Normal Surfaces and Intersection Theory

Fumio SAKAI

埼玉大理 酒井文雄

In this note we develop geometry of normal surfaces by using the intersection theory introduced by Mumford [4]. We shall study the contraction criterion, the projection formula, the Noether formula, the vanishing theorem, the minimal model, the Miyaoka inequality, etc. Details will be discussed elsewhere.

Notation

A <u>surface</u> will mean an irreducible reduced <u>compact</u> complex space of dimension 2. A <u>divisor</u> will mean a Weil divisor (i.e., a linear combination of irreducible curves) unless otherwise specified. We use "birational morphism" instead of bimeromorphic morphism.

Y : a normal surface

X : a resolution of singularities of Y

Div(Y) : the group of divisors on Y

An element of $\operatorname{Div}(Y,\mathbb{Q})=\operatorname{Div}(Y)\otimes\mathbb{Q}$ is called a \mathbb{Q} -divisor. Given a \mathbb{Q} -divisor $D=\Sigma\alpha_i^c$ where the C_i are irreducible curves and $\alpha_i^c\in\mathbb{Q}$, we write as

[D] = $\Sigma[\alpha_i]C_i$ ([α] is the greatest integer $\leq \alpha$)

 $\{D\} = \Sigma\{\alpha_i\}C_i$ ($\{\alpha\}$ is the least integer $\geq \alpha$)

1. Contraction criterion

Let Y be a normal surface. The intersection pairing $\operatorname{Div}(Y) \times \operatorname{Div}(Y) \to \mathbb{Q} \text{ is defined as follows ([4]). Let } \pi\colon X \to Y \text{ be a resolution of singularities and let } A=U\!E_{\underline{i}} \text{ denote the exceptional set of } \pi\text{.} \text{ For a divisor D on Y we define the } \underline{\text{inverse}} \ \underline{\text{image}} \ \pi^*D$ as

$$\pi * D = \overline{D} + \Sigma \alpha_i E_i$$

where \overline{D} is the strict transform of D and the rational numbers α_i are uniquely determined by the equations: $\overline{D}E_j + \Sigma \alpha_i E_i E_j = 0$ for all j. For two divisors D and D' the <u>intersection number</u> DD' is defined to be the rational number $(\pi *D)(\pi *D')$.

A divisor D on Y is numerically equivalent to zero, denoted by D \otimes 0, if DC=0 for all curves C on Y. Two divisors D and D' are numerically equivalent, D \otimes D', if D-D' \otimes 0. Set N(Y,Q)= (Div(Y)/ \otimes) \otimes Q. The <u>Picard number</u> ρ (Y) of Y is the rank of the Q-vector space N(Y,Q). We have the equality: ρ (Y)= ρ (X)- ρ (π) where ρ (π) is the number of irreducible components of A.

The following is the normal surface version of the Grauert's contraction criterion theorem.

Theorem (1.1)(Contraction Criterion). Let C_1, \ldots, C_k be irreducible curves on a normal surface Y. Then the union VC_i can be contracted to normal points if and only if the intersection matrix (C_iC_j) is negative definite.

<u>Proof.</u> By definition $\pi * C_i = \overline{C_i} + Z_i$ with $\operatorname{Supp}(Z_i) \subset A$. Let $G = \Sigma^{\alpha}_i \overline{C_i} + Z$ be a \mathbb{Q} -divisor on X such that $\operatorname{Supp}(Z) \subset A$. Write $G = \pi * (\Sigma^{\alpha}_i C_i) + Z'$ where $Z' = Z - \Sigma^{\alpha}_i Z_i$. We find that $G^2 = (\Sigma^{\alpha}_i C_i)^2 + Z'^2$. As a consequence the Grauert's theorem applied to X proves the assertion. $\mathbb{Q}.E.D.$

We now consider a birational morphism $f:Y' \to Y$ between normal surfaces Y' and Y. We denote by A_f the exceptional set of f. Write $A_f = UC_i$. For a divisor D on Y the inverse image f*D is also defined. As a corollary of the above criterion, we can write as

(1.2)
$$f*D=\overline{D}+\Sigma\beta_{i}C_{i}$$

where \overline{D} is the strict transform of D by f and the rational numbers β_i are determined by the equations: $\overline{D}C_j + \Sigma \beta_i C_i C_j = 0$ for all j. We can prove that $\rho(Y') = \rho(Y) + \rho(f)$.

<u>Definition</u> (1.3). Let D be a \mathbb{Q} -divisor on a normal surface. We say that D is <u>nef</u> (numerically effective) if $DC \ge 0$ for all curves C on Y and that D is <u>pseudo</u> <u>effective</u> if $DP \ge 0$ for all nef divisors P on Y.

2. Projection formula

A coherent sheaf F on Y is <u>reflexive</u> if $F^{\vee\vee} \cong F$ where F^{\vee} is the dual sheaf $Hom(F,O_Y)$. A reflexive sheaf of rank one is called a <u>divisorial</u> sheaf. Set $Y_0 = Y \setminus Sing Y$ with the inclusion

i:Y₀ \rightarrow Y.A coherent sheaf F on Y₀ is said to be <u>extendible</u> if it extends to a coherent sheaf on Y. It is proved by Serre (Ann.Inst.Fourier 16) that if F is an extendible reflexive sheaf on Y₀, then i_{*}F is a reflexive sheaf on Y, which is unique as a reflexive extension of F.

For a divisor D on Y the invertible sheaf $O(D_{|Y_0})$ on Y_0 is extendible. Indeed the coherent sheaf $\pi_*O(\overline{D})$ is an extension. It follows that the sheaf $i_*O(D_{|Y_0})$ is a divisorial sheaf on Y. We denote it by O(D). Clearly $i_*i^*O(D) \cong O(D)$. When Y is Moišezon, every divisorial sheaf is defined by a divisor. For a \mathbb{Q} -divisor D we understand that O(D) = O([D]). Two \mathbb{Q} -divisors D and D' are linearly equivalent, denoted by $D \sim D'$, if the difference D-D' is a principal divisor of a non-zero meromorphic function. We have the equivalence: $D \sim D' \iff (i) D - D'$ is integral, (ii) $O(D) \cong O(D')$.

The following result connects the cohomological invariants of Y with those of X.

Theorem(2.1)(Projection Formula). Let D be a Q-divisor on a normal surface Y. Let $\pi: X \to Y$ be a resolution. Then $\pi_* O(\pi*D) \simeq O(D).$

Outline of Proof. It is sufficient to consider the local situation. Let (V,y) be a normal surface singularity with a resolution $\pi:U \to V$. As before let $A=VE_i$ denote the exceptional set of π . There is an exact sequence originated by Laufer: $0 \to H^0(U,O(\pi*D)) \to H^0(U\setminus A,O(\pi*D)) \to H^1_C(U,O(\pi*D))$.

Since $H^0(U\setminus A,O(\pi*D))\cong H^0(V\setminus y,O(D))\cong H^0(V,O(D))$, the assertion follows from the vanishing: $H^1_C(U,O(\pi*D))=0$. By duality we have $H^1_C(U,O(\pi*D))\cong H^1(U,O(K+\{-\pi*D\}))$ where the K is a canonical divisor of U. So we can complete the proof by the following

Theorem (2.2)(Local Vanishing Theorem). Let D be a $\mathbb{Q}\text{-divisor}$ on U. Suppose that DE; ≥ 0 for all j. Then $\mathbb{R}^1\pi_{\star}O(K+\{D\})=0.$

Remark. In the algebraic context, Theorems (2.1) and (2.2) hold in all characteristics.

 $\underline{\text{Theorem}} \ (2.3) (\text{Generalized Projection Formula}). \ \text{Let } f:Y' \to Y$ be a birational morphism of normal surfaces. Let D be a Q-divisor on Y and let Z be an effective Q-divisor supported on the exceptional set A_f . Then

 $f_*O(f*D+Z)\simeq O(D)$.

3. \mathbb{Q} -divisor Δ

We study the inverse image of a canonical divisor. Let (V,y) be a normal surface singularity with a resolution $\pi:U \to V$. Let $A=VE_i$ denote the exceptional set. If K is a canonical divisor of U, then $K_V=\pi_*K$ is a canonical divisor of V. Now define a Q-divisor $\Delta=\Sigma\delta_iE_i$ by the equations: $KE_i+\Sigma\delta_iE_iE_j=0$ for all j. We infer from the definition in Sect.1 that $\pi^*K_V=K+\Delta$.

When π is the minimal resolution in the sense that there is no exceptional curve of the first kind in A, it can be shown that $\Delta \geq 0$ and that $\Delta = 0 \iff y$ is a rational double point. We introduce the following numerical invariants:

$$\text{h(y)=dim R}^1\pi_*O_U \qquad \text{(the genus)}$$

$$\mu(y)=e(A)+\Delta^2-1+12h(y) \qquad \text{(the Milnor number)}$$
 where e(A) is the Euler number of A. Note that $\mu(y)\in \mathbb{Q}$.

Example (3.3). Let us examine the case in which the weighted dual graph of the exceptional set of the minimal good resolution is a star and only the central curve (if exists) may have positive genus. This is the case if the singularity has a good C*-action (Orlik-Wagreich).

(a) cyclic quotient singularity. The weighted dual graph is a chain of \mathbb{P}^1 's.

pefine
$$d/e=[a_1,...,a_n]=a_1-\frac{1}{a_2-\frac{1}{a_1}}$$
 \vdots
 \vdots

Consider the equations: $X_{k+1} = a_k X_k - X_{k-1}$. Let $\{c_{ik}\}$, $\{c_{ik}\}$ be two solutions as

$$c_0 = d$$
, $c_1 = e$,..., then $c_n = 1$, $c_{n+1} = 0$, $c_0' = 0$, $c_1' = 1$,..., then $c_n' = e'$, $c_{n+1}' = d$ (ee'=1 mod d).

We have $c_k \ge 0$, $c_k \ge 0$. By a calculation (cf.Knöller, Math.Ann.213),

(3.4)
$$\Delta = \sum (1 - (c_k + c_k')/d) E_k$$

$$\mu = n + 4 - \nu - (e + e' + 2)/d$$

where v is the multiplicity of y, which is equal to $\Sigma(a_i-2)+2$.

(b) a star with a central curve E_0 with genus g. There are finite number of branches of chains of \mathbb{P}^1 's, E_{ij} $j=1,\ldots,n_i$. Let $E_0^2=-a_0$, $E_{ij}^2=-a_{ij}$ $(a_{ij}\geq 2)$. Define $d_i/e_i=[a_{i1},\ldots,a_{in_i}]$, $\{c_{ik}\}$, $\{c_{ik}\}$ as above. The negative definiteness of the intersection matrix implies $a_0-\Sigma e_i/d_i>0$. With these notation we get

(3.5)
$$\Delta = \sum (1 - ((1 - \delta_0) c_{ik} + c_{ik}) / d_i) E_{ik} + \delta_0 E_0,$$
 where
$$\delta_0 = 1 + \frac{\sum (1 - 1 / d_i) + 2g - 2}{a_0 - \sum e_i / d_i} .$$

Example (3.6). Assume π is the minimal good resolution. Those singularities having the property: $\delta_{\mathbf{i}} \leq 1$ for all \mathbf{i} , have been classified by K.Watanabe (Math.Ann. 250) and by Y.Kawamata (in somewhat different context, Lecture Notes in Math. 732,

Springer). We give the list. Here o denotes a non-singular rational curve and • denotes a non-singular rational curve with self-intesection -2. Cf. Wagreich (Topology 11).

<u>Table</u> (3.7)(Singularities with $\delta_{i} \le 1$ for all i).

- (1) smooth point (1)* quotient singularities
- (2) cusp singularities (2)*
- simple elliptic (3)singularities -3 -3 -4 -3

(quotients of simple
elliptic singularities)

The proof proceeds as follows. It turns out that π coincides with the minimal resolution except the case \bigcirc -1. If A is a single curve, it is either \mathbb{P}^1 or an elliptic curve. We consider the case in which A has more than one component. Assume y is not a rational double point. If A' is a proper subset of A, letting \triangle ' be the \mathbb{Q} -divisor associated to A', then we must have $\triangle \triangle$ '. We infer from this that every component of A is \mathbb{P}^1 . Next one shows that A is a star except the cases (2), (2)*. In case A is a chain, every coefficient of \triangle is less that one (cf.(3.4)). In case A is a star with a central curve, we deduce from (3.5) that $\delta_0 \leq 1 \iff \Sigma(1-1/d_1) \leq 2$. Looking in the coefficients of \triangle the condition $\delta_0 \leq 1$ implies that all other coefficients are less than one. The inequality $\Sigma(1-1/d_1) \leq 2$ has finite possibilities of \mathbb{Q} , which correspond to the cases (1)* and (3)*:

- (1)* (2,2,d), (2,3,3), (2,3,4), (2,3,5)
- (3)* (2,2,2,2), (3,3,3), (2,4,4), (2,3,6).

Remark. The above singularities (3) and (3)* have appeared as ball cusp singularities ([2]). The case (1)* \Leftrightarrow δ_i <1 for all i.

4. Noether formula, vanishing theorem

We come back to study normal surfaces. Let Y be a normal surface and let $\pi: X \to Y$ be a resolution with A the exceptional set. For the sake of simplicity, we assume that X has a canonical divisor K. This is the case if X is projective, or equivalently if Y is Moišezon. In general we have to deal with the canonical line bundle. For this argument, we refer to [6].

Since $\pi_{\star}K$ becomes a canonical divisor of Y, we denote it by $K_{\underline{Y}}$.

If Sing Y= $U_{\underline{Y}_{\underline{i}}}$, let $\Delta_{\underline{i}}$ be the \mathbb{Q} -divisor associated to $\underline{Y}_{\underline{i}}$ supported on $A_{\underline{i}} = \pi^{-1}(\underline{Y}_{\underline{i}})$. Write $\Delta = \Sigma \Delta_{\underline{i}}$. By (3.1) we have $\pi^{\star}K_{\underline{Y}} = K + \Delta$ and hence (4.1) $K_{\underline{Y}}^2 = K^2 - \Delta^2.$

 $\underline{\text{Theorem}}$ (4.2) (Noether Formula). Let Y be a normal surface. Then

$$\chi(O_Y) = \frac{1}{12} (\kappa_Y^2 + e(Y) + \Sigma \mu(Y_i))$$

where e(Y) is the Euler number of Y.

Proof. Recall the Noether formula for X:

$$\chi(O_X) = \frac{1}{12}(K^2 + e(X)).$$

We have the following relations of Euler numbers:

 $e(X)=e(X\backslash A)+e(A)=e(Y\backslash Sing\ Y)+e(A)=e(Y)+\Sigma(e(A_{1})-1).$ On the other hand $\chi(O_{Y})=\chi(O_{X})+\dim\ R^{1}\pi_{\star}O_{X}.$ Combining these with (4.1) and the definition of μ , we get the required result. Q.E.D.

For the Riemann-Roch formula for divisorial sheaves, see [1]. We shall state the vanishing results.

Theorem (4.3) (Generalized Ramanujam Vanishing Theorem). Let Y be a normal Moišezon surface. Let D be a nef \mathbb{Q} -divisor with $\mathbb{D}^2 > 0$ on Y. Then

$$H^{i}(Y,O(K_{Y}+\{D\}))=0$$
 for $i>0$.

<u>Proof.</u> This follows from the corresponding vanishing theorem for X, combined with the local vanishing theorem and the projection formula (for details see [6]). Q.E.D.

The local vanishing theorem can be generalized as follows.

Theorem (4.4). Let $f:Y \to Y'$ be a birational morphism of normal surfaces. If D is a relatively nef Q-divisor on Y, then $R^1f_{\star}O(K_{Y}+\{D\})=0.$

Corollary. In particular we have $R^1f_*O(K_Y)=0$, which is a generalization of the Grauert-Riemenschneiders's vanishing theorem.

5. Minimal model

Let Y be a normal surface and D a divisor on Y. For every positive integer m we infer from the projection formula that dim $H^0(Y,O(mD))=\dim H^0(X,O(m\pi*D))$. We define the D-dimension of Y, denoted by $\kappa(D,Y)$, to be $\kappa(\pi*D,X)$.

Definition.

$$P_{m}(Y) = \dim H^{0}(Y, O(mK_{Y}))$$
 (the arithmetic m-genus)
 $u(Y) = u(K_{Y}, Y)$ (the arithmetic Kodaira dimension)

Let (Y,D) be a pair of a normal surface Y and a \mathbb{Q} -divisor D on Y. Such a pair is called a <u>normal pair</u>. We say that (Y,D)

is (relatively) minimal if Y contains no irreducible curves C with DC<0, $C^2<0$. A birational morphism $f:(Y,D) \rightarrow (Y',D')$ is a birational morphism $f:Y \rightarrow Y'$ satisfying $f_*D=D'$. Write as $D=f^*D'+R$ where $Supp(R)CA_f$. We say that f is totally discrepant if every irreducible component of A_f appears in R with positive coefficient. Given a normal pair (Y,D), a minimal normal pair (Y',D') is called its minimal model if there is a totally discrepant birational morphism $f:(Y,D) \rightarrow (Y',D')$. In this case, by the projection formula (2.3) we get $H^0(Y,O(mD)) \cong H^0(Y',O(mD'))$ for every positive integer m, hence $\varkappa(D,Y) = \varkappa(D',Y')$.

Theorem (5.1). Every normal pair has a minimal model. Furthermore, if D is pseudo effective, then (Y,D) admits a unique minimal model (Y',D') and D' is nef.

<u>Proof.</u> Let (Y,D) be a normal pair. Suppose it is not minimal. Then it contains an irreducible curve C with DC<0, $C^2<0$. Let $\phi:Y\to Y_1$ be the contraction of C. If we put $D_1=\phi_*D$, by (1.2) we find that $D=\phi*D_1+(DC/C^2)C$. It follows from the hypothesis that $D>\phi*D_1$. Note that $\rho(Y_1)=\rho(Y)-1$. Thus by a finite number of successive such contractions we arrive at a minimal model (for the latter assertion see [6]). Q.E.D.

Corollary (Zariski Decomposition). Let (Y,D) be a normal pair. Suppose D is pseudo effective. Let (Y',D';f) be its minimal model. If we write P=f*D', then the decomposition

D=P+N

satisfies the following properties: (i) ${\tt P}$ is nef, (ii) ${\tt N}$ is

effective and Supp(N) is contracted by f. Furthermore, such decomposition is unique.

We talk of a pair (X,K+D) where X is a smooth surface and D is a reduced curve with normal crossings. If (Y,K_Y+B) is its minimal model, then Y has only quotient singularities (cf.[8]). Indeed, write as K+D=f*(K_Y+B)+R, $\Delta=\Delta^+-\Delta^-$, then D+ $\Delta^-=\Delta^++f*B+R$. Since f is totally discrepant, every coefficient of $\Delta^+<1$.

For normal surfaces a birational morphism $f:Y \to Y'$ is <u>totally discrepant</u> if $f:(Y,K_Y) \to (Y',K_{Y'})$ is totally discrepant in the above sense. In this case we have $P_m(Y)=P_m(Y')$ for m>0 and $\kappa(Y)=\kappa(Y')$. We say that Y is <u>minimal</u> if the pair (Y,K_Y) is minimal. Also Y' is a minimal model of Y if (i) Y' is minimal, (ii) there is a totally discrepant birational morphism $f:Y \to Y'$. Theorem (5.1) asserts that every normal surface has a minimal model. We are thus reduced to study minimal normal surfaces. If Y is minimal, then either (i) K_Y is not pseudo effective, or (ii) K_Y is nef. For further discussions and classification theory, we refer to [7] (for the Gorenstein case see [5]).

Example (5.2). Let B be a non-singular curve of genus $g \ge 2$. Let X=P(E) be a ruled surface defined by a rank 2 vector bundle E on B. Suppose E is normalized as in the book of Hartshorne. Set e=det E, e=-deg e. There is a base section b with b^2 =-e. Suppose e>0. Let $\pi:X \to Y$ be the contraction of b. Since $\rho(Y)=1$, Y is of course minimal. We have $\pi*K_Y=K+\Delta=((2g-2-e)/e)b+p*(k+e)$ where $p:X \to B$ is the projection map and k denotes a canonical divisor of B. It follows that $K_Y^2=(2g-2)^2/e\ge 0$ and e(Y)=3-2g<0.

There occur three cases: (i) K_Y is nef (if e<2g-2), (ii) $K_Y \approx 0$ (if e=2g-2), (iii) $-K_Y$ is nef (if e>2g-2).

Finally we mention about the Miyaoka inequality. We recall the following recent result (Miyaoka [3]): Let X be a smooth projective surface and D a divisor having normal crossings on X. Suppose K+D is pseudo effective and let K+D=P+N be the Zariski decomposition. Then

(5.3)
$$(K+D)^2 - \frac{1}{4}N^2 \le 3e(X \setminus D)$$
.

We deal with normal surfaces whose singularities are contained in Table (3.7). Notice that there $\{(2), (3)\}$ are elliptic singularities and $\{(1)*, (2)*, (3)*\}$ are rational singularities. We want to point out two facts.

- (i) $\varkappa(\Upsilon) \ge 0$ if and only if K_{Υ} is pseudo effective. (5.4)
 - (ii) If K_Y is nef, then $\frac{3}{2}\# \text{ rat.Sing Y+3}\# \text{ ellip.Sing Y+}K_Y^2 \le 3e(Y).$ In particular, we have $e(Y) \ge 0$.

We show (ii). Let $\pi: X \to Y$ be the minimal resolution. As noticed in Example (3.6), the exceptional set $A=VE_i$ has normal crossings. If we write $D=\Sigma E_i$, then $D-\Delta \ge 0$. The pseudo effectiveness of K_Y implies that of K+D. Clearly, $e(X\setminus D)=e(Y)-\#$ Sing Y. On the other hand $(K+D)^2=(K+\Delta)^2+(D-\Delta)^2$ and

 $(D-\Delta)^2 = (K+D)D-\Delta(D-\Delta) \ge (K+D)D = -2 \# \text{ rat.Sing Y.}$ If K_Y is nef, we get $P=\pi * K_Y$ and so $N=D-\Delta$. By (5.3) we get (ii).

When Y has worse singularities, this is not necessarily the case. For instance in Example (5.2), if e<2g-2, then K_Y is nef and $\mu(Y)=2$, but e(Y)<0.

In the case of quotient singularities, a more precise result can be found in [3].

References

- [1] Giraud, J.: Surfaces d'Hilbert-Blumenthal, Lecture Notes in Mathematics 868, pp.35-57, Springer, 1981.
- [2] Holzapfel,R.:Ball cusp singularities, Nova acta Leopoldina, pp.109-117, 1981.
- [3] Miyaoka, Y.: The maximal number of quotient singularities on surfaces with given numerical invariants, preprint.
- [4] Mumford, D.: The topology of normal surface singularities of an algebraic surface and a criterion for simplicity, Publ. Math. I. H. E. S. 9(1961), 5-22.
- [5] Sakai, F.: Enriques classification of normal Gorenstein surfaces, Amer. J. Math. 104(1982), 1233-1241.
- [6] Sakai, F.: Weil divisors on normal surfaces, preprint.
- [7] Sakai, F.: The structure of normal surfaces, in preparation.
- [8] Tsunoda, S. and Miyanishi, M.: The structure of open algebraic surfaces, II, in: Classification of algebraic and analytic varieties, pp. 499-544, Birkhäuser 1983.

Department of Mathematics, Faculty of Science Saitama University, Urawa 338, Japan