equation description for 2% ({17}

Indeed, define

(2.8) Fx := dx/dt for x eim £ N (Hioc[O,oo))p;
(Hl [0,00) = {vE€ L2 [0, 00): dY/dt €L2 [0 )Y);
loc 7’ loc™ 7’ ’ loct 2% !
Gi 1= Ai’ (the i-th column of the impulse response A)

Hx := x(0), x € im £ A (C[0, 00))".

With these operators, the system EE. is described by the following functional

differential equation: b

o
s

A e
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(2.9) a -9 m
x (1) = 5= x (D + ). Gu (t),
y(t) = th(T) = xt(O) '

where X is the state ¢ im £ (as a function of T) at time ¢t.

Note however that this represeni:ation is genéfally of only abstract use
and its practicality depends upon how we can find a concrete representation

for im f£. This is precisely where pseudo-rationality comes into play.

3. Pseudo-Rational Input/Output Maps

Let us prepare some terminologies from distribution theory before giving

the precise definition of pseudo-rationality.

As usual, D®R) is the space of Cm—functions on (= o, ©) having compact
support. Similarly, %( ]R+) is the space of Coo—functions on (- o, © with
compact support contained in [0, «). 2 (R) and X' ( ]R+) are the dual
spaces of the above spaces respectively, and are spaces of distributions.

8;( IR) is the subspace of 2'(R) that consists of distributj.ons with
support bounded on the left. 5’ (R ) denotes the subspace of ,2)*'_( R)
consisting of distributions having compact support contained in (- o, 0].
These spaces are each equipped with the standard topology based ;m duality

([121).

We now want to generalize the truncation map T to distributions. Let
. + . . . .
K %( R )-7@( R) be the natural inclusion. Then the desired truncation
map 1 is defined to be the adjoint map of j, i.e., T RD'(R)>JD'(R)

is defined by
<ma, P> := <aqa, JP>.

This truncation T clearly agrees with the one defined in Section 2 when

applied to functions. This map is surjective since the inclusion Jj is
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a topological isomorphism into D(R).

The following lemma is immediate from the definition.
(3.1) LEMMA. TTK= 0 iff 'suppot < (-0, 0].

Let us now give the definitionnof‘pséudo—rationality.

(3.2) DEFINITION. An impulse response matrix A (or its associated input/

output map fA) is said to be pseudo-rational if it can be written as

for some pxp and pxm matrices Q and P with entries in &' ( )
such that
i) Q 1is invertible over ZDL(]R) with respect to convolution;
ii) Su]O]O'Q—l < [0, 00) and Q_l is extendable to (- o9, 00) by setting

it to be zero on (-o9, 0].

(3.3) EXAMPLE. The transfer functions of many delay-differential systems
(including the retarded ones, in particular) are expreSsible as the rational
his, ehzs : h s

functions of variables s, e ) cee, €T . According to Kamen [7],

every nonzero polynomial in these variables (or its inverse Laplace trans-
forms, to be more precise) satisfies the above conditions (i) and (ii).

Hence the impulse responses of this type are pseudo-rational.

(3.4) EXAMPLE (Periodic case). Suppose that A(t) satisfies A(t + T) =

A(t) for all t > 0. Then

A= (8, - O HE_ )

).
[o,T]
It is easy to check that S_T - 8 satisfies the above requirements. Hence

A is pseudo-rational. 1In order to give our representation theorem for

im £, let us first make the following definition.
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(3.5) DEFINITION. Let (Q, P) Dbe a pair which satisfies the conditions of
pefinition (3.2). The pair (Q, P) 1is called left coprime if there exist

matirces R and S of suitable sizes with entries in 5'(33_) such that
Q*R + P*S = 81
P
where Ip is the identity matrix of size p.

(3.6) REMARK. In other literature on systems over rings, the above condition

is often referred to as the Bezout identity ([101, [141]).

(3.7) THEOREM. Let A be an impulse response matrix with the associated

input/output map f. Suppose that A  is pseudo-rational with a represen-

tation A = Q ~*P. Then

infcx® .= {ye ': m(o*y) = o}.

1f, further, (Q, P) is a left coprime pair, then im f = XQ.

Q

[In the definition of X®, Q*Y must be understood in the sense of

distributions. ]

We omit the proof (see [18]). Applying Theorem (3.7) to the realization

(2.8), (2.9), we have the following theorem.

(3.8). THEOREM. Under the same hypotheses on A as in Theorem (3.7), the
Q

following system = is a topologically observable realization of f:

1) State space = XQ.

2) State transition:

(3.9) X (D) = = x (1) + Au(t),
0

1 p
xt(-) € X r\(HlOC[O,oo)) .

3) Output equation:

(3.10) Cy(t) = xt(O).
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If the pair (Q, P) 1is left coprime, the above system is canonical.

PROOF. The last statement follows from teh first half and Theorem (3.8).

So we need only to prove the first half.

We must give the semigroup, reachability map g, and the observability
map h of :ZQ. The semigroup generated by (d/dT) is the shift operator
Q

%T restricted to X*. This can be easily checked by computing the

infinitesimal generator of Ef\XQ. Then the solution of (3.9) is given by

~ t ~
x (0 = §x (0 + (T (&, a(D)ucs)as

Xo(t + t) + SE A(T + t - s)u(s)ds.

Hence the reachability map g is given by

(gt = (° o_amws)as
00

]

SO A(T - s)W(s)ds.

Q

The observability map induced by (3.10) is simply the inclusion map Jj: X* >

I". Therefore, the topological observability of Z? is obvious. It remains

only to prove that Zﬁz is a realization. But we have

(g (t) = (g(w))(t)
0
=S A(t - T)w(T)dT
— 00
= f(w)(t).
This completes the proof. O

In order to illustrate the method above, we now give an example which
realizes a retarded delay-differential system. For more general results,

the reader is referred to [18].

(3.11) EXAMPLE. We consider the case m =1 and p = 2. Let W(s) be

the following transfer function matrix:

10
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(3.12) ws) = [—— ‘

e (s - 1)

1

\es(s - 1)(se® - 1) |
The corresponding impulse response matrix A = (Al, A2)' for 0 <t €£2 is
given by
(3.13) A (t) =¢0, 0=t <1,

‘l, 1<t £2; and

Az(t) =0 for 0=t <2,

It is easy to find a factorization of W(s):
(3.14) W(s) = [sz - z 0o 17t [1) =: o7%p,
-1 sz - 1 0

where =z denotes es. Now take R and S as follows:

= [1, sz - z].

I
o
1
=
n

|

(3.15) R :

It is easy to check QR + PS = I. [To find R and S, consider the matrix

[0, P] and convert it to [I, 0] .via fundamental column operations over
IR[(s, z].] Hence L_l[Q] and L_l[P] are left coprime. For brevity of

notation, denote the inverse Laplace transforms of Q and P by the same
symbols.

It is readily seen that A is pseudo-rational. Hence we can apply

Theorem (3.8). For a smooth 9 = (dl,'Yz)', the equation TT(Q*Y) = 0 means
(3.16) ”Yi(t + 1) - ﬂl(t + 1) =0 for all t =0;

(3.17) ’Yé(t + 1) - ’Yz(t) - 'Yl(t) =0 for-all t =0.

11



Solving (3.16), we obtain
(3.18) v, (8) = et’Yl(l) for all t =1.

Hence "Yl(t) for t =21 is completely determined by specifying the value
’Yl(l). On the other hand, ’Yll [0,1] can be arbitrarily chosen without
violating the.rule (3.16). Hence ('Yl\ (0,11’ ’Yl(l)) completely determines
the values of ’Yl(t) for all t > 0. Once ’Yl(t) is determined, it is

easy to solve (3.17) as follows:
(3.19) ‘Y(t)=‘Y(l)+St'Y(”C—l)d’C+gt"/(T—l)d’L' 1<t <2
: 2 2 1 2 171 ! - )

Iterating this formula successively while satisfying (3.17), we see that
72‘[0 1] and '\j2(1) entirely determine the values of Y,(t)  (note that

2
"yl(t) is already known). Hence the paris (,Yl‘[O,l]’ ’Yl(l)) and (’)’2[[0,1]
’72(1))' completely determine the values of 7Y(t) for all +t20. Taking the

closure of all such pairs in F“, we have
T A 2 ’ 2
(3.20) im £ = (L7[0, 11 XIR)".

This is clearly isomorphic to the so-called M_-space which is well known

2
for the study of retarded systems ([3]1). (Note that while Mz-spaces are
usually intorduced by associating LZ[O, h] to the delay of h 'seconds,"

in our present approach, it arises naturally as a result of our canonical

construction.)

Let us compute the functional differential equation description (3.9, 10)
for this case. To compute F, we need to (i) shift Y by €, (ii) divide

,&IE'Y— Y by €, and (iii) take the limit as & -» 0. Note that
(07 (1) =¥ (1 + &) = €5y, (1),

~ g
@7, (1) =¥, + &) =7, + § Ly, 6) +V, (o) ae.

12



so We have
(0'8‘)/l *Wl)/g—»'Yl(l),
(G;_'}'Z = 'Yz)/‘c“,-»’Yl(O) +‘Y2(0),

provided that (Y (t), ¥,(t)) belongs to D(F) = im £ (\(Hioc[o,oo))z as
required in (3.9). For 0L t <1, %a acts as a simple left shift operator
and no reference to (3.16, 17) is necessary to compute lim (’d-'av— VLS
here; the infinitesimal generator is the differential operator d/dt. 1In

conformity with the notation in the usual M_-space models, we write

2
(zl(e), 22(9), X1y X2) in place of (’Yl(t), ’Yz(t),’Yl(l),,’Yz(l))- Then

we have the following differential equation description of the state transition:

(3.22) z, () [ @k §)z,(8) 0
d_[2,0) | | ®Rezy©®) | , [o| .,
dt 1
X1 X1
x2 x2 0

\ \

y(t) = (zl(O), 22(0))'.

Note again that (3.22) is nothing but the Mz—space model of the following

delay-differential system.

d

3t xl(t) = xl(t) + u(t),
o x (t) = x (£ - 1) +x (t-1)
ac %2 =% %5 ’

y(t) = (Xl(t - 1), X2(t - 19,

4. Spectrum of ZQ

In this section we study some spectral properties of the system ZQ
given in Theorem (3.8). Our main target is the characterization of the

spectrum of the infinitesimal generator F of the transition semigroup.

13
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This has of course a lot of bearing on the stability properties of canonical

realizations.

For simplicity of arguments, we assume that our field k 1is (€. But the

results carry over to the case k =I1R, mutatis mutandis.

Let A= Q—l*P be pseudo-rational, and let fEQ be the system given by.

(3.9), (3.10).  Suppose that A € T belongs to the resolvent set p(F) of
Q

the infinitesimal generator F of the semigroup E; in X%,

Q

Then for any

y(t) € %2 there exists a unique x in X r\(Hioc[O’(xj)p such that

(4.1) o - gz)x(t) = y(t) for almost all -t = 0.
Solving (4.1) for x in F3 we have

Xt t A(t-T)
- e

(4.2) x(t) = e x(0) 0 y(@)dT.

If XN Dbelongs to (F), y =20 must‘imply x(0) = 0. Hence we have

(4.3) LEMMA. If a complex number A belongs to @(F), then the following

statement holds:

At Q

(4.4) € v €X Py,

> v=0 (v €C

PROOF. Suppose otherwise. Then A becomes an eigenvalue with eigen-

t . . . .
vector x(t) = éA v. This is a contradiction. 0O

We need the following lemma from distribution theory.

(4.5) LEMMA. (Paley-Wiener-Schwartz Theorem for Laplace Transforms - A

Special Case) A distribution P has compact support contained in [--a, 0]

N
iff its Laplace transform (3 is an entire function satisfying the following

estimate for some C > 0 and a positive integer. n.
I n
(4.6) | @(s)\ <c(l + |shexp (nRe s) if Re s >0,

<c(l + |shH? if Re s <oO.

14
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PROOF. Omitted. See Kaneko [9]. N

We can now prove the following proposition.

Q

. t :
(4.7) PROPOSITION. A function e% v belongs to X for some nonzero v €

¢ iff (det Q)(N = o.

PROOF. Recall that ektv belongs to XQ iff ﬂ%Q*eﬁtv) =0, i.e.,

At .
the support of Q*e% v is contained in [- a, 0] for some a > 0. Then

t . . . .
L[Q*e% v] 1is an entire function by the preceding lemma. But we have

A
(4.8) Ligrety) = &8V

s - A
Since Q(s) is entire, expand @(s); in the powers of (s = A). Then the
constant term is 6(%). It follows that the right-hand side of (4.8) .is
entire iff Q(A)V = 0. Since Vv # 0, (det 6)(%) = 0 follows.

Conversely, suppose ﬁhat (det 6)(%) = 0. Theﬁ by the same argument as
above, L[Q*e%ty] is an entire function fér some Vv # d. Since each entry
of 6(5) satisfies the estimate (4.6) for some a, so does each entry Qf
a(s)v. Since 1/ls - Al is bounded for large enough s, ]G(S)V/(s —>Aﬂ
satisfies the same type of estimate as (4.6) for large enough s. Also,
since a(s)v/(s - A) is entire, it is bouﬁded in a neighborhood of A.
Therefore, é(s)v/(s - A\) satisfies the same type of estimate as (4.6).

A
}tv) =0, i.e., e ty belongs to X2 O

This implies T (Q*e
Combining Proposition (4.7) with Lemma (4.4), we readily obtain

(4.9) COROLLARY. A complex number A 1is an eigenvalue of ‘F if and only

if  (det 0)(N) = 0.

Actually, this completely characterizes the spectrum of F: they are

all eigenvalues. 1In other words, we have

(4.10) THEOREM. The resolvent set p(F) is given by

15
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P(F) := {X€C: (det 9N # ol

Therefore, the spectrum §(F) consists only of eigenvalues and is given by

O(F) = {x€C: (det Q)(N) = 0}

Gb(F).
We omit the proof sinée it is rather involved to be given here. See [18]
Since (det 6)(5) is an entire function, Thecrem (4.10) yields a lot of
interestiné facts. For example, each eigenvalue has finite multiplicity,
and the set of all eigenvalues is a discrete set. Also, the dimeﬂsion of

the generalized eigenspace M, corresponding to A 1is equal to the order

A oo
of A as a zero of det QO(s). Summarizing, we have

(4.11) THEOREM. LLet F,'ZQ be as above. For each eigenvalue X\ of F,

the dimension of the generalized eigenspaée My of F corresponding to

o ; N
A is m = order of A as a zero of det Q(s). Furthermore, we have the

direct sum decomposition:

x2 = im O\ - F)"® ker (A - )™,

-1 . .
And the resolvent operator (s - F) has the Laurent series expansion

1 o0
(s -F) " = 2 (s - N"p_
n=-m
where
1 -n-1 -1
Prl - 2ﬂj§C (s = A) (s - F) “ds.

Here C 1is a closed rectifiable curve that encircles A and no other

N
zeros of det Q(s) once in the positive direction.

PROOF. Omitted. See [18] and [19]. DI

Let us finally mention the relationship of the above facts to the so-called

16
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spectral reachability. We say that EF? is sbectrally reachable if the

finite-dimensional subsystem Eﬁa obtained by projecting it to the genera-
1ized eigenspace My, is reachable for every A. The definition is made
primarily for delay-differential systems ([20]), but carries over to the
present context with noessential alterations since My is finite-dimensional.

1et us make the following definition.

(4.12) DEFINITION. Let (Q, P) be a pair of pxp and pxm matrices

with entries in 25'(]R—). The pair (Q, P) is said to be spectrally left
coprime if
A A
rank [Q(XN), P(N)] =p
for every XN\ € C.
We then have the following theorem.

(4.13) THEOREM. Let A = Q_l*P be pseudo-rational. Then EP is spectrally

reachable if and only if (Q, P) is spectrally left coprime.

5. Conclusion

Pseudo-rational input/output maps and the associated systems ’EQ as
above comprise a natural extension of the classical finite-dimensional linear

systems in the following sense:

i) The transfer functions admit a fractional representation.
ii) Such fractional representations play a crucial role in determination

of the canonical realization.

. . AN
iii) The spectrum of ZQ 1s precisely the zeros of det Q(s); and hence,
if ZQ is canonical, the spectrum is precisely the "zeros of the

denominator of the transfer function."

17



iv) Several other spectral properties hold as in t@8, finite-dimensional

case.

Note again that retarded delay-differential systems fall into this
category, and that the realization ZQ in this case’often agrees with the
M2—space model for such systems, as exemplified in Example (3.11).  However,
our approach has an added advantage that we can reduce redundancy often
exercised in the M2—space approach by suitably choosing the representation

A =0Q *P. For details, see [18].
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