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Liouville type theorem for hyperfunctions
and
its applications
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kBT (Sophia University)

fO. Introduction

In his dissertation, R.Gay proved following theorem 1
Theorem 1. Let f(z) be an entire function satisfying following
conditions : fof any ¢ 70, there exists a constant C€7 0 such that
(1) |e(2)|€ cf exp(g]a]) (z e ¢
Namely,f(z) is infra-exponential type.
(2) f(m) = ()(Iml by for all m = (ml,m2,..,mn)england some p ¢ N.
where ZZ? denotes the lattice points and N is the set of natural
numbers.

Then f(z) is a polynomial of degree not exceeding p.

In the case of n = 1, this theorem is well known. (See Boas [2])
There is}another similar type theorem due to S.Bernstein.
Theorem 2(S.Bernstein) Suppose that entire function f(z) satisfies

the following conditions: for any ¢ 70, there exists a constant C£

such that
(3) |r(2)|$ c g exp(H(2)+€2]) (z€ )

where K is a real bounded closed interval and HK(Z) = sup Re(z¥ ).
1t = Ox P (x eR). sk

Then f(z) 1s a polynomial of degree not exceeding p.

Our aim in this paper is to unify these two theorems by making use
of hyperfunction theory. R.Gay gave the proof of theorem 1 with
the help of L.Schwartz distribution theory while our method is

based on analytic function theory.
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Following theorem 3 is our main result. Our proof is inspired by
the technic in Boas®’s book [2].

Theorem 3. Suppose that entire function f(z) satisfies the following
conditions : for any ¢ 70, there exists a constant CE such that

(5) |r(2)|< ¢ exp(H(2)+€z]) (z e c”)

where K is a real compact convex set in Rﬁ, HK(Z) = sup Re(z)}7.

(6) f(m) = ()(|m| Py for all m = (ml,m2,..,mn)e Zn.géK

Then f(z) is a polynomial of degree not exceeding p.

To prove theorem 3, we make use of Fourier-Laplace and Avanissian-Gay
transforms of hyperfunctions with compact support. So in §l,we
recall the definitions of these two transforms and their properties.
Next in §2, we give the pfoof of theorem 3 ,and as colloraries of
theorem 3 we obtain theorem 1 and 2. Finally, in §3, we will show
some applications.

In what follows, K always denotes a real compact convex set and B [K]

is the space of hyperfunctions with support contained in K.

51. Fourier-Laplace and Avanissian-Gay transforms of

hyperfunctions with compact support

For hyperfunction‘TQ'B[K], we define its Fourier-Laplace

transform %(z) as follows:
T(z) = <T?I, exp(z7 )7, (z ¢C™)

where z 3 =lel+223'2+...+zn§’n.
Following theorem U caracterizes Fourier—Laplace transforms of ¥ [K].
Theorem 4. Suppose that T belongs to B [K]. Then its Fourier-
Laplace transformff(z) satisfies the following éétimate: for any ¢70,
there exists a constant C ¢ such that

[T(2)|$ © exp(Hy(2)+€]z]) (z € Gé)
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Conversely, if an entire function f(z) satisfies the above estimate,

then there exists a hyperfunction T € ﬁ [Kd:such that f(z) E(z).

1]

For the proof of theorem 4, we refer to [5].
Next we define Avanissian-Gay transforms Gf(w) of'Té‘B[K] as follows:
n
- -1
Gp(w) = Ty, iTJ;(l_wieXp(;i)) V.
Remark that in generalvG (w) is defined for w = (w "’Wn) in
ll(c \exp( K. )), where K denotes i-th projection of K.

i=1

Now we enumerate some properties of GT(W).

Proposition 5.(Avanissian-~Gay [1])

(7) Grp (w) is holomorphic in _TT(C \exp( -k )).
(8) aplw) = (-DEG €Y S T (1) €, <1>%<W> 5

m e(Nvo)™
Bw M. .. 9w ) .

where Q(w) = w if |w|<1 and wl oif jwlyl . ¢(w) = 0 if |w|<1 and
Clw) = 1 1if |wl>1.
From this development, we have that lim GT(W) = 0.

g T
(9) (Inversion formula)

T(z) = (E07 g o op(e7F Yexn(23 )ay
. 1

where [1i is a positively oriented contour surroundinngi.
Remark that Avanissian-Gay transform is one-to-one because of this
inversion formula.

§2; -Proof of Theorem 3.

First of all, we prepare the following lemma
Lemma 6. Suppose that Te€B[K] . If its Fourier-Laplace transform

T(z) satisfies following condition:
l/fm|<
(10) 1im sup IT(m), 1.
iml-> oo
Then T belongs to § [ O}] In another words, T(z) is an entire function

of infra-exponential type.
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(proof) For the simplicity, we will confine ourselves to the cases
of n =1 and 2.

(i) n = 1 By proposition 5-(8), we have following expansions

0> ~
G (w) = ZO T(n)w" lw|<1),
n:
= ~s
Gp(w) = - ng(—n)w_n Wy 1).

From the assumption (10), it is easy to see that GT(W) is holomorphic

in |w|<1l and |w|>1l. From this and proposition 5-(7), GT(W) is

holomorphic in € \gll By means of Inversion formula(5-(9)), we have
T(z) = (ex1)~t G,I,(e—7 Jexp(z §)ay

r

As GT(W) is holomophic in ¢\flh GT(e—; )is holomorphic in C \fQZ

Therefore we can shrink [ towards {0} arbitrarily.Hence T(z) is entire

function of infra-exponential type.

(ii) n=2 From 5 (7)and (8), it is easy to see that G (wl,w ) is

holomorphic in Trr (¢ \exp( K )) and W_F(m \T ), where T is unit

circle. =t ik

To show that Gp(w,,w,) is holomorphic in (€ \{1}) X (¢ Vl} ), we

consider following Cauchy integral

Gp (wpawy) = =REDTH | ane, wy) (s-uy) T at

f’ is shown in the Figure 1.
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Figure 1.

Ao 3
VA1

Let fix L in € \Tz. Then we can deform r1towards 1, since GT(t, w2)

is holomorphic in ;@;(C \Ti). Asi%timFT(wl’wg) = O’GF(WI’W2) gives
single valued analytic continuation of GT(wl’WQ) up to (C\fl}) X

(¢c \Tg), Interchanging the role of w, and w,, We can obtain analytic

1
continuation of GT(wl,w2) up to (C \Tl) X (@\fl}).
By elementary set operation, we have the following identity

(A® denotes the complement of A.)
c c c 4 c c c
(Alﬂ Bl) X Bzu le (A2f\82) U Alx A2
_ .C c
= (A,nB) " x (A,0B,) 7.
Putting Ai = exp(—Ki) and Bi = Ti’ we see that GT(Wl’W2) is holomorphic
in (¢ \[1}) x (e \[1}).
Like in the case of n = 1, we apply inversion fomula:
~ _ - “51 -7
T(zl,z2) = (-2K1) VGT(e ,e ) exp(zl§'1+22512)df1d§é
ml i
%15

$1

- _ g v
Since GT(e , e 2) is holomorphic in (G\io})x (@\io}), we can
shrink the contours | 5 (i =1, 2) towards the origin.
N/
Hence T(zl,z2) is entire function of infra-exponential type.

This means that T belongs to Z?[fO}]-

_5__
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Now we pass to the proof of theorem 3. First we prove theorem 3 in

the case of n = 1. Next we will treat the case of n = 2.

(proof of theorem 3) By means of theorem 4, there ‘exists hyperfunction
T € B [K] such that f(z):= %kz). By virtue of preceeding Lemma, f(z)

is entire function of infra-exponential type. V

(iii) n=1 We consider the following entire function F(z).

o D
F(z) = 27PN (e (z) - 3 a ") (zet)
n=0
v )
where f(z) = 2:_ anzn is Maclaurin expansion of f(z).
ns0

We put H(z) = F2(z). As is easily seen, H(z) is entire function of

infra-exponential type, and H(m) = C)( m _2). There exists a hyper-
a4

function SGUZ[{O}] such that S(z) = H(z). We consider Avanissian-Gay

transform Gs(w) of S. GS(W) has following expansion:

o A~

Gg(w) = > S(n)w" (wj¢ D)
n=0
Lo ~s

Gg(w) == 2 S(-n)w" (w|> D)
n=1

Since S(m) = C)(m_z), GS(W) is bounded in €.\ 1. By virtue-of celebrated

Riemann’s theorem concerning with removable singularity, GS(W) is entire

function. Furthermore, as lim Gs(w) = 0, Gs(w) vanishes identically.
jwh oo

I~
By means of the inversion formula, H(z) = S(z) also vanishes identically.

Hence we obtain the following desire result:

P n
f(z) = E:_anz .
n=0

(iv) n=2 We develop f(Zl’ZZ) as follows
n, n.

- 1 7z

£(zy,2,) = 5 ®ny,n, %1 %2
: n
(21)222

o Mo , :
We put F(z2) = f(ml,zz)for fixed integer m,. Since f(zl,zg) is entire

function of infra-exponential type, F(zg) has same property.

6 —
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Moreover F(zz) satisfies following estimate
- P
F(me) = (] ( lm2| ) for all m, € Z.
Therefore by preceeding result in (iii), F(zz) is polynomial of degree

p n
. . _ 2
not exceeding p. This means that f(ml,zz) = 3 a, (my)zo

n2=0
On the other hand, we have
oo n
f(my,z,) = > a (m1)222
1°72 — n
n2~0 2
Hence for n, Z ptl,
anz(ml) =0 for all mlel.

Applying Cauchy’s integral formula to f(zl,zg), it is readily seen that

a, (Z2) is entire function of infra-exponential type. From the result
2 .
in (iii1), we see that a (Zl) vanishes identically for n, 7 p+l.
5 £
Therefore p :

f(zl,zz) = E ag

n2=0 2

Repeating the same argument, we obtain

n
(zl)222

D
f(z.,z,) = )L_ a z01700
1°72 n1=0 nqy,n, 1772
fo=0
By means of the assumption , f(ml,m2) = (> ( |m| p), we can conclude

that f(zl,zg) is polynomial of degree not exceeding p.

This is our desired result.

§3. Applications.
From theorem 3, immediately, we obtain following

Proposition 7. Suppose that T is a element of B [K]. Then followings

are equivalent.

(11) T is a finite linear combination of derivatives of order not
exceeding p of Dirac’s delta function.

(12) ‘g(z) is a polynomial of degree not exceeding p.

(13) Ekm) = C)(fm] Py for a1l m e 2",

.___.7___
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In next three applications, we will show how to apply theorem 1.
First we treat the discriminant of Hill’s equation. Following facts
are well known ([4] ). | |
(14) Discriminant A\ (E) is an entire function of order 1/2.
(15) 1lim El/z(A (E)-2cos(TC EY/?) = 0.
E-= 0o

Now we put f(E) = A (E)-2cos(TC El/2). Then we have following
Proposition 8. If f(E) have the following property:

f(-am)=()([m|p) : (m= 1,2,3,....)
for some positive number a, then potential V(x) in Hill’s equation
vanishés identically.
(proof) First we remark that f(E).is an entire function of infra-
exponential type. So from the assumption, -(15) and théorem 1, we can
conclude that f(E) is polynomial. Furthermore, f(E) vanishes identically
because of (15). Namely, A (E) = ZCos(7tEl/2). This means that
there is no unstable intervals. Hence by Virtue of Hochstadt’s

theorem ([4]), we can obtain desired result.

Next we pass to eigenvalue problem of trace class operator defined on
a Hilbert space. Let A be a trace class oparator. Accordiﬁg to [7],
we put

f(z) = det (I + zA) (zeC).

Then following two. facts are known[7]

(16) f(z) is . entire function of infra-exponential type.
N(A ‘

(17 £(2) = (1+z A5 (A))
J=1 » ‘

where :\j(A) (j=1...N(A)) are the eigen values of A counted with

algebraic multiplicity.and N(A) is finite or countably infinite.

Under these preparation, we have following

Proposition 9. If f(m) = ()(hﬂ Py for all meZ and some natural

number p, then oparator A has at most p eigenvalues.

—_— 8 —
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(proof) From the assumption and theorem 1, we will seeé that f(z)

is polynomial. By virtue of (17), there exist at most p eigen values.

Remark : If the assumption heolds for p=0, the we can conclude that
eigenvalue of A is just 0. For the details of this we refer to exercise
156 in [7].

Finally we give one method to construct analytic functionals without
unique carrier. For the definition and some special terminologies of
analytic functionals, we refer [5] and [6].

Proposition 10. Suppose that entire function g(z) satisfies following

conditions
(18) g(z) is even function,
(19) there exist constants A and B such that

Ig(z)‘-§ Bexp(A |z|) (z€ )
(20) g(m) =(QC |m| Py,
(21) g(z) is not polynomial.

-1 -1 ) )
Put T = FB (g(/zlz2)), where FB denotes inverse Fourier-Borel
(sometime called Fourier-Laplace) transform. Then analytic functional
. . . = - . <

T is carried by poly§1scs Da,b {(3-1,3'2)c,® ,l?lig ah, l§2‘=bA

ab =1, a0, b>0 ) . But T is not carried by the origin.

Remark : Intersection of Da b S is the origin.

>
(proof) From the assumption (18), g(/zlz2 ) is entire function.
By the elementary calculation and (19), g(/21Z2 ) satisfies the

following inequality : for any positive numbers a and b satisfying ab=1,

,g(/zlz2 )Ig' Bexp(aAIzl]+bbA,22') ((z),2,)€ ¢? )
This means that T is carried by the polydiscs Da b* Now we will

2
show that T is not carried by the origin. If it were so, then

g(/zlz2 ) should be entire function of infra-exponential type.
Therefore g(z) also have same property. Applying theorem 1 and (20),

we obtain that g(z) is polynomial. This contradicts (21).

_9
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To close this final section, we give three examples of function
g(z).

_ _2p
Example 1. g(z) = z"%cos z. (p =0,1,...)
T = FB_l(cos((zlzg)) is firstly proposed by L.Hormander in [5].
2p-1 '

Example 2. g(z) = z sin z. (p = 0,1,....)

Example 3. g(z). = z_pjp(z). ( Jp(z) is Bessel function of order p

and p = 0,1,...) T = FB—l(JO(/zlzz))is considered by A.Martineau

with slight modification in [6].
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