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A Cech cohomological method of construction

of holomorphic vector bﬁndles

Nobuo Sasakura

(Tokyo Metropolitan University)

£; This is a continuation of our previous papers ¢} T1],

and we propose an (elementary) Cech theoretical construction
of holomorphic Vector bundles over a complex variety. In
thié note we take the universal quotient bundle over thé
Grassmann variety as our guiding model for the‘construction
v(cf.§]“3) and the argumenté.will be done by extending vector
ﬁundles to closed subvarieties of codiménsidn‘éiéicf. $1.1).
The content of this géte is very provisional, bﬁt provides
a general method of’construction of buﬁdles up to codimension

25 S(for Stein manifolds and for projective manifolds up
to tensor product of line bundles). Among explicit computations
in this note, the foilowing may be worthwhile pointing out:
(1) An analdgue of Bertini’s theorem on mbving singularity
(for divisors of a. linear system) for what we call ‘Grassmann
system of divisors)(Lemma 1.4.2), (2) Some conditions for
the locally freeness of the sheaves in question!(Lemma 1.5.1

"~ 1.5.3). The above two types of results concern singularities

: : . < .
of certain varieties which appear in our construwtion, and



would clarify that the existence of singularities provide

)(3) A type of residue

the hard part of the constructionf
theorem(Théorem 2.1), which represent the characteristic

class by the residue of certain meromorphic differential.

forms. This part is based on the Cech theoretical treatment

of the characteristic class in Atiyahlilj, and, in our context,

the validity of the residue theorem(residue condition) is

a basic condition for frames of bundles in question.

2. Very many important results on constructions of
vector bundles are known (cf.,for example, Hartshorne t 33
and Schneiderf@j..See also Mar@y§ma TS and Grauert-Miillich C23
for constructions in general situations.) However, a’systematic

constructions of bundles by Cech methods seems to have been

not taken up for varieties of'dimension Z 2. (Note that
classical treatments of bundles as in Weil pifl and Tjurin Ci0)
may be regarded as Cech theoretical.' One of our motivation
of this note is to try generalizations of the classical"

approaches in C!E , £l°3  in terms of stratification theory. )

*) By this this manuscript may be very suited to be sent

to the proceeding of the singularity semihar.
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§1.1. Frame condition. Let X be a complex variety. Then
our construction of holomorphic vector bundles will start

with data as foLlOws:

. - -2, . . . , .
(1.l.l,-l)Dl =(X2,EX), where X is a codimension two subvariety

of X and Ey is a holomorphic bundle over X:=%-%°.
(1.1.1-2) D2,=(Xl,Nl;§P,§} where X' is a codimension one

),
§ . - . . '—2 . . '
subvariety of X containing X, Nl is an open neighborhood of

5 . ; . ,
Xl:leJX‘ and §f=(ei,..,e;),r=rank of E is a frame of

XI
. ; R
EX[Ni(l—O,l).(Here we set NO—X X.)
Figure I
- - - o _ . e
S - 77 - X N
\\l" . l
AR
— _ - - N,

Let i be the injectionzxca-ijand\E§:=i*EX the zero-th direct
image sheaf of (i,EX). Then our proposed method of construction

of holomorphic vector bundles is as follows:

(*-1) + To settle data D=(D1,D2) just above.
(*-2) To investigate structures of Ez.
Because Ef is determined uniquely by B, (*¥-1) (or, more precisely,

settling conditions on D and examining validities of conditions)
will be a basic factor. In this provisional note, we do not
enter into seriously (*-1). (Some argumentsiwill be given in

8 1.1 soon below énd in § 1.3.)'Concerning (*-2) our hope

is to investigate E§'in the following devices:
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(**-1) To give conditiQns‘of locally freeness of Ef ’

(¥**-2) To stratify EZ, to attach an open'neighborhood of

each stratum and to ¢onsruct a frame of Ef in ea;h neighborhood.
(**-3) To use frames as in H**-2) for investigations of
structures of Ei‘

our resulﬁs»in this note give a pro@visional result for

(**-1) ~—~_A**-3). Very roughly, one can handle (**-1) (**-3)

cutside of Xt (cf. §1.5 and §2), and we hope that the

sing
content of the present note provides a basis for further

considerations.

2, The following proposition would show that our start

with the data D=(D1,D2) as iﬁ (1.1.1),(1.1.2) will not 1lose
genefailties:

Proposition 1.1.1. Assume that X is a Stein variety or

a projective variety. Then, for a holomorphib vector bundle

Eg over X, ther.e_j.s__a._cgimensian_w_q_wz of X

=l . .0 1 o2
‘(X lNll_e le_) for Dl- (X IEX).

ggd a datum D2

Proof. The proof is given similarly in the both cases.
———

Here we give a proof only for the case where X is a projective

variety. Then we know that there is a codimension one variety

—

X* such that Eg|z-%l id a product bundle(and we fix a frame



0 » _ . . - L 22
e  of EXIXLXi)' Next taklng a cod;men51og two subvar}ety X

1

of Xj which is contained in X~ , one can assume the following:

{(a) the restriction of E= to Xl:=§l—fz is trivial.
Assuming that Xl-is an affine vériety, if necessary, one

1

can find an open neighborhood N; of X and a frame gl.of

: _ —2
EXIN . From the above arguments we see that (X" and D,:=
51 . '
(Xl,Nl;go,g}) satisfy the conditibn in this proposition.
g.e.d. _ .
Next ~assume that dim X=1. Then X~ =¢. Then remarking that

1 . . . e '
X7 is a compact Riemann surface or a Stein variety, we may

say -that the role of the datum D, is as follows:



?l.Z. Representations of E¢. In 8 1.2 we assume that

there is an element yéf(x } such that

,WX
(1.2.1) xt = ‘(y)
- ‘red
Proposj.tlon 1.2.1. As__._e_t_h_it_ hOl_adnul:i_an_exgr_esmn
WMM
.2, = 2, , With elements .
(]_ 2 2) hOl ' hOl W - s aég+0 and hOl emr(Nl"Q‘k)
_Then E. 4__Jmuxzhkzi_xntn
(Note that (1.2.2) Mwm hOl"—\
1

-)

Proof. Define an QX homomorphlsm T: EX—_}”QX by

~ 1 1

: = oL, 5 .

blN .E !Nl Dg .3 —_— O 1~-/ Ol AY
(1.2.3) g .0 a 0

T By, DY ———> & D5

_ . - PN - i i o r i i
where 3 —(31,..,3r) is an element of QNi and e 'S = Zq\j___l Sj’ ej.
Note that (1.2.2) implies ‘TZlNl- = ‘%No in N, .

to see that T 1is injective. - q.e.d.

_meromorphic with respect to X

It is also easy

14 1
Denote by LX and LX the determinant bundles of E_ and EX: =T(E

X ).

X

Then we have the following commutative diagram:

Br : t@r , < V9

Ex 7 Ex |

r . r 'Ar denotes the
(1.2.4) A ‘ (/\r“[,) "/\ :

L , ' ~ L r-th exterior produc-

X > “X :

Note that, by taking._f_l.= f\re:L to be a frame of LXIN (i=0,1),
' i

the isomorphism. (/\r‘t') is explicitly as follows:



o, . 1 N 'L
Wy gy 2 5 > 9y 2 (et hyy)eS,y
(1.2.5) r - 0 ar
Wy By, 5% ———> %, 2 ¥ 5

where ?;i is an element of O (i=0,1).

i

Take an element l?QEI(X,EX). We mean by the divisor of 18 the
, o

one of Ar?cgl}(X,LX). Letting Dg and D? be the divisors of Y

and T™Y )éiEr(X,Eé),-we have the following from (1.2.5):

1

{(1.2.86) D, = D, + D’ ’
b ¥ 0
where the divisor D0 of X is defined as follows:
T .
(1.2.7) DOJNl = locus of det hOI and DO]NO = that of 1 .
1 _ 7
(Note that Dy is the divisor of r?éi(x,gx), and treatements

of it are much easier than those of D? .) Divisors like D? play
very basic role in our arguments henceforth;some propérties of
such divisors will be ihyestigated in later arguments (cf. €1.é)n

Next note that (1.2.2) concerns the growth property of the

matrix hOl with respect to the divisor Xl. We discuss here growth
¥

properties of hOl with respect to the codimension two subvariety

2 ) . ! .
X”. For this letting the element hOlff Mr(Nl’QX) be- the one in
(L.2.2), we assume that the inverse th of hOl admits the following

expression:
T _b b 1 1

_ "‘C’ [ ‘ 1
(1.2.8) hig =v (x higrg v Y lo,l), where hy,., and th'l

are elements of Mr(X,QX) and Mr(Nl’QX)' Moreover, c is an element

of §+O and x 1is an element of IRX,QX) which does not vanish on Nl'
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. . , ' v
(Thus we may say that the main part of th' is meromorphic

with respect to x and y.)" Now letting )(_ and M denote the

. r r
Q.Z—morphlsm.QX. 38§ —> QX' 2 th

,O-S and the quotient morphism:

9% —_ Q;_/ybor we have:

w¥X ’

L ' AT r, b.r
Proposition 1.2.2. Ey is the kernel of ll:i.gj-( —> O-X/y Og -
AAAAAA A A e AANANL S had had

s <l r
Proof. Take a point p& X~ and an element Spegx-,p.

Then we easily have the following;

! b ' — b = b
‘ LY
This implies that E-,p = (kernel ofl‘/L)p- On the otherhand, for
. - <l . ! .

oint p& N, (=X-X7), we obviously have: = (kernel of
a p peNy( ) y Exrp™ | X4 5
=Q)r-<,p . Thus we have this proposition. g.e.d.

Remark. Assume that X is smooth. Then, by a simple observation,

ArmAm— _
we have:
(*) EX is coherent &> 'D=(D1,D2) satisfies (1.2.8)

(i.e., the main part of the matrix h

10 is meromorphic with

respect to k1 and YZ) .
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m.Framesvgf type (G)--+1. In §1l3 we assume that
X is normal. Then we introduce the lelowing
0

Definition 1.3.1. We say that‘gé=(§l,NlL§_,Ei) is of

type (G), if there are elements e=(el,..,er+l)C:J?(X,EX),

with which the following hold:

(1.3.1-1) The frames_go and_g} are of the formag?=(el,.,er;l,er)
1 r _i,,_ ,

and~f._(el"’er—l’er+l)’ and A\ _g_(l—o,l) does not vanish

identically on X.

(1.3.1-2) The closure'ﬁo(C:_f) of the divisor D, of_gg is

reduced and irreducible, and coincides with Xl.(Thus xt is

irreducible).
The bundle E, is_of type (G), if it admits a datum D, of
type (G). Note thatADéfinition 1.3.1 concerns essentiaily

the elements_gf(el,.;,e ) C;ITX,EX). We say that e is of

r+l
type (G), if it satisfies (1.3.1-1) , (1.3.1-2) and?}

(1.3.1-3) hf_gi dces not vanish at all on <t

Note that, in this case, the closure X 1 of the divisor Dl

T
ong} satisfies:

; —l,3T'l =2
(1.3.1-4) (X (\XIt{) C X
Also note that, by taking a suitable open neighborhood Nl of
Xl in X, the datum_22=(§l,Nl;§?Lg}) is of type (G). Here we
make some very simple remarks for_g2=(§i,NlL§P,g}) just above.

Some more delicate computations will be given in”§1.3 and 81.5.

/
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: _ o : Ly .
The datum_D=( l;Niagf)(i=O,l) and the divisors X~ and X 1 have
the similar meaning to the ones jﬁst above, and denote by'gk[ﬁl]

the sheaf of meromorphic functions over X with the pole X;.

Proposition 1.3.1. The transition matrix hlO for (gp,g}

_goi_lhlei is explicitly as follows:
I

1 _lt-1 ¢ . r-1 L, | . _ L
(1.3.2-1) hy, [P y:} » with cefl™ 7 (X,0.[X j) and yq1X,Q [X"]
' 1

) :

, : .
(Remark that this implies that |y defines the divisor Xl in X-X T.)

Proof. Remark that the first (r-1)-terms of 59 and;g}’are
AN . ’

(el,..,er_l), and, for the proof of (1.3.2-1), it suffices to

see that

_ e’
{(1.3.2-2) er = g_[yjl.

But, because AI e~ does not vanish on X-X ~, we have such an
1

~ ) - 1
expression in X-X l, by understanding that c GSP;'l(X—X ;OX)

and-yé;IHX—X l,OX). on the otherhand, taking a suitable open
] 1 l .

neighborhood Nl of X in X, one can write:

: s ' ) ' . ) N
(1.3.2-3) e = (cy eq+ sedasc 4 er_l)+ X-re_ with elements

1
1 ' LI B
Cir--¢C._; and XG'EL(N]_"Q‘X) '
and one can also write:
1] L]

' = -l e 2 A ; P —
(1.3.2-4) (-l)ee = x (ci-e ¥ tC o _qee 1 "e 1)

!
.Because x defines X l, we have this proposition. g.e.d.

/o



Let the elements ¢ and y be as in (1.3.2-1) and denote

: Co ¢
Then, letting }Lthe

) 1 . . . [ l L
by ND the open variety X-X ~. Oa(.igNé)_
. ‘ro_ . 'r-1 ' T / .
--morph:.sm:_gO 3F —> Q"O = [Ir_l,_c_}g and XU the quotient
. 'r-1 'r-1 'r-1 ] s
morphlsmzoj ——%’QO /ygo , one can rewrlte'Prop051tlon 1.2.3

as follows:

'__is_isomorphic to the kernel

Proposition 1.3.2. E
[ e W T SR
0

/ XN
/o tr—1 ty-1
of LJl:0y" —> 9 T/¥9,"

Assume that there are elements y and x EEI?(X%QK) such that

(1.3.2-1) v and x generate the ideal of f; and X l.
Then one can write:
(1.3.2-2)  c=x =, with l e FTH (X, 09
. : ' P r-1
Then, letting JM be the,gx~morphlsm.gx 2§ — o0 D [xIr_l,é]gx.

and Y _the quotient morghismagihl-—é? Q;‘
rewrite Proposition 1.2.3 as follows:

Proposition 1.3.3. The direct image sheaf Ez is isomorphic

r-1

to the kernel of_l&)L:g% —qgi'l/ygf .

r L
V521 we set ¥ —(CSj)

Y is in the kernel of Y-JL if and only if:

Then

(Note that, writing $as (3 .=i.

)

r_
3

I | , )
(1.3.2-3) x- &'+ 3 Callmod. y) . | ,

The above simple proposition will be a starting point for our

explicit computations done for Eg-from now on.

//



Next by a simple computation, we see that the injection-

t:EX-ﬁRQ§(as in (1.2.3)) -is given explicitly as follows:

0 ' o lel r ! {
L- - 1 A — 1 - » ¢
(1.3.3-1) Jx-x'1°Bg x-x'1 Z & S Ox-x'1 Fhpy° %

-3 . ‘ 0.0 o : 0
Tx-xliFxix-x1 2 &' 3T % 12 ¥y

where h,, = Yip_1 2 .
0 X :

Moreover, let fj be the element of f%X,EX), whose i-th
component = 1 or 0, according as i=j orﬁ j. Then we easilyr

have:

s g . _, <
Proposition 1.3.4. 'Z(e.)—yfj(lgjér) and ’C(er+l)—( < )

Thirdly let e denote the element (el,.t,e re-r8 1) E

r+l 3j r+l
*(x,E ) (0£3j<£r). Then we easily have:

1

Er09051tlon 1. 3 ihe_gla;u:a Xj(.g_§3 of the divisor.

(ﬁf~§ )0 is_as follows:

—

7 = =(c < L e
(1.3.4) XO (y)o, X (x)0 and erl—j- (cj)0(1==3==r 1).

Now we define a subvariety ¥ of X by

= =1
(1.3.5) Y I\joxj(;X)

Rrapasition 1.3.6. The dlrect Lmagg_ghggf_Ei-ls locally

free over X-Y.

Proof. For a point p &X it is clear that Ei’p is

Cs, —free if and only if:

XL'p

(1.3.6) there is an element T =(s ])jrl < Egl such that
- the divisor D¢ of % does not contain the point p. 7

Thus, in X- xl it is clear that er+l -k is a frame, and we

kl

have this proposition. g.e.d.

(2
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M

Remark, In arguments henceforth, we take‘§f+l—k
N~

a standard frame of E—ii;

to be

The:..locally freeness condition of EX”p(p € ¥Y) will be
discussed in 31.5(in a more detail).
Remark, Assume that X i§ the Grassmann variety of subspaces

X

bundle over X, we have the following exact sequence of the

of dimension 4d in Qﬁ. Then letting Tz = 27§3 be the trivial

universal bundles:

0—5Re —3 Tz (=Xxg) ——3 0z —50

| 3
(1.3.7) T~ 5_. /
N X

where RX and Qi-are the universal sub and quotient bundles.

1 1 1 f f y -
Now take a basis 2_=(e1,..,en) of E?, and let € =(§i,.,§h)

be the correspondinnglements of jf?f,TXJ. Moreover, let
e ~ DY e RRF ol P~
él(el,..,en) denote o) e > (X,QX), and we set & (el,.,er+l).
Then, from the Scubert calculus(cf.Musilit 1), we easily .
have the following:
=1, ,x A A : - .

(L.3.8-1) Xj(— A 1 A ACpa1og A- A €_.1) represnts the
first Chern class cl(QX)(Oé;jé_r),
and

r =1

(1.3.8-2) Y= 0j=0 xj is the Scubert éycle of éodimension

2(in X) such that

21la =1 = o2 =2 ar-l
X0 X = ¥ N % , with X, =N e o)

13



(= represnting cycle of the secind Chern claSS‘cz(Qx)),

also, for each j=1,..,r, we have:

. z1 21 DT U2 with %2 = ( NCL ~o A
(1.3.8-3)  X; 0 x-j Y UXy , with X5 = N e M ro1ojartro) ¢

Bemark. The above example of the universal quotient
pundle would show that it is not, in general, legitimate to

take the following as a generic condition:

(1.3.8-4) codimi-?-= r+l
Some other explicit computaions for the universal quotient

*
bundles will be given in§ 1.5 and in Appendix )

*) This appendix is not included here. ..



§ l.4. FPrames of type (G)-<:2. Here we confirm some

J
situations, where the(bundles of type G appear. First we

remark that the most typical exa#mpie of ‘bundles of type G’
(in our sense) is provided by the universal quotient bundle
over the Grassmann variety. LEBtting X denote the Grassmann

variet .and Q- the quotient universal bundle, we have:
4 X

Lemma 1.4.1. There is a codimension two subvarietv?(-2

_Qf.§ such that

(1.4.1) %) 2-%2 is of type (G).

2 1

Using the notation in Remark in 8§ 1.3, one can take X =§én Xl.

Some detailed arguments on the univesal bundle Qi is given
*)
elsewhere .

Assume that X is a projective variety. Then Lemma 1.4.1 and

a generic position argument in Kleiman) implies that following:

T 1
Lemma 1.4.2. For a bundle Ey over X there are a codimension

two subvariety §2.9§ X and an element méfv§+o such that

m .
where- Li denotes the line bundle-coxrresponding ta the hyper
plane cut. 7

A similar fact holds for a holomorphic bundle over a Stein

variety, without taking the tensor product with line bundles.

AY



125

Lemma 1.4.2 and the remark soon below wﬁ_nild insure generaliti’es'
o work wi{:h’ 'bundles of type (G) in our constru&tion of
holomorphié ;bundl'es, | | |

3_, Here ‘We fix evlemeh‘i:s. s,.t€ .3, saf;iéfying s> t" and,

for each index I=(il,..,it):l;§il<--<i <s, we fix an element

t
fI Ef(}—{,g}—() . Let Mst(g) denote the C-vector space of sxt-matrices

with coefficients in'G and we identify M_, (C) with ¢5%. For an
element A& Mst (C) we write AI for the submatrix of A consisting

of I(=(il,..,it))—rows of A. We then define an element F&

F(’Xx’gSt}Qt) ,Q,t=struéture sheaf of }?XSSt; by

I

Let i, be the injection:X (= X XA} ) < X )(Q,St, and let D,

LY -
be the divisor i,F(of X). Denote by F the collection 310

(1.4.3) F(p,a) = & et a1)-F (p) .

and we set:

(1.4.4) B_ (=base loc_:us of ;E‘J) = ﬂ (£ )

E
Now take a point' p €X and an element A & qusvt. Then, taking

I I'0'red
a suitable open neighborhood U of A and a proper subvariety
V of A such that the following hold:
1

Lemma 1.4.3. For each A & U-V we have:

NV — e N } . .
(1.4.5) QQd;_m}—(p( (D}X’,p)sing _(Xp’sing
where '}Ep, ... denote the germs af X,.. at p-

is a Grassmannian

UB_., )) = 4,
E'P

(We may say that the ststem '{DA},AG‘C_}jt

system of divisors, because DA depends‘ only the Grassmannian

coordinate determined by A.)

/&



Here we give the key points of the proof of Lemma 1.4.2(and
the content soon below may suffice to claim a regourous proof.)
Our basic idea is to reduce Lemma 1.4.2 to the original
Bertini’s theorem on the méving singularity of the divisors.
(in a linear system). For thié letting A= [a%] U.éi.is,lgjgt),
we expand al as: |
I

: i
_ _ - S _q BtV TV oA
(1.4.6-1) det A™ = zsv:l (-1) cay - i»,t(A

I I v
l&f;?%‘% )=(iV,t)-cofactor of AT,

) I «
and substituting this to (1.4.3), we write F(p,A) as followsL

1), where

s v
v=l 2t ”Fv

submatrix of A consisting of the first (t-1)-rows

(1.4.6-2) F(p,A) =X (pﬁAt_l), where AL is the

Note that (1.4.6-2) is linear with raespect to (aZ)vil,_and)

in order to apply the: Bertini’s theorem to this linear system,
we define the following(base locus’ for AL 5 ef‘gf(t—l):

S

V=l(F

(1.4.6-3)  B(A__) =( w0 reg -

Also, for our proof, we set:

9F_(p,A %]
L= P . v t"l -\<.
) ={p & Xreg’ rank of[‘ 3%, = k%}

- ) are coordinates of X at DY

(1.4.6-4) R

where (xl,..,x

and we also set:
; ' -
(1L.4.6-5) %éAt-l) =closure of RﬁjAt—l) in X.

Letting the point p be as in Lemma 1.4,2, the key points of
*¥) '

the proof are as follows

*) ,**) See C%*] for an analogue of Lemma 1.4.2 in an algebraic

situation. The proof is given similarly to {¥].

/7
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(L.4.7-1) Each irreducible component B (A ) _,. of B(At_

t=1"p'] l.) P

satisfying B(At—l)p’j‘d; Bp,‘we have:
B(A, 1) s & Ry (B ) -

(L.4.7-2) For each irreducible germ VP at p satisfying VP&;BP‘

we have:

v, ;‘;RO(At_l)p .
(In the above Bé,..J denote the germs of B,.. at p, and’the
element A__, elgf(t—l) is understood to be chosen generally.)

By a simple observation we have the following from the above:

(1.4.7-3)  (D,) (B(a,_;)-(X

DA
codiemnsion =2 in B(A,_y)-

sing(}Rl(At%l))p,is of

sing
On the otherhand a simple computation also leads to:

- i . =
(1.4.7-4) ‘COdlmXp Bfét—l)p = 2 .

Thus from (1.4.7-3) and (1.4.7—4) we have Lemma 1.4.2.
'Next recall that a basic fact on refléxive sheavs
(cf.Siu-Trautmann £ 1) implies:

(1.4.7-5) cod}mi S(Eg) = 3, where S(E§0:={ o) e'X;EX"p is not

Qx,p—free } .
This and Lemma 1.4.3 will insure that there are generalities

to start with bundles of type (G) in local situations.

/8



§ 1.5. Locally freeness conditions. Here we asSume that

X is smooth and that the datum_gf(ii,Nl;gp,g}) is of type (G)

1 1

(cf.Definition 1.3.1). Let X be the extensions of

)

—_— * ’
to X. Without loss of generality we

and X

r 0 r 1
(N 21y and (A" D)
assume that

=2 _ =1p.='1
(1.5.1) = X N0 X g -

.__] ——
Letting.gi[X l] be the sheaf over X of meromorphic functions

1
with the pole X l, recall that the transition matrix th for

%, el) is explicitly as follows:
I ' '
C r-1, ¢ . S w B ~='1
| hig -[0 o ] , with y €[F(X,0:[X *]) and
(1L.5.2) '
A 'or-1 -l,2 A rg'l
c = (cj)j=le = (X, 002 1) .

We assume that there is an element‘xéaf(iﬁgz) such that
v =y/x and.e =c/x , with ye }(X,07) and
(1.5.3) r-l- | r-1 g '

(In view of Lemma 1.4.2 this assumption has generalities in

the local situation.) Let T be the injection:EXC_;\gg, which
is defined by (1.3.6.1), and we write Ey for t(E-i). Moreover,
let W be the guotient morphisngz — Oz1- Taking a point

p E fl, recall that an element ¥ =($j)jzl & ‘Qi’p is in Ei’p

if and only if the following holds(cf. (1.3.6.2)):

(1.5.4) ;~(§') + ?rig =0, where %=«/(x) and ¢ = (c)._Moreover,
ot -1 r-1 T - w

S=055057) -(J((:Tj)jzl) and § =w(8) . | \

Now we will give some conditions for locally freeness of Ez,
by analyzing the very simple equation (1.5.4). Our basic idea-

in the analysis is:
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1

(*¥*) to discuss structures of E—',,p for each p é-izr\ireg

and to use results of the discussions for the structure of
EX'§ (p e —22 /{\ —giing) ‘ ,
As will be seen soon below, the structure of Ei’p is given

2 ieg.‘We hope toldiscuss thé structure
n‘Xiin

nx
2

explicitly for p €X
of EY’p for each peX
Now let FZ1 denote the Qxl(=structure'sheaf oé:il)—submodule‘

g(cf. the end of this séction).

of 9;1’ which is defined by (1.5.4). We determine the. structure-
as follows:First we write the irreducible decomposition of X

in the form:

a
N_. l . A u . NS
(1.5.5-1) X=xX,70 0 0 X, with a, & Z.  and X, e Qxl’p

vanishef at p and is irreducible(l Z i £ u),
and write Ea(l.é_jé r-1) as follows:
b))

b, (3) . L . ,
(1.5.5-2) € = SR 3 . €5, with b, (3),..,b,(3) €2,

- _ ,
and cj E}Qil’p is not divided by xt(lu t £ u).

Define a subset I(j) of {1,..,u? by
(1.5.6) t € I(j) <& a, = bt(j) ’
and we set:

. ' _ -1 s " N g
(1.5.7) I =V I, , and b, = ming g b. (31 & I).

j=1 73
. . r ‘ .
Now define an element léFilrp( C:Qillp) by

a.-b, b, (j)-b, b, (j)-a.
o, = < i i _ ~ i i ~ i
(1.5.7) T, =(7T, .. ¥, ), and Zj—(,lriéIxi'” AT

{Ej (L€ j £r-1). (Here %, =j-th component of %7 .)
*

EEEESEiEiEEQELEQE' Fil’p is spanned by the single element 7.

Proof. First remark that , for each element

N
<
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jE{l,..',r—l} , we have:g-;‘?; + “é..§r = 0. This implies that

o~ ] A2 i ‘ ] '
if‘iéEIj then we have & = 0(mod.x ! 1), and by (1.5.5.3)

|

we have:
(1.5.8.1)F_ =3 . (L i ith lement Je g

-5.8. gr =1 . et %5 ) , wi an elemen O9%1:p -
By substituting this to the equation:';‘cl;% + gj'?gr =0 we have:

b.(j)-b; b.(j)-a; .
%.t 1y (L. %+ 1. 2.

(lj'&z)(—%gj=(liél i TiyI1 % S

Thus we have the ‘only if’ paft of this proposition. But it’

is easy to check thét the element 7 satisfies (1.5.3), and

we have the presen£ proposition. g.e.d.

As before, let fj be the e;émeht of_fﬂf,gg) whose i-th component
=1 or 0 according as i=j or&j(ls j f__ r). Moreover, take an

element 72,5 9£’p such thatw (1) = i : Then from Proposition 1.3.4

and 1.5.1 we have:

Lemma 1.5.1, _The staik_EX,p is _generated -over QX”p by
)) and 7 .

-7 S (=7
v =lleg) ., (TN (=Tle

, <
We derive a condition for the Oy, -freeness of E-, from

Lemma 1.5.1. For notational concordance we write x and y as

)

=1 -
and we use the symbol Xj for the divisor (cr+l—j 0

c_ and c
r r+l’

(0£j=r). Thus we have:

1 1

(1.5.9) ' = %] 2 _xtawt

and X© = Xon Xl’red .

Then setting
Lo %)

(1.5.10) ¥ = NI, X

J



recall that Proposition 1.3.7 implieé:

(L.5.11). Ef{} _v is locally free .
Next letting

at =l
.

denote @ (cj) we have:

) =A<l ' . '
Lemma 1.5.2.'Take a point p € Yﬂxreq . Then EX'p is gz,p—ﬁree

if and only if, for an element jé—f_‘l,._.g,rﬁ} , we have:

~r

. - o ~ > . : <
(1’.5.12) Sl =O(moc'i,.cj) in O"‘ﬁ_{'p (1< kérﬂ).

Proof. Let 7L€E§,p be as in Lemma 1.5.1, and let Dj'k-Q
denote the divisor of (el"’gj"'gk"-"eri-l’ﬁz") (l£j<k £ r+l1).

By Lemma 1.5.1 we have:

1
(1.5.13) Eg, s is Op, -free if and only lf(nl§j<kér+l D.rsm P
To analyze the above condition, we first remark: = .-

-v
x5 7)
1

b -
- ~ i a
(1.5.14)  WTle ) = (L, %% g,

r+1 = 0 on Y, unless k=r+l. Thus the

‘and elA'" A’éj'\--l\’\ékf\“ I\E
condition in (1.5.13) is rewritten in the form:
(1.5-13) nléj_'r'Dj”r+l;“’L E P

we get the following from Proposition 1.3.

Ik

Writing 'rL as (’Lj)jil

and (1.2. ):

n
srrenl - (o

Thus we rewrite (1.5.13) as fdliows:

JIN

(1.5.16) D (1£j= ).
(1.5.17) Ef'p is vQz’z.,p—free if and only if one of 7Zj(lf—_j§r)

does not vanish at p.

But from the explicit form of 7 (cf.(1.5.4.3)), we have:

22
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(1L.5.18-1) ”Zr =0 at p(*P b, (j) Ta,;1 £] tr-1,1£1i £ s).
é";é\g = O(mod.c’:‘;),(l <j € x).

Also, for an element j e{l,..,r-17 we easily have:

(1.15.18-2) "Zjafo at p & (I=¢,and &,=¢ ¢, with a unit g),

or (I%¢, b, (3)=b, (ie I) and b, (j)=a, (i & n)® &, ;O(mod.?:'j).

Thus we have:

k

From the above we have this lemma. g.e.d.

(1.15-8-3) Dj'r-i-l;ﬁp@& = O(mod.'é'j) (1 €k £r).

The following is easily derived from the above lemma and

shows that the variety Y has a very restricted property.

' TNzl
.5.2. Assume that, and = =
Corollary 1.5.2. Assume Y()Xreg k %' and Eifx—xl.
sing
is locally free. Then we have; -
(1.15.19) (¥N % ). is of éqgimensiqg one in_—}zl .
reg T Treg

The arguments hitherto concerning the locally freeness conditions

are purely local in the sense that they are given for each point

on Xreg' Here we give conditions of more global natureiFor this

=2 s - —2 |
letting Y. denote (c.) ., nXl , we assume that Y? admits the
J J"0°red reg (?"f&)
irreducible decomposition, and we write it as follows: .
=2 =2 =2
(L.5.20-1 ¥, = Y. e s s 00 ) .
) J JlU U‘ 5,5 (39)

Then the following is easily checked:

Proposition 1.5.4, For each u.é{l,..,s(j)} -there is an
TS Pt uwivs L 8- S G S S S 1= 152 23 ,

_element mu(j) & %, such that.

m_(3) _ m_(j)+1
u - u
t == 0(I.

N

(1.5.20-2) ‘EjEO(Ij,u,p S ) for each p € Y7,

u’p u

(]

27



spere I, denotes the ideal of —sz"s(j)

v

We write (1.5.20-1) and (1.5.20-2) symbolically as.‘follows:

~ . :42 i A ~2
.5.20~ ) -1 = ) Y4 .. (5)-¥< .
(1.5 3) (CJ)%X;eg ml(])szl'*' +ms(]) (3) YJ,SU)

1
reg

that appear as the irreducible component of f:’j:(lé §< r). Assume

Let ?l,..,?s be the set of all i‘rfeducible subvarieties of X

that the indices in (1.5.20—3) are so chosen that
- -2, .. w2 22
ojxt  =mpG)¥yr e m ()Y ) wmg,y G)¥y gy ¥
reg ,
) Y2
3

(1.5.20-4) (?:'j)

et mgogy Y555y -

We will give a locally freeness condition, by using the above
ekpression: For this téke a subset I=(il,..,iu) of (1,..,s) satis—@‘"‘,’\

-fying
: ~ 2 . L4
(1.5.20-5) Y%(:=Yilﬂ cees Y2 ) X4
u

AFo-r each k ‘E{l, e ,ri} we set:

(1.5.20-6)  m (k) =(m, (k),..@iu(k)) ,

. 1 .
and we write m_(k) = m_(k ) ifm, (k) =2 m, (k );y-..,m, (k) = m, (kI
I I . i i :
: 1 1 u ua
We say that j c{1,..,r} is of type I, if mI(j) = mI(k) for all

1 ~s

ke{1,..,r }. Define a Zariski open set ,fI of Yo by
’A,,.-I‘ rev4 - o~
(1.5.20-7) Y = Y, — UI,.%I v

, Y
Proposition 1.5.5. We have the disjoince union of Y as foll-=

~OwWS ¢
-

(1.5.20-8) Y ='“'I A’fI , where a subset I of {1,..,s} satisfies

74

T P o LA T TR N / ’
Qt~%'iiﬂ§1€$=93§fmi < I *— 74 v

(L.5.20-5)

L4
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E@”Of‘ For a point p Eff‘we define a subset I(p) of {l,eelsj
-
@55 20 9 l) I(P) ={j E{l,'..,si ;§] 9 P}'

: .
@hé subset I(p) is also characterized by

~—

(1.5.20-9-2) ¥ and I(p)=I if Y. Dp ,

- D
. I(p)” P I
and we see easily that, for a subset I of-{l,..,s} satisfying

(1.5.20-5) and Y ¥P , we have:

1 ~ ' '
(1.5.20-10) ¥, = {p_ & Y;I(p)= I} .
From this we easily have (1.5.20-8). g.e.d.
Now using the stratification (1.5.20-8) of Y, we will give a

F1 . For this taking a subset
51ng :

locally freeness condition of EXlX

I of {l,..,s}-, we set:
(1.5.20-11) T = {j E{1,...,r}; 7 is of type I }

Lemma .5.3. is loéaily free if and only if the

PEIR-xL,
sing ,
following holds for each subset T of {l,..,s}-satlsfylng (1.5.20-8)

and Y. ¥ . -
(1.5.21-1) To % 56 , and YI(T@Y,J&T ) :f#, where the

~ & ~ _
_§ub2§;;g§y_Yj of Yj is defined to be the second component of

the expression (1.5.20-4).

Broof. Take a point p € Y and we set ;=I(p)(C:{l,..,s 1).

By Lemma 1.5.1, E—v is OY -free if and only iﬁ there is an

index 365'{1,..,r } such that

(a) 0 (mod. cj) for k=l,;.,r .

k—

From a simple observation we have:

(b) J & T; andi"a’é?p .

2.8



This implies the following implication:

¢ . ' : ~' ) : ' )
(c) Ei’p is gg,p free for each pesYI < 91.5.21-1) for I .
conversely, assume the right hand side of (c). Then, for a
. o UL R )
I such that péYI -Yj .

O(mod.E:'j) (lLk<£r) at p.

' ,
point pe& YI, take an element j & T
But from (1.5.20-4) we haveﬁzkzz

Thus we‘have the converse of (c). This, toghether with the

disjoint union (1.5.20-8), implies the lemma. g.e.d.
Examples. The simplest case may be that there is an
irreducible divisor Y such that

(1.5.22-1) (€4, g = Y for alll £j2 r .

In this case we see easily that E is locally free.

xI1%-xt

~ sing
Next assume that each (c.)0 can be written as follows:
PO | an !
(1.5.22-2) (’é’j)O = ¥ +7¥,, where ¥ is irreducible and
) P :

Yj does not contain Y .
Then Lemma ‘1.5.3 can be rewritten as follows:
(L.5.22-3)

) - C al 2
R i & =
Ez1z-%1. is locally free ﬂj Yj .
sing :

We summarize the arguments hitherto ~ in the fdllowing diagram:

(1.5.23) X P S . 7 =Yaxi,

/\; \ sing
Ei is'locally The locally freeness condition
free is given explicitly

We hope to discuss the locally freesness of Ei for %, by our

arguments (Lemma 1.5.1~1.5.3) in an another place.

26
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Remark. Using the same notation to Remark in § 1.3 for
" 3 ~ - (\v N.
Scubert calculus, we wrlte(pj)o_(glA"ﬁer+l—jf“*ber+l)0 ’

and we rewrite (1.3.8-3) as follows:
2

A _ A ) R S2 -
(1'5'24), (cj)O = Y U Xj' with Xj _(elA--Aer-l—jA‘A er—l)O
Also from Scubert calculus we have: '
=1 _ r A AT =2
(1.5.25) Xsing - (\j=1(elA,-(\ejA-__Aer) ("‘ ﬂj=l Xj ),
. =1 _
and codlmi XSing = 4,

(e

Note that, in this case, one can change the role of (61'°"cr+l

)

to (c )) for any permutaion ¢~ of (r+l)—létters,

—
(1) T+l

and using the notation in (1.3.8-1), we set:

Y- r =l o ~ L\ £ o
(1.5.26-1) W:= (0 Xjrging S 12 jo kzre1 ©1en¥yeafkniral)o

This is a Scubert cycle of codimension six.
From this and Lemma 1.4.2 and 1.4.3, we say that our local
freeness conditions (at the present moment) are applied for

Stein or projective manifolds up to codimension< 6.

27
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‘ig. Reéidue conditions,

Recall that our construétidnbof holomdrphic veétor
pundles start wi£h avdatum_g;(il,Nl;go,g}) as iﬁ Defiﬁition 1.1.1.
Then letting Ei be the difeét imagé sheaf in questioh andb
assumlng that EE‘lS locally free, the follOW1ng two procedures

may be our basis for 1nvest1gatlons of global propertles of

the bundle Ei:

(*-1) To straﬁify the‘cédiménsion two subvariety iz suitably

and to’atﬁach a suitable open neighborhood to each stratum,

and | |

(*~2) to attach a-suitablé.frame of Ei-in the neighborhood

of each‘stratum. '
Now thé residue\ébndition in the tifle is sppken in

terms of the frames aszin (*;2) and concerns explicit

determinations of the characterlstlc classes 1n the sense of

“Atiyah T 71; we may regard the validity of the condltlon as

a basic factor in our procedures (*~1) and (*-2)

1, First we recall very quickly the theory of Atiyah

S
on the characteristic classes(L11) in a convenient form
for our explicit computations from now on: Let M be a

complex manifold and EM a holomorphic bundle over M. Moreover,

28



let N = {Nl})e,\be an open covering of M such that E s

i
M[N%,

, we let

trivial for each 3¢\ . Fixing a frame e, of Eyln
’ A

h, LLdenote the transition matrix forr (e} ,eh) P ke .L’etting

A
£ denote the collection le, i €A}, we have ah element

1

(Atiyah class) @ = @@,g) é yA (_I\l,End(EM)abe]&), where, for

each ()1, W) e/\x/\ , the compolnent @Ak'of fis as follows:
2.1. = ;

(2.1.1) O,m dh-hy |
(Recall that this is the obstruction for the existence of

(¢ F(on, ,End(E,) aty)) .

. holomorphic connection for EM(ED) . Also we recall the

~

following (p.191,C47): let € ©be the element of I—I:L {M,End (EM))

which is defined by '§ . Then, by means of Dolbeaut isomorphism,

~ 1,1

© corresponds to the curvature form @€ H (M,End (EM))

of a suitable connection form of EM.)
Next let Ip be a polynomadll of degree p:M_(C)— ¢, which is
invariant by the adjoint action of GLr (€), and elt 'fp be

the corresponding QM—morphism:

(2.1.2) End (Ey) x’\p - X End(E,) —2 0

Then, one can attach to € an element wP= P (N,e) & Zp(_l_\I__,§L§)

— —

M

by means of the map ’I‘?Jo as follows:
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zl (N,End (EM)aI)jt) 7P (N, End ( )@P'@ (SLy )G"p )

\\gép 7 ¢//I@N d%
Y}

zp(N,sLP)aw" =T. ( 6)

where Up and NP are the cup and exterior products. Then
the characteristic class of Atiyah{([1J) is defined to be

the element ﬂfPéEHP(M,Sbﬁ), which is determined by P = Ep,o(ﬁ )

é-ZP(HJJbﬁ), with the basic invariaht polynomial Ip’O of
degree p.

In our context, the pair (N,e) will be a basic datum
for investigations of global structures of EM, and the element
W = a)_(ﬂ,g_) & Zl'(_l\l, JLI\]&® End (EM) ), may be a most basic
invariant of the pair (N,e) from the viéw point of de Rham
complexes. ‘

EJ Now let us return td our original situation:Assume
that Ey is locally free and that there is ahstratification
‘S of X in such a manner that
(2.2.1-1) SO=X—Xl and Sl:éXl—X2 are elements of .S {and

so the codimension two subvariety"i2 is the union of strata

of 8),
and, for each stratum S of S, we have:

(2.2.1-2) there is an open neighborhodd N, of S in X such

S
that EX\NS is trivial.
We flx a frame_gS of EXINS for each S € S, and we write
XNy and e_ for the collections {Ns;s-é_§ }and {gs;s s?.

— —_—

\;\\,
o
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Henceforth in §2 we assume that X is smooth. Then we_have
the element e= ‘9(_1\_15,9_8) — Zl (N ,End(E—)@J'Lgi) and the

characteristic element ojp a?p(NS,e ) € Zp( Q_\%) . Now

.—Sl
take an element‘gf(sq,...,sp) e va, where codim-}-(Sl =1 (0£isp)

and let iy be the inclusion:Nj:= {st 1.P >N, and we

j=0
set:

2.2.2) wh:eig 0P € Py B (== 0B g 5.

Now we introduce a condition for t@is element cuﬁ, which

concerns the boundary behaviors of Mg around the main body

sP of_Q:To formulate this condition, let N denote sin sP

sJ;

3 _ o ’ )
(0; < p) and we set N {stlp} j=0 - Remark that

U|p
P . . _ .
ﬂj=0 N NSJ;p and we may regard: |
p I 4P Py ( A P : p
(2.2.3)  wf € 2Py, 0 (== FongB, g oaln.
Next define a subset EHJp {stlp} ?;é of N —U! , and for

an abelian sheaf F, over Nsp , we define a relatlve'cochain

complex C (NUlp’ gﬁ by the following exact sequence:
(2.2.4) " 0 — C [E) —> CT Ny JE) —> O (N ,F 0
) sp® U|p*~‘) My p-E) (UIP =
Remark that Nglp consists of p+l-elements, and we have:
P ~ P .
csp(ygjpkg) C (yU,F)

(2.2.5) \b B N&,

— zp(N /F)

P |
“sp Wy pr &)

7/
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and we may regard:

P P ‘ P
(2.2.6) a)g = Zsp(gg\p'fo) .
Now assume that there are elementsd§=(fl,.,fp)<:f(NSp;gX)
such that
(2.2.7-1) sP CLNSP) is the (set theoretical) locus of f
and

N P

ulp 7 “izo Nsijp-
. - .. P P
Then settlng dlogjgkadlog flA . J\dlog fp e ZSP(NUIp’SLX)

(2.2.7-2) fj(].§ jZ p) does not vanish in N

we make:

Definition 2.1. We say thétcug satisfies residue condition

with respect to £, if one can write:

o 42.2.8) ajg = a dlog £ + SQJpal , with éﬂlelement a-€ C

| -l g ~9-1 p
d element : C N .
and an Wy P { Ulp’;LX)

If N is a sufficiently small neighborhood of Sp(in X), the

SP
residue condition (2.2.8) concerns a boundary behavior of

the differential form Q%% around the main part‘SP of U.

We like to take the residue condition just Figure I

. . . . ST N
above as our basis for determination of the . A SP
. ( . N :
-t
« gP ,
\

characteristic class of Ei(in terms of

7
-~ -

de Rham complex). Here we make a simple

remark on the condition (2.2.8)°%

72
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Lettingéi% denote the (abelian) sheaf of d-closed holomorphic

differential forms over X, we have the following diagram:

PNy 3D o £ om

“Ujp
(2.2.9) \L&

p P P
H (NUlp Slx)ga le

where 1 denotes the symbol of ‘hyper-cohomology 7 . Note that
the two cohomology groups in the top line in (2.2.9) are of
topological nature whilr the one in the last line is of
complex analytic nature. Now lettlng(Up be the element of

Hp(NUiprfbg) which is determined bya/p, the residue condition

(2.2.8) insures:
(2.2.10) Qr% & image of S

and insures that the complex analytic element a)g is endowed

—_—

with a topological meaning:
3. Now assume that our bundle Eg is of type (G), and let

(cl,..,c ) C‘f(§,ox) be as in § 1.5. We assume the following

r+l
] ]
generic condition for c:

(2.3.1-1) x3*1.-(c

r+l""cr+l—j)0’red (0= j£ r) is of codimension
j+1(if j+1 £ dim X),
and we set:
(2.3.1-2)  x3*t = %I %32 (0 <52 1)

41
Also attach suitably an open neighborhood Nj+l of X7 to each

j. Then setting

33
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[
(V]

2.3.1-3) v =1, (e )

j r+l-j

0’ red (Oﬁ.jélml? (dim X -1, r)),

we remark that {Xj+l%jv{X% ,Xo=i4il, gives a stratification

~r+l1-3 . A
j =(el""er+l j""er+l)
m/r+l -j

of X-Y. Letting e be as in the

end of § 1.3, we recall that is taken to be a frame of

E . Setting N= IN ~and e=( ) , we have the

j+l ,
element ¢P(N,e) & zP (NULP,JL§) with U=(xP,..,X") (p= min(dim X-13

X|N ]+l} Sr+1-4

fhen remarking that (c = XP we have:

r+1)0 n--n‘°r+2 plo
ggggg§gv2¢&) The element «f (N,e) satisfies the residue
p- l
condltlon with resgect to (€ rel- k)

This is essentially very elementary, but requires some

long computations. Details will be given in &n another place.

o
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