平面グラフの2連結化アルゴリズム

東北大工学部 小野口一則 (Kazunori Onoguchi) 千葉 則茂 (Norishige Chiba) 西関 隆夫 (Takao Nishizeki)

1 まえがき

与えられたグラフGに枝を何本か付加することにより2連結グラフにすることを2連結化といい,通信網の信頼性の向上などに応用される。例えば,通信網の中継局を点に伝送路を枝に対応させたグラフを2連結化することは,中継局のうちどの1箇所が故障しても通信が途絶えることのない通信網に拡張することに対応する。グラフを2連結化する場合,付加しなければならない枝の最小本数が何本かということが問題となる。Eswaran とTarjan は一般グラフを2連結化するのに必要な枝の最小本数に関する必要十分条件を与えておりEswaran とTarjan Rosenthal とGoldner はその枝を具体的に求める線形時間アルゴリズムが得られたと主張している。しかしこの2つの文献のアルゴリズムには少し誤りがあり,そのままでは最小枝数で2連結化するとは限らない。本文では,まず実際に最小本数の枝付加で一般グラフを2連結化する線形時間アルゴリズムを与える。この場合,平面グラフが与えられても枝付加により平面性が損われるかもしれない。次に,対象とするグラフを平面グラフに限定し,その平面埋め込みを固定したまま最小本数の枝を付加して2連結平面化する線形時間アルゴリズムを与える。この場合には,グラフの平面性が損われるような枝付加はできず,従来のアルゴリズムは適用できない。

2 準備

ここでは本文で用いる用語を定義する。切断点を含まないGのの2連結成分を<u>孤立ブロック</u>と呼ぶ。G自身ではないGの孤立ブロックはq(≥0)個あるとする。切断点を丁度1個だけ含むGの2連結成分をペンダントプロックと呼ぶ。Gにはペンダントブロックがp個あるとする。VをGの任意の点とする。Gの枝は次の同値類E i に分割できる。

2本の枝(x, y)と(w, z)が同じ同値類に含まれるのは,それらを含む道(v_1 , v_2),(v_2 , v_3),…,(v_{k-1} , v_k)が存在し,しかも2 \leq i \leq k - 1 なる i に対し v_i \neq v v_i o v_i かつその時に限る.

この同値類 E_i を用いてGの部分グラフ G_i を次のように定義する.

 $G_{i} = (V_{i}, E_{i})$ $V_{i} = \{x \in V | (x, y) \in E_{i}\}$

この部分グラフG_iをGのV-プロックと呼び、GのV-プロックの個数をd(V)と書く、dをd=max {d(V) | V \in V}と定義する。Gの切断点及び2連結成分を点で表わし、G上で隣接している切断点と2連結成分を枝で結んだ木をblock-cutpoint木(BC木)と呼び、T(G)と書く、T(G)上で切断点に対応する点をC点、2連結成分に対応する点をB点と呼び、図上ではC点は黒丸で、B点は白丸で表わす。GのペンダントプロックはT(G)の葉に対応する。T(G)上でC点Vから葉 ℓ までの道をQ=(V, V₁)、(V₁, V₂)、…、(V_m, ℓ)としよう。枝(V₁, V₂)をQの始点の枝、(V_m, ℓ)を終点の枝と呼ぶ。Gは2連結でないので、面の境界は必ずしも単純な閉路ではないが、面の境界を面閉路と呼ぶことにする。Gが平面グラフの時、ある1つの面下に着目する。F_iの面閉路上の点及び枝のみからなるGの部分グラフG_iをF_iの面りつフと呼ぶ。面下に含まれるペンダントプロックP_iとはP_iの外周上のすべての枝がF_iの面閉路上にあるペンダントプロックのことをいう。図1で面F₁に含まれるペンダントブロックはP₃がよびP₅である。また隣合ったペンダントプロックとはF_iの面閉路を時計回りにたどった時に隣り合って探索されるペンダントプロックのことをいう。図1でP₃とP₄、P₄とP₅、P₅とP₃、P₁とP₉はそれぞれ隣り合ったペンダントプロックである。

3 一般グラフの2連結化アルゴリズム

3.1 アルゴリズム

一般グラフGに枝を付加して2連結化するのに必要な枝の本数の最小値を $\mu(G)$ と書くことにする。次の補題がEswaran と Tar_{jan} によって示されている。

[補題1] $\mu(G) = \max\{d-1, \lceil p/2 \rceil + q\}$

(補題終)

本章では、一般のグラフGが与えられた時、Gに μ (G) 本の枝を付加して2連結化する線形時間アルゴリズム BICONNECT を与える。この場合、たとえGが平面グラフであっても枝付加によりグラフが非平面になることもある。

このアルゴリズムは補題1の $\mu(G) \leq \max\{d-1, \lceil p/2 \rceil + q\}$ の証明に基ずいているため、この証明を示しておく

(補題1の証明)

 $i = max\{d-1, \lceil p/2 \rceil + q\}$ に関する帰納法で証明する.Gが2連結グラフでない場合を考えるので $i \ge 1$ として一般性を失わない.

(1) i=1及び2の時

i=1となり得るのは、d=p=2、q=0の場合のみである。この場合、2つのペンダントブロックを切断点以外で1本の枝で結ぶとGは2連結グラフになる。したがって $\mu(G)=1$ である。i=2となり得るのは、d=2、3及びp=3、4の場合のみである。p=4の場合で、ペンダントブロックを丁度2つ含むv-ブロックがある時はそのペンダントブロックの1つと、他のv-ブロック中のペンダントブロックとを切断点以外で1本の枝で結ぶ。それ以外の場合は、かってな2つのペンダントブロックを切断点以外で1本の枝で結ぶ。するといずれの場合もd=p=2となり明らかに $\mu(G)=2$ である。

(2) i > 2の時

 $\max\{d-1, \lceil p/2 \rceil + q\} = i$ のとき,この補題が成り立つと仮定する.いま $\max\{d-1, \lceil p/2 \rceil + q\} = i + 1$ とし,いくつかの場合に分けて考える.

(2-1) Gが非連結の時

2つの連結成分 G_1 , G_2 に着目する。 G_1 , G_2 は孤立ブロックであるか,さもなければペンダントブロックを含んでいる。 G_1 と G_2 を1本の枝で結ぶ。ただし G_1 が孤立ブロックでないならば,その枝の1つの端点は G_1 のペンダントブロック内の切断点でない点とする。その付加する枝のもう1つの端点を G_2 内に同様に選ぶとする。得られるグラフにおける G_1 0 は次のようになり G_2 1 は次のようになり G_3 2 は次のようになり G_4 3 に

- (I) G_1 及び G_2 がともに孤立ブロックの場合
 - p = p + 2, q = q 2, d = d 1
- (II) G_1 あるいは G_2 の片方だけが孤立ブロックの場合 p変化なし、q:=q-1、d:=d-1
- (Π) G_1 , G_2 とも孤立ブロックでない場合

p:=p-2, q変化なし, d:=d-1

仮定より、このグラフはi本の枝付加で2連結化できるので、結局Gはi+1本の枝付加で2連結化できる。 (2-2) Gが連結の時

このときロ=0である、次の3つの場合がある。

(2-2-1) d-1>「p/2]の時

(2-2-2) d-1=「p/2]の時

このときd(v)=dである切断点Vは高々2つしかない.このような切断点VのV-ブロックの中で,2つ以上ペンダントブロックを持つV-ブロック(それを G_1 とする)を選ぶ.もしd(w)=dを満たすV以外の切断点Wが存在するなら,その点Wは G_1 に含まれており,点Vの G_1 以外の各V-ブロックにはペンダントブロックは1個しか含まれていない. G_1 に含まれているペンダントブロックと他のV-ブロックに含まれているペンダントブロックを1つずつ選び,切断点以外で1本の枝で結ぶ.するとV0が少なくともV1減少し,かつV2つのV2つが1つになるためV3つが1つになるためV4つが1の数も1つだけ減少する.V4の数も1つだけ減少する.よって,得られたグラフV3ではV4の枝付加でV2連結化できるのでV6はV7の枝付加でV9連結化できる。

(2-2-3) d-1<「p/2³ の時

d(v)=dである任意の切断点∨に注目する。ただし、d=2かつp>3の場合次のように∨を選び直す。(この部分が文献(1) および(2) で欠けている。下の注意参照)∨以外の切断点v₀があって、そのv₀ーブロックBでちょうど2つだけペンダントブロックを含むものに∨が含まれるならv₀を新たに∨として選ぶ。例えば図2(a)において最初に注目した切断点∨が点eまたはfであるなら点aを∨として選び直す。

いまV-ブロックの中には2つ以上ペンダントブロックを含むものが必ず存在するため、そのようなV-ブロックに含まれているペンダントブロックとそれ以外のV-ブロックに含まれているペンダントブロックを1つずつ選び、それらを切断点以外で1本の枝で結ぶ、すると「p/2 \rceil が1つ減少するため得られたグラフGは $max\{d'-1$, $\lceil p'/2 \rceil$ $\}$ を満たす、仮定より、Gは \mid 本の枝付加で2連結化できるのでGは \mid + 1本の枝付加で2連結化できる.

(証明終)

[注意]

d=2かつp>3の場合、すべての切断点 Vがd(v)=d=2を満たすが、上述のように切断点 Vの選び方に制約を加えている。これは1本枝を付加することにより新しいペンダントプロックが出現する場合があるからである。例えば、図2(a)のグラフの場合、d=2、p=6であるが切断点e(d(e)=2)に注目すると、ペンダントプロック1及び5が異なるe-ブロック(一方は2つ以上ペンダントプロックを持つ)に含まれているため、この2つが枝で結ばれる可能性がある。このとき、図2(b)のように aを切断点とするペンダントプロックが新たに1つ出現するため、全体としてペンダントプロックの個数は1つしか減らず、帰納法がうまく働かない。このように新しいペンダントプロックができるのは、ちょうど2つのペンダントプロックを含んでいるv-ブロック(図2のa-ブロック)が存在し、そのv-ブロック内の2つのペンダントプロックを枝で結んだ時に限る。このような場合を避けるため、この2つのペンダントブロックが同じv-ブロックに含まれるような切断点を Vとして選べばよい(例えば、図2の切断点a)、なお、図3の切断点aのように、そのa-ブロック内に3つ以上ペンダントブロックが存在する場合には、そのa-ブロック内の2つのペンダントブロックを枝で結んでも、a-ブロック内にペンダントブロックが1つ以上残るためaを切断点とする新しいペンダントブロックは出現しない。

以上の証明に基づくアルゴリズムBICONNECT(G)を次に示す.

```
Procedure BICONNECT(G);
```

begin

```
while Gが非連結 do
```

begin

Gの異なる2つの連結成分を選び G_1 、 G_2 とする;

if G₁ が孤立ブロック

then $V_1 := G_1$ の任意の点

else $V_1 := G_1$ に含まれるペンダントブロック中の切断点でない点;

if Go が孤立プロック

then V₂ := G₂ の任意の点

else $V_2 := G_2$ に含まれるペンダントブロック中の切断点でない点;

 $G=G+\{v_1,v_2\}$; (Gに枝(v_1,v_2)を付加)

end ;

```
Gのd、pを求める;
 while \max\{d-1, \lceil p/2 \rceil \} > 2 do
  begin (Gが連結)
    V:= d (v)=dなる切断点;
    if d-1 > \lceil p/2 \rceil then
       異なる2つのv-ブロックG<sub>1</sub> ,G<sub>2</sub> を選ぶ;
       V_1 := G_1 に含まれるペンダントプロック中の切断点でない点;
       V_2 := G_2 に含まれるペンダントブロック中の切断点でない点;
     end else
     begin (d-1 \leq \lceil p/2 \rceil)
       if (d = 2) and (p > 3)
        then if V \neq V_0なる切断点V_0があり、しかも2つだけペンダントブロックを含むV_0-ブロックにV_0
                が含まれる
              then V:=V_0;
       ペンダントブロックを2つ以上含むV-ブロックを1つ選びG_1 とする;
       G_1 以外のV-ブロックを1つ選びG_2 とする;
       V<sub>1</sub>:=G<sub>1</sub> に含まれるペンダントブロックの切断点でない点;
       V_{2} := G_{2} に含まれるペンダントブロックの切断点でない点;
     end;
    G=G+\{v_1, v_2\}; (Gに枝(v_1, v_2)を付加)
    d, pを更新;(枝付加後のG上でのd, p, qを求める)
  end;
 if 1 \le i \le 2 then
  begin (この場合d=2, 3及びp=3, 4である。)
    D=4でペンダントブロックを丁度2つ含むv-ブロックがあるときは、まず、そのペンダントブロックの
    1つと、他のV-ブロック中のペンダントブロックとを切断点以外で1本の枝で結ぶ、ペンダントブロック
    (高々4個)がなくなるまで、かってな2つのペンダントブロックを選び切断点以外で1本の枝で結ぶ
  end ;
end ;
アルゴリズムBICONNECT に対して次の補題が成立つ、
```

[補題2]アルゴリズムBICONNECT はGを μ =max{d-1, $\lceil p/2 \rceil + q}$ 本の枝付加で2連結化する. (証明)補額1の証明より明らか、 (証明終)

3.2 計算時間

ここではアルゴリズムBICONNECT の計算時間がO(IVI+IEI)であることを示す. グラフGが非連結な間(連結に なるまで)にかかる計算時間と連結な間(連結になってから2連結になるまで)にかかる計算時間に分けて解析 する.

(a) Gが非連結な間にかかる計算時間

Depth First Searchを用いると入力グラフGの各連結成分,ペンダントブロック,孤立ブロックはO(IVI+IEI) の計算時間で求まる.また,異なる2つの連結成分 G_{1} , G_{2} に枝を付加して1つの連結成分にする時, G_{1} , G_2 とも孤立ブロックであるなら枝付加後 G_1 , G_2 はペンダントブロックになる (oxtime 4(a)). G_1 あるいは G_2 $_2$ の片方例えば G_1 だけが孤立ブロックであるなら枝付加後 G_1 はペンダントブロックとなり、枝を付加された $\overline{G}_{m{g}}$ のペンダントブロックはペンダントブロックでなくなる ($m{m{g}}$ 4(b)). また $m{G}_{m{g}}$ 、 $m{G}_{m{g}}$ とも孤立ブロックでな いなら,枝で結ばれるG,, G, の2つのペンダントブロックはペンダントブロックでなくなる (図4(c)). こ のように枝付加後のGの連結成分,及びそれに含まれるペンダントブロック,孤立ブロックは枝付加前のGから 直接求まる. さらに、枝を1本付加したことによるp, d, qの値の変更も次のように定数時間でできる.

- (I) G_1 及び G_2 がともに孤立プロックの場合
 - p := p + 2, q := q 2, d := d 1
- (II) G_1 あるいは G_2 の片方だけが孤立プロックの場合
 - p変化なし、q:=q-1, d:=d-1
- (Ⅲ) G₁ , G₂ とも孤立ブロックでない場合p:=p-2, α変化なし, d:=d-1

連結成分がn個あったとするとn-1本の枝付加で連結グラフになり、連結成分やペンダントブロックを見つける前処理の時間を除けば1本当り定数時間で付加できる。よってGが非連結な間の操作にかかる計算時間は全体でも0(|V|+|E|)である。

(b) Gが連結な間の計算時間

G上で直接V-ブロックやペンダントブロックを探索すると,線形時間でGを 2連結化することは難しい.このため,GのB C木 I (G)を作成し,I (G)上でV-ブロックやペンダントブロックを探索する.I (G)の枝数,点数は明らかに0(IVI)であり,I (G)の隣接リストALは0(IVI+IEI)の計算時間で作成できる.I (G)の任意の C点を V とし、V に対応する G の 切断点を V'としよう.また,V から任意 2 つの葉 ℓ_1 , ℓ_2 への 2 本の枝素な道を Q 1 , Q としよう.このとき ℓ_1 , ℓ_2 に対応する G の 2 つのペンダントブロック P 1 , P 2 は 2 つの V'- ブロック B 1 , B 2 にそれぞれ含まれている(図 5).I (G)は木なので,V に隣接している異なる 2 つの B 点 V 1 , V 2 を 選び枝(V 、V 1),(V 、V 2)から始めて I (G)上の枝を任意の葉 ℓ_1 , ℓ_2 に到達するまで探索していけば、V から ℓ_1 までの道 Q 1 と V から ℓ_2 までの道 Q 2 が定まる.むろん Q 2 は 枝素な道である.ALは 図 6 のような 双方向 リストであり,枝(V 1 、V 1)に対応する 要素が リスト A L (V 1)及び A L (V 1)の両方に含まれ,互いにポインタで結ばれており,片方から他方が直接 アクセスできる.図 6 の太線で示すような リストのたどり方をすると,道(V 1 、V 1),(V 1 、 V 2 を見つけることができる.この M 接 リスト A L を用いると Q 1 と Q 2 が含む枝の 本数の 枝探索で Q 1 、 Q 2 が求まり,異なる V-ブロック B 1 と B 2 に含まれるペンダントブロック P 1 と P 2 を見つけたことになる..

 $d-1>\lceil p/2\rceil$ または $p=d\le 3$ の場合には上のようにして見つけたペンダントブロックを枝で結べばよい、従って、 Q_1 、 Q_2 の長さ(枝の本数)をそれぞれ m_1 、 m_2 とすれば、明らかに $O(m_1+m_2)$ 時間でまたできる

d-1>「p/2] またはp=d≤3のどちらでもない場合にはBICONNECT は2つ以上のペンダントプロックを持っているv-ブロックを1つ選ぶ必要がある。つまり, B_1 , B_2 の少なくともどちらか一方は2つ以上ペンダントブロックを含んでいるかどうか判定しなければならないが,これは Q_1 (Q_2)上に次数が3以上のV以外の点があるかどうか判定すればよい。なぜなら次数3以上の点は Q_1 (Q_2)上の点以外の点と隣接しているため, B_1 (B_2)に対応するT(G)の部分木T $_1$ (T $_2$)には l_1 (l_2)以外の葉が存在することを意味するからである(図5)。このようにして Q_1 (Q_2)を見つける時に Q_1 (Q_2)上の各点 V_1 が3次以上かどうかを調べていけばよい。よって,高々 Q_1 と Q_2 が含む枝の本数の3倍の枝探索で異なる2つのv-ブロックに含まれるペンダントブロックを定めることができ、かつそれらのv-ブロックが2つ以上のペンダントブロックを持つかどうか判定できる。

 B_1 , B_2 の少なくともどちらか一方が2つ以上のペンダントブロックを持つ場合には,道 Q_1 , Q_2 を見つけることにより得られた2つのペンダントブロック P_1 , P_2 を選ぶ.もし両方とも1つずつしかペンダントブロックを含んでいない場合,つまり Q_1 , Q_2 に含まれるV以外の点がすべて次数2以下の場合には, P_1 , P_2 を選ぶことはできない.この時道 Q_1 , Q_2 をそれぞれ1本の枝 (V , ℓ_1),(V , ℓ_2)に置き換えてから新たに2つの道を探す(図7).従って最終的に選ばれた道 Q_1 , Q_2 の長さをそれぞれ m_1 , m_2 とし, Q_1 , Q_2 以外のたどられた枝の本数を m_3 とすると,枝付加できる2つのペンダントブロックが0 (m_1 + m_2 + m_3)の計算時間で見つかる.

 $^{\circ}$ さらに、d=2かつp>3の場合には、 $v_0 \neq v$ なる切断点 v_0 があり、ちょうど2つだけペンダントブロックを含む v_0 -ブロックBに v_0 が含まれているかどうかを確める必要があり、もしそうならば v_0 を新たに v_0 として選び直してペンダントブロックの探索を行なっていく、 v_0 、 v_0 0を用いるとこの操作は次のようになる。

まず、最初に選択した∨(次数は2であることに注意)から適当にT(G)上をたどって2つの葉 ℓ_1 、 ℓ_2 まで

の道 Q_1 , Q_2 を求める. Q_1 , Q_2 が次のような形をしているかどうか調べる (図8(b)).

 $Q_1 = (\lor, \lor_1), \cdots, (\lor_n, l_1)$ $Q_2 = (\lor, u_1), \cdots, (u_i, u_{i+1}), \cdots, (u_m, l_2)$ (1) ただし、 l_1 、 l_2 は葉、 u_i は次数3のB点、 u_i 以外の Q_1 、 Q_2 上のB点の次数はすべて2であるとする、 Q_1 と Q_2 が(1) の形をしている時には u_i に隣接する切断点 v_0 ($\neq \lor$) があり、 l_1 、 l_2 に対応する丁度2 つだけのペンダントブロックを含む v_0 -ブロックBがあり v_0 を含む。このとき l_1 、 l_2 に対応するGの2つのペンダントプロックに枝付加すると切断点 v_0 のまわりに新しいペンダントブロックが出現するため、 v_0 に隣接している u_i 以外の点 w_1 を選び、道 Q_2 を

 $Q_2 = (V, U_1)$, …, (U_i, V_0) , (V_0, W_1) , …, (W_s, l_3) (2) のように選び直す (図8(c)). また (U_{i+1}, U_{i+2}) , …, (U_m, l_2) を1本の枝 (U_{i+1}, l_2) に置き換える. この時選び直した Q_1 , Q_2 から得られる葉 l_1 , l_3 に対応するGのペンダントブロックは V_0 の異なる2つの V_0 -ブロックにそれぞれ含まれている. つまり、 V_0 を切断点として、 V_0 から2本の枝素な道を探索して2つの葉を定めたのと同じことになる.

 Q_1 , Q_2 が(1) のような道であるかどうかの判定は Q_1 と Q_2 が含む枝数に比例した計算時間でできる。もし, Q_1 , Q_2 が(1) のような道である時は(2) のように選び直さなければならない。このとき(1) の道に含まれる枝で(2) の道に含まれていない枝(u_{i+1} , u_{i+2}) , ……,(u_m , ℓ_2)を 1本の枝(u_{i+1} , ℓ_2)で置換えなければならないがこの置き換えは直ちにできる。最終的に選ばれた道を Q_1 , Q_2 とし,その長さをそれぞれ m_1 , m_2 とする。またそれら以外のたどられた枝数を m_3 とすると,この場合にも枝付加できる 2つのペンダントプロックが〇(m_1 + m_2 + m_3)時間で見つかる.

Gの2つのペンダントプロックP₁, P₂ からそれぞれ切断点以外の点を1つずつ選び枝を付加すると、いくつかの2連結成分が1つの2連結成分になり、いくつかの切断点が切断点でなくなる(図9(a)(b)). 枝付加後のグラフをG'とした時、T(G)をT(G') に変更しなければならない、次のアルゴリズムUPDATEにより効率良くこの変更ができる。ここで、GのBC木上のB点とC点を結ぶ2次の点のみからなる任意の道を1本の枝で置き換えてできる木もBC木と再度定義し直しT(G)で表わすことにする。このことは、その道上の全てのB点に対応する2連結成分を1つの2連結成分として考えることを意味する。

Algorithm UPDATE

ステップ 1. Gの切断点でG'において切断点でなくなるのはI(G)上の Q_1 , Q_2 に含まれる次数 2のC点に対応する切断点である(図10(a)). このため、I(G)からこのような切断点をまず除去する(図10(b)).

ここで次の補題が成立つ.

[補題3]アルゴリズムUPDATEはT(G)をT(G') に変更する。

(証明) UPDATEを実行した後のB C木をT'とする。枝付加によりG'では Q_1 , Q_2 上のB点に対応するGの2連結成分が1つの2連結成分となるが,これはT'の V_B に対応する。これ以外のG'の2連結成分はGの2連結成分と同じであり,これに対応するTのB点はT'において変更を受けていない。ステップ1において,G'において切断点でなくなるC点はT'から除去され,他のC点はそのままT'上に残る。よってT'はG'のB C木T(G')である。

(証明終)

データ構造として図6の隣接リストを使い, Q_1 , Q_2 を見つける時に次数2のC点を記憶しておけば,アルゴリズムUPDATEのステップ1の点除去は1個当り定数時間で実行できる. また,ステップ2で短絡する時に多重枝が生じるので,A L 上でこの多重枝を1本の枝に置換えなければならないが, Q_1 , Q_2 に含まれるC点を記憶しておけばこれも1本当り定数時間でできる.ステップ2で Q_1 , Q_2 上にあるB点∨' を V_B に短絡するには,AL(V')につながっている要素を $AL(V_B)$ に追加するようにつなぎ換えればよい.この追加は Q_1 , Q_2 を定めるときにたどったAL(V') と $AL(V_B)$ の要素間のポインタのつなぎ換えにより実行でき,B点の番号 V_1 , V_2 を知る必要はない.図6のデータ構造を用いるとこのつなぎ換えは定数時間でできる.ただし,点V'

の隣接点は短絡により \vee_B に隣接するようになるが,AL(\vee_B)の各要素の点番号を \vee 'から \vee_B にいちいち書き換える必要はない.図6のデータ構造を用いると枝の一方の端点から他方の端点へ直接ポインタをたどっていけるため各要素で点番号を参照することなく葉 ℓ_1 , ℓ_2 までの道 Q_1 、 Q_2 を見つけることができる.しかも, Q_1 , Q_2 上の各点の次数が3以上かどうかは,AL上で Q_1 , Q_2 を見つける時に探索した各要素のleftとright のポインタが同一の要素を示しているかどうかで判断できる.よって,点番号を書換えなくともALを探索して異なる2つのV-ブロックに含まれるペンダントブロックを見つけることができ,かつそれらのV-ブロックが2つ以上ペンダントブロックをもつかどうか判定できる.以上からステップ1,ステップ2の処理は1つの点当り定数時間ですむため,アルゴリズムUPDATEはO(M_1 + M_2 + M_3)の計算時間でT(G)をT(G')に変更する.

以上からT(G)をデータ構造として用いると枝付加するペンダントブロックはどの場合も $O(m_1 + m_2 + m_3)$ の計算時間で見つかり、T(G')もT(G)からその計算時間で求まる。ここで、G'はGに枝を1本付加した後のグラフである。

次にd, pの更新が $O(m_1 + m_2 + m_3)$ の計算時間でできることを以下に述べる.

(1) pの変更

枝付加する2つのペンダントブロックを見つけるのに探索した2本の道 Q_1 , Q_2 が両方とも次数2以下の点しか含まない場合、枝付加により新しいペンダントブロックが1つできるため、p=p-1とし、それ以外はp=p-2とする。

(2) dの変更

枝付加によりいくつかのC点の次数が変化するが,これに伴うdの変更を $O(m_1 + m_2 + m_3)$ 時間で実現するため,各C点の次数を図11で示すようなデータ構造でおさえておく.つまり,リストDA[i] に次数 i のC点 vをいれた要素をすべてつないでおく.またC点の個数だけのポインタの配列CAを用意し,CA[v] で直接DA[i] 中の要素 Vをアクセスできるようにしておく.その要素に次数 i も収めておく.このデータ構造はT(G)から0(VV + VEI)で作成できる.枝付加により次数が変わるC点は Q_1 , Q_2 上のC点だけであり,それらのC点はTE 1だけ減少する.点Vが Q_1 または Q_2 上のC点である時,リストDA[i] につながっている要素 VをCA[v] から直接アクセスし,その要素をリストDA[i] からリストDA[i-1] につなぎ換え,Vの次数として i -1をその要素に代入すれば,点Vの次数変更に伴うリストDAの変更は 1個当り定数時間でできる.よって,図11のデータ構造を用いると $O(m_1 + m_2)$ の計算時間でC点の次数変化に伴うリストDAの変更が実行できる.このような変更をした後,リストDA[d] がVII となったならばはVII でなければはは変更しない.このようにして $O(m_1 + m_2 + m_3)$ の計算時間で枝付加後のdの値が求まる.また,VA[d] のリストを参照することにより直ちにVII のである点VII も見つかる.

以上から次の補題が成立つ.

[補題4]アルゴリズムBICONNECT はO(IVI+IEI)の計算時間でGを2連結化する.

(証明) i 本目の枝をGに付加するのに,T(G)上で探索された枝の本数を $m_{1i}+m_{2j}+m_{3i}$ とする。 m_{1i} , m_{2i} , m_{3i} は i 本目の枝を付加した時の m_1 , m_2 , m_3 である。このとき,Gを2連結化するのに探索した枝の本数は

$$\sum_{i=1}^{\mu(G)} (m_{1i} + m_{2i} + m_{3i}) = \sum_{i=1}^{\mu(G)} (m_{1i} + m_{2i}) + \sum_{i=1}^{\mu(G)} m_{3i}$$

となる.ここで $\mu(G)$ =max{d-1,「p/2 $\$] かあり,i本目の枝付加が道 Q_{1i} と Q_{2i} の葉 ℓ_{1i} と ℓ_{2i} に対応するペンダントブロック P_{1i} と P_{2i} の間になされたとしている.アルゴリズムUPDATEでT(G)をT(G') に変更するとき点除去や点短絡により, Q_{1i} と Q_{2i} に含まれる枝の少なくとも半分,すなわち($m_{1i}+m_{2i}$)/2本の枝がT(G)から除去される.従って.Gが2連結グラフになるまでには最初にあったT(G)の枝だけが除去されるので.T(G)の高々2倍の本数の枝を Q_1 , Q_2 として走査することになる.よって,

$$\mu(G) \\
\sum_{i=1}^{\infty} (m_{1i} + m_{2i}) \leq 0(1E1)$$

である. 従って,

μ(G) Σm_{3i}≤0(IEI)

となることを証明すればよい.

そこで、C点∨が道探索の始点として選ばれ、探索された道が次数 2以下の点しか含まず Q_1 、 Q_2 として採用されなかった場合を考える。今,この道をV、W、……, ℓ (葉)とすると,この道は 1本の枝(V、 ℓ)に置換えられるため,これ以降この道上の枝は再度探索されることはない。ここで,置換えた枝(V, ℓ)は、Vに隣接する他のどの枝(V, V)よりも後に探索されるようにしておく。そのうえで枝(V, ℓ)が探索されたときのことを考える。点Vがこの道探索の始点である場合にはV0点V0分出る全ての道は既に各々 V1本の枝で置換えられているはずであり枝(V, V1)は必ずV2、V2、として採用され,アルゴリズムV3の点V4が入る。一方V4以外の点V4の始点で,かつ枝(V1、V4)がV3、またはV4、V5 に含まれたならアルゴリズムV4の存によりこの枝は除去される。V5 に含まれないときは,この時探索された道V5 によりこの枝は除去される。V7、V8 は再度探索されることはなくなる。以上からV7、V8 に探索された枝は必ず除去されるのでどの枝も高々1回しか探索されないことが解る。さらに、置換えにより追加される枝の総数は明らかにV5 に変えている。

 $\sum_{i=1}^{\mu(G)} m_{3i} \leq 0(|E|)$

である. (証明終)

本章では、文献(1),(2) のアルゴリズムの不備な点を正した線形時間2連結化アルゴリズムBICONNECT を与えた。アルゴリズムBICONNECT はBC木を表現するデータ構造として一般的なデータ構造である隣接リストを用いているため、特殊なデータ構造を用いている文献(2) のアルゴリズムよりリスト処理等インプレメンテーションも直観的にわかり易くなっている。

4 平面グラフ2連結化アルゴリズム

4.1 アルゴリズム

ここでは、平面グラフGに最小本数の枝を付加して2連結平面グラフにする線形時間アルゴリズムPBICONNECT (G) を与える、ただし、Gの平面埋め込みは固定して変更しないとする、平面グラフの2連結化の場合、次の点が一般グラフのアルゴリズムと異なる。

- (a) 枝付加後も平面性を保持しなければならないため、異なる面に含まれるペンダントブロックや孤立プロックを枝で結ぶことはできない。図12に示す平面グラフの場合、ペンダントブロックAとBは同じ面に含まれているため枝付加しても平面性は保持されるが、CとDはそれぞれ異なる面に含まれているため枝付加すると必ず点以外で枝が交差し平面性が損われる。このため、各面ごとにその面に含まれているペンダントブロックや孤立ブロックを処理し、2連結化していかなければならない。
- (b)ペンダントブロックや孤立ブロックに含まれる点の中から枝を付加する2点を選ぶ時、必ずその外周上の点(例えば図12の点u)を選択しなければならない、ペンダントブロックまたは孤立ブロックの外周以外の内部の点(例えば図12の点v)を選択し、他のペンダントブロックまたは孤立ブロックに含まれる点との間に枝を1本付加すると、この枝は少なくとも前者のペンダントブロックまたは孤立ブロックの外周の枝と交差するため平面性が損われる。
 - (a), (b)から次の補題が成立つ.

[補題5] Gの各面の面グラフをそれぞれ最小本数の枝付加で平面性を保持したまま2連結化すれば、Gに最小本数の枝を付加した平面2連結グラフが得られる。

(証明)(a)より各面に含まれるペンダントブロック及び孤立ブロックはそれらが含まれている面内で処理

されなければならない。よって、各面ごとに平面性を保って最小本数の枝付加で2連結化すればG全体を平面グラフのまま最小本数の枝付加で2連結化したことになる。また、(b)より枝付加する点は必ず各面の面閉路上になければならないため面閉路に含まれる点や枝のみを考えれば良い。よって面グラフを2連結化すればよい。

(証明終)

アルゴリズムPBICONNECTの概略を以下に示す.

Algorithm PBICONNECT(G)

ステップ1. Gのすべての面 F_i についてその面グラフ G_i を求める.

ステップ2. 各G を最小本数の枝付加でかつ平面性を保持したまま2連結化する.

ステップ2で各 G_i を2連結化するが,この操作に一般グラフの2連結化アルゴリズムBICONNECT を用いる。ただし,平面性を保持するように枝付加しなければならないため G_i が連結の場合には枝付加するペンダントプロックの選び方に少し制約を加える。 G_i が連結の場合2つのペンダントプロックP $_1$,P $_2$ を任意に選択し枝付加すると,P $_1$,P $_2$ が含まれていた面 F_1 が2つの面 F_2 ,F $_3$ に分割される。このとき,同じ面 F_1 に含まれていた P_1 ,P $_2$ 以外のペンダントプロックが異なる2つの面 P_2 ,F $_3$ にそれぞれ分離して含まれることがあり,F $_2$ に含まれるペンダントプロックと P_3 に含まれるペンダントプロックの間では枝付加できなくなることがある。図13(a)のグラフの面 P_i に着目する。ペンダントプロックAとBの間に枝付加すると図13(b)の点線で示した場合のようにペンダントプロックBとDが異なった面に含まれてしまい,BとDの間には枝を付加できなくなる。アルゴリズムBICONNECTをそのまま P_i に適用すると,これら枝付加できない組合せが生じ,かつそれらを枝で結ぶ場合がある。BICONNECTを用いて平面性を保ったまま P_i を2連結化するときは P_1 ,P $_2$ の選び方に制約を加えて枝付加した後も他のペンダントプロックがすべて同一の面内に含まれるようにしながら行なう。このためアルゴリズムBICONNECTに以下のような変更(1)(2)を加える。

- (1)BICONNECT では、v-ブロック G_2 として G_1 以外のv-ブロックならどれを選んでもよかったが、ここでは切断点vのまわりでv-ブロック G_1 の隣りに埋め込まれているv-ブロックを G_2 として選ぶ(図14).
- (2) G_1 , G_2 からそれぞれ枝付加するペンダントブロックを選ぶ時,BICONNECT では適当に1個ずつ選択してよかったが,ここでは隣り合ったペンダントブロック同士を選ぶようにする(図14の斜線で示されたペンダントブロック).

このようにすれば残りのペンダントブロックが2つの面に分離されることはない. ここで次の補題が成立つ.

[補題6]変更(1)(2)を加えたアルゴリズムBICONNECT は連結グラフ G_i を平面性を保ったまま最小本数の枝付加で2連結化する.

(証明)変更(1)(2)により枝付加後も G_i の残りのペンダントブロックは1つの面に含まれている。よって、平面性を保ったまま枝付加が行なわれる。また、アルゴリズムBICONNECTでは、v-ブロックやペンダントブロックはかってに選択してよかったが、変更(1)(2)はこの選択に制約を加えることになる。この制約のもとでも枝付加できるペンダントブロックが必ず見つけられるので、BICONNECTは \max { d_i -1, $\lceil p_i$ $/2 \rceil$ }本の枝付加で G_i を2連結化するといえる。ここで d_i , p_i は G_i における p_i dである。 (証明終)

 G_i が非連結の場合には,アルゴリズムBICONNECT をそのまま用いても平面性は保たれるため,アルゴリズム PBICONNECTはステップ 2 で G_i が非連結の場合には,アルゴリズムBICONNECT をそのまま適用し, G_i が連結な場合にのみ変更(1)(2)を加えたBICONNECT を適用する.このため,アルゴリズムPBICONNECT(G_i) は G_i を G_i を G_i の G_i か G_i か

$$\sigma(G) = \sum \max \{d_i - 1, \lceil p_i / 2 \rceil + q_i \}$$

$$G_i \in G$$

本の枝付加でG全体を平面2連結化する。Gを平面2連結化するには少なくともσ(G) 本の枝付加が必要であることは補題 5,6より明らかであるため以下の定理が成立つ。

[定理1]アルゴリズムPBICONNECTは平面グラフGを平面性を保ったまま最小本数の(G) の枝付加で2連結ル する. (定理終)

4. 2 計算時間

ここではアルゴリズムPBICONNECTが線形時間アルゴリズムであることを示す. Gの各面F; の面グラフG; は F, の面閉路を時計回りにたどることによって求まる。図 4.9のようなデータ構造をもつGの平面埋め込みリス トを用いると、O(1E1)の計算時間ですべての G_i が求まる。以下で変更(1)(2)を加えたアルゴリズムBICONNFCTが各 G_i をO($|V_i| + |E_i|$)の計算時間で2連結化することを示す、ここで、 G_i の枝集合を E_i 、点 集合をV_iとする.

(a) G_i が非連結な場合

アルゴリズムBICONNECT と同じ動作をするのでO($|V_i|+|E_i|$)の計算時間で G_i を2連結化する。 (b)G.が連結な場合

 G_i の平面埋め込みどうりに埋め込まれたB C π T G_i)を作成する必要があるが、これは F_i の面閉路を時 計回りに一巡することにより〇($|V_i|+|E_i|$)の計算時間でつくれる.この $T(G_i)$ を用いると,BICONNECT に付加した変更(1)(2)は次のような操作に置き換わる. ここで、枝付加する2つのペンダントブロックを 見つけるために、T(G;)上で求める2本の道を

 $Q_1 = (v, v_1)$, (v_1, v_2) ,, (v_n, l_1) $Q_2 = (v, u_1)$, (u_1, u_2) ,, (u_m, l_2) とする。ただし,点vは $I(G_1)$ 上のC点,及び l_1 , l_2 は葉である。

(1) 点 \lor の回りで枝(\lor , \lor ₁)の反時計回りに隣の枝をQ₂ の最初の枝(\lor , u₁)として選ぶ。 (2) Q₁ を探索する時,枝(\lor ₁₋₁, \lor ₁)の次の枝(\lor ₂, \lor ₃)の時計回りに隣の枝を常に選ぶ(図15)。Q₂ を探索する時,枝(u₁₋₁, u₁)の次の枝(u₁, u₁)の次の枝(u₁, u₁)は 点u_iの回り,枝(u_{i-1}, u_iの反時計回りに隣の枝を常に選ぶ(図15).

変更(1)(2)を付加したアルゴリズムBICONNECT が見つけた P_1 , P_2 の葉 ℓ_1 , ℓ_2 は明らかに隣合ったペン ダントブロック同士に対応している。「(G_i) の埋め込み隣接リストとして図6のデータ構造を用いると,時計 回りに隣の枝、反時計回りに隣の枝は即座にアクセスできるため、変更(1)(2)をアルゴリズムBICONNECT に付加 しても枝探索に要する時間は変化しない.一般グラフに適用するアルゴリズムBICONNECT と各 ${\sf G}_i$ に適用する平 面性を保持したアルゴリズム ${
m BICONNECT}$ との間の相異点は道 ${
m Q}_{1}$ 、 ${
m Q}_{2}$ を見つけるための枝探索に,以上の変更 (1)(2)を付加するかしないかという点だけなので、(1)(2)を付加した平面グラフ用のアルゴリズムBICONNECT は $O(|V_i| + |E_i|)$ の計算時間で各 G_i を平面2連結化する、以上から次の補題が成立つ、

[補題7]アルゴリズムPBICONNECT(G) はO(IVI+IEI)の計算時間で平面グラフGを平面性を保ったままで2連 結化する.

(証明)Gの各面グラフ G_i はO(|E|)で求まり、各 G_i は $O(|V_i|+|E_i|)$ で平面2連結化される、 よって、G全体はO(IVI+IEI)で平面2連結化される. (証明終)

4.3 むすび

本章では,与えられたグラフGの平面埋め込みを固定したままで枝を付加して平面2連結化する線形時間アル ゴリズムを与えた. Gの平面埋め込みを固定しない場合には, ペンダントブロックをどの面に埋め込むかで2連 結化するのに必要な付加枝の本数,即ち $\sigma(G)$ が変化する, $\sigma(G)$ が最小となるようなGの平面埋め込みを求め る問題は未解決である. しかし、実用上の問題では、Gの平面埋め込みは固定されており、変更できない場合が 多いと思われる.

(参考文献)

- [1] K. P. Eswaran and R. E. Tarjan, Augmentation Problems, SIAM J. Comput, 5, 4, pp653-665, 1976
- [2] A. Rosenthal and A. Goldner, Smallest augmentations to biconnect a graph, SIAM J. Comput. 6, 1, pp55-6 6, 1977

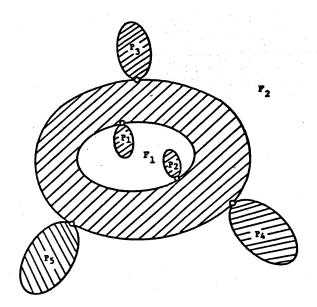
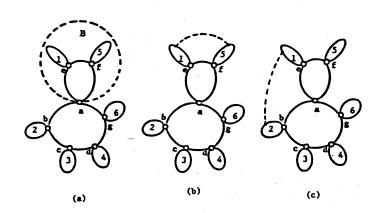


図1 面とペンダントプロックの関係



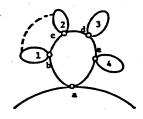
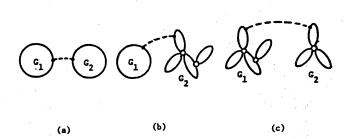


図3 ペンダントプロックができない例

図2 枝付加の特殊例



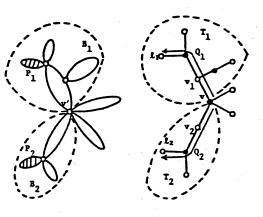
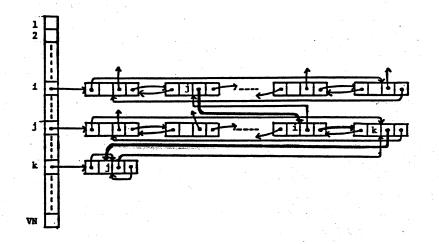


図4 各連結成分間の枝付加

図5 GとT(G)の関係 (a)G (b)T(G)



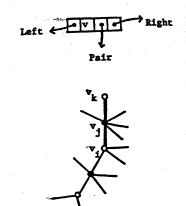


図6 ALのデータ構造

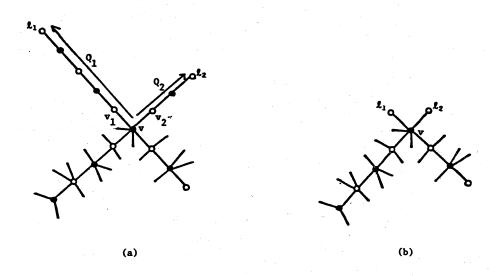


図7 Q₁ . Q₂ の短絡 (a)短格前 (b)短絡後

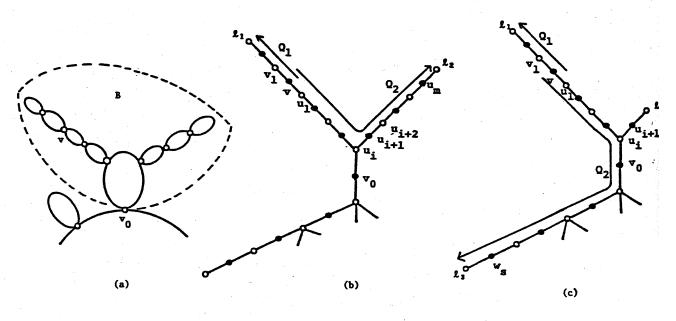


図8 d = 2. かつp > 3の場合の処理

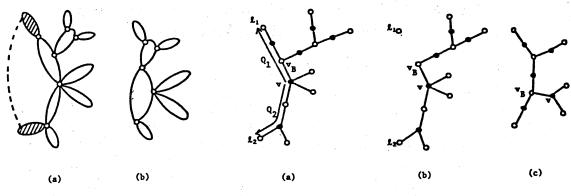
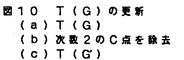


図9 GとG (a)G (b)G



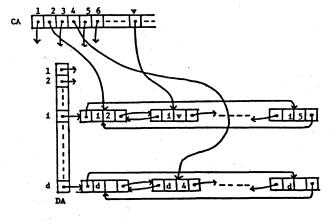


図 1 1 D A のデータ構造

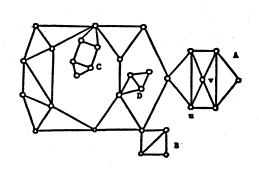


図12 平面グラフG

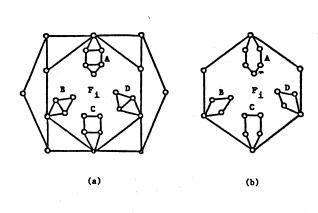


図 1 3 ペンダントプロックの選び方 (a) G (b) G_i

図14 条件(1)(2)の説明

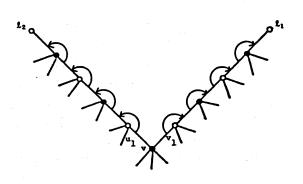


図15 枝の探索方法