On IR-holonomic complexes Takahiro KAWAI (RIMS, Kyoto University) The purpose of this talk is to report the following surprising fact: The $\mathbf{E}^{\mathbb{R}}$ -Module generated by $\boldsymbol{\mathscr{Y}}(\mathsf{t})$, the theta-zerovalue, is isomorphic to the sheaf C of microfunctions. This fact may be compared with the elementary fact that the simplest holonomic \mathscr{D} -Module \mathscr{D} - \mathbb{N} -holonomic complexes, the above assertion is far from obvious. Its proof is based upon the reconstruction theorem proved in [2] and the explicit calculation in [1] of some cohomology groups associated with the system of linear differential equations of infinite order that \mathscr{D} (t) solves. The following mysterious result is also reported: For any real number a, we can find an invertible (micro-) differential operator \mathbb{Q}_{σ} which satisfies $$\mathcal{G}(t+a) = Q_{\alpha} \mathcal{G}(t)$$. Although this again follows from the reconstruction theorem in its abstract form, we can give a recipe how to construct \mathbf{Q}_a with the aid of a division theorem for operators of infinite order. ## References - [1] Kawai, T.: An example of a complex of linear differential operators of infinite order. Proc. Japan Acad., <u>59</u>, Ser. A. (1983), 113-115. - [2] Sato, M., M. Kashiwara and T. Kawai: Microlocal analysis of theta functions. To appear.