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Normal Surfaces and Intersection Theory

Fumio SAKATI -
5 ERR b4 Ik

In this note we develop geometry of normal surfaces by using
the intersection theory introduced by Mumford [4]. We shall
study the contraction criterion, the projection formula, the
Noether formula, the vanishing theorem, the minimal model, the

Miyaoka inequality, etc. Details will be discussed elsewhere.

Notation

A surface will mean an irreducible réduced compact complex
space of dimension 2. A divisor will mean a Weil divisor (i.e.,
a linear combination of irreducible curves) unless otherwise

specified. We use "birational morphism" instead of bimeromorphic

morphism.
Y : a normal surface
X : a resolution of singularities of Y
Div(Y) : the group of divisors on Y

An element of Div(Y,Q)=Div(Y)®Q is called a Q-divisor.
Given a Q-divisor D=Zo¢iCi where the‘Ci are irreducible curves and
aieQ, we write as

[D] = Z[a.]C. ([a] is the greatest integer<a)

{p}

Il

Z{ai}ci ({u} is the least integerza)



1. Contraction criterion

Let Y be a normal. surface. The intersection pairing
Div(Y)xDiv(Y) +~ Q@ is defined as follows ([4]). Let m:X - Y be a
resolution of singularities and let A=UEi denote the exceptional

set of m. For a divisor D on Y we define the inverse image m*D

as

T*D=D+la.E.
i1
where D is the strict transform of D and the rational numbers ai

are uniquely determined by the equations: 5Ej+zaiEiEj=0 for all

j. For two divisors D and D' the intersection number DD' is

defined to be the rational number (m*D)(m*D').

A divisor D on Y is numerically equivalent to zero, denoted
by D0, if DC=0 for all curves C on Y. Two divisors D and D' are
numerically equivalent, D¥D', if D-D'¥0. Set N(Y,Q)=

(Div(Y)/®)®0. The Picard number p(Y) of Y is the rank of the

D-vector space N(Y,Q). We have the equality: p(Y)=p(X)-p(T)
where p(7) is the number of irreducible components of A.
The following is the normal surface version of the Grauert's

contraction criterion theorem.

Theorem (1.1)(Contraction Criterion). Let Ci""’Ck be
irreducible curves on a normal surface Y. Then the union UCi can
be contracted to normal points if and only if the intersection

matrix (CiCj)‘is negative definite.



Proof. By definition ﬂ*Ci=Ei+Zi with Supp(Z,)CA. Let
G=Zuiﬁi+z be a Q-divisor on X such that Supp(Z)CA. Write

G=1*(Za.C.)+2' where 72'=%2-30.%Z.. We find that G2=(Zu.C.)2+z'2.
i’i i1 i7i

As a consequence. the Grauert's theorem applied to X proves the

assertion. Q.E.D.

We now consider a birational morphism f:Y' -+ Y between
normal surfaces Y' and Y. We denote by Af the exceptional set of

f. Write A =UCi. For a divisor D on Y the inverse image f*D is

£
also defined. As a corollary of the above criterion, we can
write as

*D=D
(1.2) | £*D D+ZBiCi
where D is the strict transform of D by f and the rational

numbers Bi are determined by the equations: 5Cj+ZBiCiCj=O for all

j. We can prove that p(Y')=p(Y)+p(f).

Definition (1.3). ‘Let D be a Q-divisor on a normal surface.
We say that'D is nef (numerically effective) if DC20 for all

curves C on Y and that D is pseudo effective if DP20 for all nef

divisors P on Y.

2. Projection formula

A coherent sheaf F on Y is reflexive if FYY =F where FY is
the dual sheaf Hom(F,OY), A reflexive sheaf of rank one is

called a divisorial sheaf. Set Y0=Y\Sing Y with the inclusion
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i:YO + Y.A coherent sheaf F on YO is said to be extendible if it
extends to a coherent sheaf on Y. It is proved by Serre
(Ann.Inst.Fourier 16) that if F is an extendible reflexive sheaf

on Y then i F is a reflexive sheaf on Y, which is unique as a

OI
reflexive extension of F.
For a divisor D on Y the invertible sheaf O(DIY ) on YO is
: 0
extendible. Indeed the coherent sheaf ﬂ*O(ﬁ) is an extension.

It follows that the sheaf i*O(DlY ) 1s a divisorial sheaf on Y.
0

We denote it by O(D). Clearly i, i*0O(D)=0(D). When Y is
MoiSezon, every divisorial sheaf is defined by a divisor. For a
Q-divisor D we understand that O(D)=0([D]). Two Q-divisors D and

D' are linearly equivalent, denoted by D~D', if the difference

D-D' is a principal divisor of a non-zero meromorphic function.
We have the equivalence: D~D' &= (i) D-D' is integral, (ii)
O(D)=0(D'").

The following result connects the cohomological invariants

of Y with those of X.

Theorem(2.1) (Projection Formula). Let D be a Q-divisor on a
normal surface Y. Let 1:X > Y be a resolution. Then

™

LO(m*D)=0(D).

Outline of Proof. It is sufficient to consider the local

situation. Let (V,y) be a normal surface singularity with a
resolution Tm:U » V. ' As before let A=UEi denote the exceptional
set of m. There is an exact sequence originated by Laufer:

0 > 5%(u,0(m*p)) > HO(U\A,O(n*D)) - H(l:(U,O(ﬁ*D)).



since H’(U\A,0(#*D))=0’(V\y,0(D))=H’(V,0(D)), the assertion
follows from the vanishing: Hé(U,O(ﬂ*D))=O. By duality we have

1

Hi(U,O(ﬂ*D))zH (U,O(K+{—n*D})) where the K is a canonical divisor

of U. So we can complete the proof by the following

Theorem (2.2)(Local Vanishing Theorem). Let D be a
p-divisor on U. Suppose that DEij for all j. Then

rln,0(k+{D})=0.

Remark. 1In the algebraic context, Theorems (2.1) and (2.2)

hold in all characteristics.

Theorem (2.3)(Generalized Projection Formula). Let f:Y' >~ Y
be a birational morphism of normal surfaces. Let D be a
p-divisor on Y and let Z be an effective Q-divisor supported on
the exceptional set Af. Then

£,0(£%D+2)=0(D).
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3. Q-divisor A

We study the inverse image‘of a canonical divisor. Let
(V,y) be a normal surface singularity with a resolution m:U > V.
Let A=UEi denote the exceptional set. If K is a canonical
divisor of U, then Kv=ﬂ*K is a canonical divisor of V. Now
define a Q-divisor A=26iEi by the equations: KEi+26iEiEj=0 for
all j. We infer from the definition in Sect.l that
(3.1) ﬂ*KV¥K+A.

When 1 is the minimal resolution in the sense that there is no
exceptional curve of the first kind in A, it can be shown that
A20 and that A=0 &= y is a rational double point. We introduce
~the following numerical invariants:

h(y)=dim Rlﬂ*OU (the genus)
3-2) u(y)=e(A)+A2—l+12h(y) (the Milnor number)

where e(A) is the Euler number of A. Note that u(y)eQ.

Example (3.3). Let us examine the case in which the weighted
dual graph of the exceptional set of the minimal good resolution
is a star and only the central curve (if exists) may have positive
genus. This is the case if the singularity has a good €*-action

(Orlik-Wagreich).

(a) cyclic quotieht singularity.

The weighted dual graph is a chain of Pl's.
E1 E2 En
o o -——- o
B I ~8n



pefine d/e=[an,...,an]=a1— 1

. . _ _ .
Consider the equatlons.Xk+1 aka Xk—l' Let {cik}’ {cik} be two

solutions as

C0= ’ cl=e, e ey then Cn=1 ’ Cn+1=0’
Cé=0r Ci=1r---, then cg=e', c$+1=d (ee'=1 mod 4d).
We have CkZO,/CiZO. By a calculation (cf.Knoller, Math.Ann.213),

A=) (1-(c, +c')/d)E
(3.4) kok k

U=n+4-v-(e+e'+2)/d
where V is the multiplicity of y, which is equal to Z(a;-2)+2.

(b) a star with a central curve E, with genus g. There are

0
finite number of branches of chains of Pl's, Eij j=1,...,ni. Let
E2=—a E?.=-a. (a..22) Define d./e.=[a. a 1, {c }
0 0’ 7ij ij ij= = i’ 71 il’"* """ in. "’ ik’ ’

{Cik} as above. The negative definiteness of the intersection

matrix implies ao—Zei/di>O. With these notation we get

— - - ]
(3.5) A=) (1-((1 80)C ki) /a4 B, +8Ey,
where
£(1-1/d;)+2g-2
$0=1" = 5. /a .
0 ~%1/%4

Example (3.6). Assume 7T is the minimal good resolution.
Those singularities having the property: éigl for all i, have
been classified by K.Watanabe (Math.Ann. 250) and by Y.Kawamata

(in somewhat different context, Lecture Notes in Math. 732,
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Springer). We give the list. Here o denotes a non-singular
rational curve and e denotes a non-singular rational curve with

self-intesection -2. Cf. Wagreich (Topology 11).

~ Table (3.7)(Singularities with 6,51 for all i),

(1) smooth point (1)+* quotient singularities

(2) cusp singularities (2)*
PO , :::>n———o ..... o———q<::
\
7
oo’

(3) simple elliptic (3)*

;

-3 -3 N

singularities

Cﬁ/’
¢ ‘
' I BN

-6 -6

(guotients of simple

elliptic singularities)
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The proof proceeds as follows. It turns out that m coincides
with the minimal resolution except the case d:::b -1. If A is a
single‘curve,vit is either Pl or an elliptic curve. We consider
the case in which A has more than one component. Assume y is
not a rational doub1e point. If A' is a proper subset of A, |
letting A' be the Q-divisor associated to A', then we must have
A>A'. We infer from this that every chponént of A is Pl. Next
one shows that A is a star except the cases (2), (2)*. 1In case A
is a chain, every coefficient of A ié less that one (cf.(3.4)).
In case A is a star with a central curve, we deduce from (3.5)
that §,<1 & I(1-1/d;)<2. Looking in the coefficients of A the
condition 60;1 implies that all other coefficients are less than
one. The inequality Z(l—l/di);Z has finite possibilities of di’
which correspond to the cases (1)* and (3)*:

(1) (2,2,d), (2,3,3), (2,3,4), (2,3,5)

(3)*  (2,2,2,2), (3,3,3) (2,4,4), (2,3,6).

Remark. The above singularities (3) and (3)* have appeared

as ball cusp singularities ([2]). The case (1)* & 6i<1 for all i.

4. Noether formula, vanishing theorem

We come back to study normal surfaces. Let Y be a normal
surface and let m:X > Y be a resolutibn with A the exceptional
set. For the sake of simplicity, we assume thét X has a
canonical divisor K. This is the case if X is projective, or
equivalently if Y is MoiSezon. 1In general we have to deal with

the canonical line bundle. For this argument, we refer to [6]1.
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Since m,K becomes a canonical divisor of Y, we denote it by K-

If Sing Y=in, let Ai be the Q-divisor associated to ' supported

on Ai=ﬂ_1(yi). Write A=2Ai. By (3.1) we have ﬂ*KY=K+A and hence

2 .2 2
(4.1) KY-K AT
Theorem (4.2) (Noether Formula). Let Y be a normal surface.
Then
x (O )=~—1(K2+e(Y-)+Z u(y:))
Y 12VY : i

where e(Y) is the Euler number of Y.

Proof. Recall the Noether formula for X:

_ 1.2 |
=T (Ko e (X)) .

We have the following relations of Euler numbers:

¥ (O

e(X)=e(X\A)+e(A)=e(Y\Sing Y)+e(A)=e(Y)+Z(e(Ai)—1).
On the other hand X(OY)=X(OX)+dim Rlﬂ*OX. Combining these with
(4.1) and the definition of u, we get the required result.

Q.E.D.

For the Riemann-Roch formula for divisorial sheaves, see
[1]. We shall state the vanishing results.

Theorem (4.3) (Generalized Ramanujam Vanishing Theorem).
Let Y be a normal MoiSezon surface. Let D be a nef Q-divisor
with D2>O on Y. Then

H'(Y,0(Ky+{D}))=0  for i>0.



Proof. This follows from the corresponding vanishing

theorem for X, combined with the local vanishing theorem and the

projection formula (for details see [6]). Q.E.D.
The local vanishing theorem can be generalized as follows.

Theorem (4.4). Let f:Y » Y' be a birational morphism of
normal surfaces. If D is a relatively nef Q-divisor on ¥, then

le*O(KYf{D})=O,

Corollary. 1In particular we have le*O(KY)#Oi which is a

generalization of the Grauert-Riemenschneiders's vanishing

theorem.

5. Minimal model

Let Y be a normal surface and D a divisor on Y. For every

positive integer’m we infer from the projection formula that
dim HO(Y,O(mD))=dim HO(X,O(mﬂ*D)), We define the D-dimension of

Y, denoted by n(D,Y), to be n(mn*D,X).

Definition.
Pm(Y)=dim HQ(Y,O(mKY)) (the arithmetic m-genus)
w(Y)=n(Ky,Y) (the arithmetic Kodaira dimension)

Let (Y,D) be a pair of a normal surface Y and a Q-divisor D

on Y. Such a pair is called a normal pair. We say that (Y,D)

- 11 -
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is (relatively) minimal if Y contains no irreducible curves C

with DC<O0, C2<0. A birational morphism f:(Y,D) » (Y',D") is a

birational morphism f:Y -~ Y' satisfying £, D=D'. Write as

D=f*D'+R where Supp(R)CA We say that f is totally discrepant

-
if every irreducible component of Af appears in R with positive

coefficient. Given a normal pair (Y,D), a minimal normal pair

(Y',D') is called its minimal model if there is a totally

discrepant birational morphism f:(Y,D) - (Y',D'). 1In this case,
by the projection formula (2.3) we get HO(Y,O(mD)):HO(Y',O(mD'))

for every positive integer m, hence u(D,Y)=u(D',Y').

Theorem (5.1). Every normal pair has a minimal model.
Furthermore, if D is pseudo effective, then (Y,D) admits a unique

minimal model (Y',D') and D' is nef.

Proof. Let (Y,D) be a normal pair. Suppose it is not

minimal. Then it contains an irreducible curve C with DC<O0,

2 -
C"<0. ©Let ¢:Y +‘Yl be the contraction of C. If we put D1=@*D,

by (1.2) we find that D=¢*D +(DC/C®)C. Tt follows from the

1
hypothesis that D>m*D1. 'Note that p(Y1)=p(Y)—1. "Thus by a

finite number of successive such contractions we arrive at. a

minimal model (for the latter assertion see [6]). Q.E.D.
Corollary (Zariski Decomposition). Let (Y,D) be a normal

pair. Suppose D is pseudo effective. Let (Y',D';f) be its
minimal model. If we write P=f*D', then the decomposition
D=P+N

satisfies the following properties: (i) P is nef, (ii) N is

_12_
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effective and Supp(N) is contracted by f. Furthermore, such

decomposition is unique.

We talk of a pair (X,K+D) where X is a smooth surface and D
is a reduced curve With normal crossings. If (Y,KY+B) is its.
minimal model, then Y has only quotient singularitiee (cf.[81).
Indeéd,"writé as K+D=f*(KY+B)+R; A=AT-AT, then D+A =AT+£*B4R.
since f’ie totally discrepant, every coefficient of AT<1.

For normal surfaces a birational morphism f:Y » ¥Y' is totally
discrepant if f:(Y,KY) > (Y',KY;) is totally discrepant in the
above sense. In this case we have Pm(Y)=Pm(Y') for m>0 and
w(Y)=u(Y'). We say that Y is minimal if the pair (Y,KY) is
minimal. Also Y' is a minimal model of Y if (i) Y' is minimal,
(ii) there is a totally dieerepant birational morphism f:Y > Y'.
Theorem (5.1) asserts thet every normal surface has a minimal
model. We are thus reduced to study minimal normal surfaces. If
Y is minimal, then either (i) K. is not pseudo effective, or (ii)

Y

KY is nef. For further discussions and classification theory, we

refer to [7] (for the Gorenstein case see [5]).

Example (5.2). Let B be a non-singular curve of genus g22.
Let X=P(E) be a ruled surface defined by a rank 2 vector bundle
E on B. Suppose E is normalized as in the book of Hartshorne.
Set e=det E, e=-deg . There is a base section b withvb2=—e.
Suppose e>0. Let m:X + Y be the contraction of b. Since p(Y)=1,
Y is of course minimal. We have ﬂ*KY=K+A=((29—2—e)/e)b+p*(k+$)’

where p:X » B is the projection map and k denotes a canonical

divisor of B. It follows that K§=(29—2)2/e20 and e(Y)=3-2g<0.

- 13 -
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There occur three cases: (i) K, is nef (if e<2g-2), (ii) KY%Q

Y
(if e=2g-2), (iii) -K, is nef (if e>2g-2).

Y
Finally wé mention about the Miyaoka inequality. We recall
the following recent result (Miyaoka [3]): Let X be a smooth
projective surface and D a divisor having normal crossings on X.
Suppose K+D is pseudo effective and let K+D=P+N be the Zariski
decomposition. Then

(5.3) ‘ (K+D)2—%N2§3e(X\D).

We deal with normal surfaces whose singularities are
contained in Table (3.7). Notice that there {(2), (3)} are
elliptic singularities and {(1)*, (2)%, (3)*} are rational

singularities. We want to point out two facts.

(i) nw(Y)20 if and only if,KY is pseudo effective.
(5.4)
(ii)  If KY is nef, then
3 . N 2,
5# rat.Sing Y+3# ellip.Sing Y+KY=3e(Y).
In particular, we have e(Y)20.
We show (ii). Let m:X * Y be the minimal resolution. As noticed

in Example (3.6), the exceptional set A=bEi has normal crossings.

Y
implies that of K+D. Clearly, e(X\D)=e(Y)-# Sing Y. On the other
2, 2

If we write D=ZEi, then D-A20. The pseudo effectiveness of K

hand (K+D)2=(K+A) and

2

(D-A)
(D-A)“=(K+D)D-A(D-A)2 (K+D)D=-2# rat.Sing Y.

If KY is nef, we get P=Tr*KY and so N=D-A. By (5.3) we get (ii).

- 14 -
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When Y has worse singularities, this is not necessarily the
case. For instahCe\in Example (5.2), if é<29¥2, then KY:is nef
and ®(Y)=2, but e(Y)<O0.

In the case of quotient singularities, a more precise result

can be found in [3].
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